Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Summer Research 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Tuesday, February 26, 2013
2:00 PM - 3:30 PM
T-DO Conference Room Bldg 123, Room 121

Quantum Lunch

Linear stability of solitary waves in nonlinear Dirac equation

Andrew Comech
Texas A & M University

We study the linear instability of solitary wave solutions to the nonlinear Dirac equation (known to physicists as the Soler model). That is, we linearize the equation at a solitary wave and examine the presence of eigenvalues with positive real part. We show that the linear instability of the small amplitude solitary waves is described by the Vakhitov-Kolokolov stability criterion which was obtained in the context of the nonlinear Schroedinger equation: small solitary waves are linearly unstable in dimensions 3, and generically linearly stable in 1D. A particular question is on the possibility of bifurcations of eigenvalues from the continuous spectrum; we address it using the limiting absorption principle and the Hardy-type and Carleman-type inequalities. The method is applicable to other systems, such as the Dirac-Maxwell system. Some of the results are obtained in collaboration with Nabile Boussaid, University of Franche-Comte, and Stephen Gustafson, University of British Columbia.

Host: Avadh Saxena, 667-5227