Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 Anastasio Fellow 
 
 Student Requests      
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Martin Larocca

Staff Scientist
T-4

Quantum information and computation

Office: TA-3, Bldg 524, Room 134
Email: larocca@lanl.gov

Research highlight

    I work at the interface of physics, mathematics, and computer science. My research leverages symmetry and representation theory to design quantum algorithms and quantum neural networks (QNNs). I led a multi-year effort to understand quantum optimization landscapes—covering gradient concentration (barren plateaus), overparametrization, and generalization—and helped articulate a framework for geometric QML and equivariant architectures.

Talks at CNLS:
 Educational Background/Employment:
  • Ph.D. in Physics, Universidad de Buenos Aires (2018–2021). Supervisor: Diego Wisniacki.
  • Licentiate in Physics (M.Sc. equiv.), Universidad de Buenos Aires (2014–2018). GPA: 9.18 / 10.00.
  • Employment:
    • Staff Scientist, Los Alamos National Laboratory — Theoretical Division (2025–present)
    • Postdoctoral Research Associate, LANL — Quantum Computing / QML (2022–2025)
    • Graduate Research Assistant, LANL — Variational Quantum Algorithms / Control (2021)
    • CONICET Fellow, U. de Buenos Aires — Quantum Control & Optimization Landscapes (2018–2021)

Research Interests:

  • Symmetry & representation theory for QML
  • Equivariant/invariant quantum architectures
  • Optimization landscape geometry (barren plateaus, overparametrization)
  • Quantum algorithms via group-theoretic methods
  • Reliable, reproducible QML engineering (HPC, PyTorch/JAX)
Google Scholar

Selected Recent Publications:

  1. D. Garcia-Martin, M. Larocca, M. Cerezo. Quantum Algorithms for Representation-Theoretic Multiplicities (2025) 10.1103/k5tx-xtr3
  2. M. West, A. A. Mele, M. Larocca, M. Cerezo. Real classical shadows (2024) 10.48550/arXiv.2410.23481
  3. M. Ragone, B. N. Bakalov, F. Sauvage, A. F. Kemper, C. O. Marrero, M. Larocca, M. Cerezo. A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits (2024) 10.1038/s41467-024-49909-3

CNLS Publications:

  • Cerezo de la Roca, Marco Vinicio Sebastian; Sauvage, Frederic; Larocca, Martin. Symmetric Classical Shadows. Quantum 2024 https://arxiv.org/html/2408.05279v1
  • Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin; Sornborger, Andrew Tyler; Barthe, Alice Marie, et al. Gate-based quantum simulation of Gaussian bosonic circuits on exponentially many modes. Physical Review Letters 2024 https://arxiv.org/html/2407.06290v1
  • Cerezo de la Roca, Marco Vinicio Sebastian; Nguyen, Quynh T.; Schatzki, Louis; Braccia, Paolo, et al. Theory for Equivariant Quantum Neural Networks. 2024 10.1103/PRXQuantum.5.020328
  • Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin; Thanasilp, Supanut; Wang, Samson, et al. A Review of Barren Plateaus in Variational Quantum Computing. Nature Review Physics 2024 10.48550/arXiv.2405.00781
  • Cerezo de la Roca, Marco Vinicio Sebastian; Garcia-Martin, Diego; Larocca, Martin. Effects of quantum noise on the overparametrization of quantum neural networks. 2024 10.1103/PhysRevResearch.6.013295
  • Cerezo de la Roca, Marco Vinicio Sebastian; Schatzki, Louis; Larocca, Martin; Sauvage, Frederic Antoine. Theoretical Guarantees for Sn-Equivariant Quantum Neural Networks. 2024 10.1038/s41534-024-00804-1
  • Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin; Garcia Martin, Diego; Diaz, Nahuel Luciano, et al. Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing. Quantum Machine Intelligence 2023 10.48550/arXiv.2312.09121
  • Wierichs, David ); East, Richard ); Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin, et al. Symmetric derivatives of parametrized quantum circuits. Physical Review X Quantum 2023 10.48550/arXiv.2312.06752
  • Cerezo de la Roca, Marco Vinicio Sebastian; Diaz, Nahuel Luciano; Kazi, Sujay; Garcia Martin, Diego, et al. Showcasing a Barren Plateau Theory Beyond the Dynamical Lie Algebra. Physical Review Letters 2023 10.48550/arXiv.2310.11505
  • Cerezo de la Roca, Marco Vinicio Sebastian; Ragone, Michael; Bakalov, Bojko; Larocca, Martin, et al. A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits. Nature Physics 2023 10.48550/arXiv.2309.09342
  • Goh, Matthew; Cincio, Lukasz; Larocca, Martin; Cerezo de la Roca, Marco Vinicio Sebastian, et al. Efficient classical simulation of quantum neural networks with Lie-algebraic methods. arXiv, Quantum 2023 10.48550/arXiv.2308.01432
  • Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin; Garcia Martin, Diego. Deep quantum neural networks form Gaussian processes. Nature Physics 2023 10.48550/arXiv.2305.12664
  • Kazi, Sujay; Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin. Subspace controllability and failure of universality of Sn-equivariant k-body gates. NPJ Quantum Information 2023 10.1088/1367-2630/ad4819
  • Cerezo de la Roca, Marco Vinicio Sebastian; Ragone, Michael; Braccia, Paolo; Nguyen, Quynh T., et al. Representation Theory for Geometric Quantum Machine Learning. Quantum 2022 10.48550/arXiv.2210.07980
  • Larocca, Martin; Czarnik, Piotr; Sharma, Kunal; Muraleedharan, Gopikrishnan, et al. Diagnosing barren plateaus with tools from quantum optimal control. QUANTUM 2022 10.22331/Q-2022-09-29-824
  • Larocca, Martin; Sauvage, Frederic; Sbahi, Faris M.; Verdon, Guillaume, et al. Group-Invariant Quantum Machine Learning. PRX QUANTUM 2022 10.1103/PRXQuantum.3.030341
  • Cerezo de la Roca, Marco Vinicio Sebastian; Larocca, Martin; Sauvage, Frederic Antoine; Verdon, Guillaume, et al. Group-Invariant Quantum Machine Learning Models. 2022 10.1103/PRXQuantum.3.030341
  • Ramsey, Marilyn Leann; Adams, Claire Leeanne; Archer, Emma Marie; Arzola Roig, Angelic Marie, et al. 2021 Virtual Theoretical Division Lightning Talk Series. 2021 https://www.osti.gov/biblio/1836977/
LANL Operated by the Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy