Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, January 25, 2011
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Monotone finite volume discretization of the diffusion and convection-diffusion equations on polyhedral meshes

Prof. Yuri Vassilevski
Institute of Numerical Mathematics, Russian Academy of Sciences

We consider the cell-centered finite volume discretization of the steady diffusion and convection-diffusion equations [1,2]. The diffusion tensor may be heterogeneous, full and essentially anisotropic. The convection-diffusion operator may have the dominated convection part. The conformal computational mesh is assumed to consist of convex polyhedral cells. The cornerstone of the method is the nonlinear two-point discretization of diffusion and advection fluxes derived on faces of mesh cells. The proposed finite volume method is monotone, i.e. it preserves non-negativity of the differential solution. The method is the 3D extension of the 2D finite volume discretizations

Host: Konstantin Lipnikov, T-5, x 71719, Mikhail Shashkov. shashkov@lanl.gov, 667-4400