Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 15, 2018
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

A Simple Eulerian Approach for Compressible Multifluids and to Flows in Domains with Moving Boundaries

Prof Alina Chertock
North Carolina State University

We introduce a simple new Eulerian method for treatment of moving boundaries in compressible fluid computations. Our approach is based on the extension of the interface tracking method we proposed in the context of multifluids. The fluid domain is placed in a rectangular computational domain of a fixed size, which is divided into Cartesian cells. At every discrete time level, there are three types of cells: internal, boundary, and external ones. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the external points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. The proposed computational framework is general and may be used in conjunction with one’s favorite finite-volume or finite-difference method. The robustness of the new approach is illustrated on a number of one- and two-dimensional numerical examples.

Host: Dr. Mikhail Shashkov