Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 22, 2017
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Polyhedral grid-generation: Delaunay tessellations, Voronoi complexes and generalised structures

Darren Engwirda
Massachusetts Institute of Technology

The development of three-dimensional numerical discretisation schemes based on unstructured polyhedral grids is an exciting area of research, with such formulations imbued with a range of advantageous numerical properties compared to more conventional tetrahedral-type schemes. The generation of such grids, however, remains a challenging task. In this talk, I present recent work on the development of polyhedral grid-generation techniques --- algorithms designed to produce high-quality polyhedral meshes that conform to complex three-dimensional geometries and user-defined constraints. The geometrical and topological duality between Delaunay tessellations and Voronoi complexes is explored, with such a framework exploited to construct staggered polyhedral/tetrahedral grids that satisfy local-orthogonality conditions. The impact of several additional concepts is also investigated --- using a `restricted' Delaunay tessellation framework to achieve `generalised' boundary conformance, and `weighted' Voronoi complexes to improve polyhedral cell shape. Lastly, a coupled geometrical/topological optimisation framework is discussed, facilitating the generation of generalised, locally-optimal structures that depart from a Delaunay-based hierarchy.

Host: Mikhail Shashkov