Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, October 18, 2011
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Hierarchical Sparse Coding Models of the Primate Visual Cortex

Zhengping Ji
T-5: Applied Mathematics and Plasma Physics

Building cortex-like visual representations is a long-standing goal of computational vision. Following the architecture of visual cortex but emphasizing feedback processes as generators of semantically informed, locally self-consistent image predictions, I will describe a hierarchical sparse coding model to develop cortex-like feature representations. The approach is a generalization of generative models with sparse constraint, from primary visual cortex (V1) to a hierarchy of (deep hidden) cortical layers, corresponding to visual areas V2, V4, and IT in the primate ventral pathway. The Bayesian framework is utilized to address visual inference in the hierarchical structure, where each cortical area is an expert for inferring certain aspects of the visual scene, constrained by the bottom-up data from the feed-forward connections and the top-down data from feedback connections. An optimized continuation method is adopted to iteratively search a converged solution with high efficiency. This hierarchical sparse coding model is applied to natural images, and develops internal presentation that matches the neuroscience findings in primate visual cortex. The primary visual cortex, V1, presented an over-complete set of Gabor-like filters, while higher layers in the ventral pathway contains more complex features than V1. A degree of visual invariance regarding objects are emergent via local pooling of the hierarchical presentations. Using the benchmark object identification data sets like Caltech 101, our new systems-level computational model is able to generate hierarchical internal representation better than the SIFT-based approach and convolutional networks, etc.

Host: Luis Bettencourt, 667-8453 lmbett@lanl.gov