Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, January 24, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Conforming Vector Interpolation Functions for Polyhedral Meshes

Andrew Gillette
University of Texas at Austin

Convex polyhedra offer a flexible domain meshing alternative to tetrahedra or hexahedra and can be generated automatically by Voronoi-based methods. For scientific computation, polyhedra meshes are infrequently used due in part to the lack of basis functions suited to their irregular shapes. In this talk, I will first review some methods for constructing generalized barycentric scalar-valued functions over polyhedra which can be used to interpolate scalar data over the domain. I will then discuss how these functions can be leveraged to create vector-valued basis functions akin to the edge elements used in electromagnetics. The vector functions can be used to create H(Curl)-conforming vector fields which interpolate degrees of freedom associated to edges of the polyhedral mesh.

Host: Mikhail Shashkov. shashkov@lanl.gov, 667-4400