Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, December 22, 2014
10:30 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Smart Grid

Stochastic optimal power flow based on conditional value at risk and distributional robustness

Tyler Summers
ETH Zurich

I will present a computationally-efficient approach for solving stochastic, multiperiod optimal power flow problems. The objective is to determine power schedules for controllable devices in a power network, such as generators, storage, and curtailable loads, which minimize expected short-term operating costs under various device and network constraints. These schedules are chosen in a multistage decision framework to include planned power output adjustments, or reserve policies, which track time-coupled errors in the forecast of power requirements as they are revealed, and which can be an attractive means of accommodating uncertainty arising from highly variable renewable energy sources. Given a probabilistic forecast describing the spatio-temporal variations and dependencies of forecast errors, we formulate a family of stochastic network and device constraints based on convex approximations of chance constraints, and show that these allow economic efficiency and system security to be traded off with varying levels of conservativeness. Our formulation indicates two broad approaches, based on conditional value and risk and distributional robustness, that provide alternatives to existing methods based on chance and robust constraints. The results are illustrated using a simple case study, in which conventional generators plan schedules around an uncertain but time-correlated wind power injection.

Host: Misha Chertkov