Back to  MAIN PAGE

Publications

Book:

 Complex Networks

  Eds: E. Ben-Naim, H. Frauenfelder and Z. Toroczkai
  Lecture Notes in Physics, Springer-Verlag, coming in (2004)
   

Journal articles and working papers:

51. Network Dynamics: Jamming is Limited in Scale-free Systems
  Z. Toroczkai, K.E. Bassler
  Nature, 428, 716 (2004)
   
50. Controlling Epidemics in Realistic Urban Social Networks
  S. Eubank, H. Guclu, V.S.A. Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai and N. Wang
  Nature, in press (2004)
   
49. Universality in active chaos: enhancement of biological and chemical activity in filamental flows
  T. Tél, T.  Nishikawa, A.E. Motter, C. Grebogi, and Z. Toroczkai
  Chaos, 14, 72 (2004); LA-UR-02-7579 
   
48. Competition-driven Network Dynamics: Emergence of a Scale-free Leadership Structure and Collective Efficiency
  M. Anghel, Z. Toroczkai, K.E. Bassler, G. Korniss
  Phys.Rev.Lett. 92, 058701 (2004); LA-UR-02-7580 
   
47. Spatial models of prebiotic evolution: soup before pizza?
  I. Scheuring, T. Czárán, P. Szabó, G. Károlyi, and Z. Toroczkai
  Origins of Life and Evolution of the Biosphere, 33, 319 (2003)
   
46. Advection of Finite-size Particles in Open Flows
  I.J. Benczik, Z. Toroczkai and T. Tél
  Phys.Rev.E. 67, 036303 (2003); LA-UR-02-45-62
   
45. Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations
  G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, P.A. Rikvold
  Science, 299, 677 (2003); LA-UR-02-5811
   
44. Selective Sensitivity of Open chaotic Flows on Inertial Tracer Advection: Cartching Particles with a Stick
  I.J. Benczik, Z. Toroczkai and T. Tél
  Phys.Rev.Lett. 89, 164501 (2002); cover-page article; LA-UR-02-2364
   
43. Competing populations in flows with chaotic mixing:
  I. Sheuring, G. Károlyi, Z. Toroczkai,  T. Tél, and Á. Péntek
  Theor. Pop. Biol.  63(#2),  77 (2003); LA-UR-01-4666
   
42. Estimation of Entropies and Dimensions by Nonlinear Symbolic Time Series Analysis
  J.M. Finn, J.D. Goette, Z. Toroczkai, M. Anghel and B.P. Wood
  Chaos, 13(#2),  444 (2003); LA-UR-02-3386
   
41. Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models for kinetic surface roughening
  S. Das Sarma, P.P. Chatraphorn, Z. Toroczkai
  Phys. Rev. E , 65, 0366144 (2002)
   
40. Introduction: Active chaotic flow
  Z. Toroczkai and T. Tél
  CHAOS , 12(#2),  372  (2002)
   
39. Topological Classification of the Horton-Strahler index on binary trees
  Z. Toroczkai
  Phys. Rev. E, 65, 016130 (2002); LA-UR-01-5224
   
38. Going Through Rough Times: from Non-equilibrium Surface Growth to Algorithmic Scalability
  G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, and Z. Toroczkai
  Materials Research Society Symposium Proceedings, 
Series 700,  297, (2002);
LA-UR-01-6631
   
37. Autocatalytic Reactions of Phase Distributed Active Particles
  G. Santobonni, T. Nishikawa,  Z. Toroczkai, and C. Grebogi
  Chaos, 12(#2), 408  (2002) ; LA-UR-01-6099
   
36. Pinning Method of Pulse Confinement in Optical Fiber with Random Dispersion
   M. Chertkov, I. Gabitov, P. Lushnikov, J. Moeser, and  Z. Toroczkai
  J. Opt. Soc. Am. B, 19, 2538 (2002); LA-UR-01-5307
   
35. Finite size effects on active chaotic advection
   T. Nishikawa, Z. Toroczkai, C. Grebogi, and T. Tél
  Phys. Rev. E, 65, 026216 (2002) ; LA-UR-00-613
   
34. Epitaxial Mounding in Limited Mobility Models of Surface Growth
  P. Punyindu, Z. Toroczkai, and S. Das Sarma,
  Phys.Rev.B, 64, 205407 (2001);  LA-UR-00-0614
   
33. Autocatalytic Reactions in Systems with Hyperbolic
  mixing: Exact Results for the Active Baker map
  Z. Toroczkai,  G. Károlyi, Á. Péntek, T. Tél,  and I. Sheuring,
  J. Phys. A: Math.Gen., 34, 5215 (2001)  LA-UR-00-5814
   
32. Comment on "Extremal Point Densities of Interface Fluctuations in a Quenched Random Medium"
  Z. Toroczkai and G. Korniss
  Phys.Rev.E, 64, 048101 (2001); LA-UR-01-1332
   
31. Advective Coalescence in Chaotic Flows
T. Nishikawa, Z. Toroczkai, and C. Grebogi
Phys. Rev. Lett. 87, 038301 (2001) ; LA-UR-00-4319 
    
30. An Improved Model for Statistical Alignment
  I. Miklós and Z. Toroczkai
 Lecture Notes In Computer Science 2149,   pp. 1-10, (2001); LA-UR-01-3270
  O. Gascuel, B. M. E. Moret (Eds.): Algorithms in Bioinformatics
First International Workshop, WABI 2001, Aarhus, Denmark, August 28-31, 2001
   
29. Chaotic flow: the physics of species coexistence
  G. Károlyi, Á. Péntek, I. Sheuring, T. Tél, and Z. Toroczkai,
  Proc. Natl. Acad. Sci. USA, 97, 13661 (2000); LA-UR-00-3602
   
28. A model for resolving the plankton paradox:
  coexistence in open flows
  I. Sheuring, G. Károlyi, Á. Péntek, T. Tél, Z. Toroczkai
  Freshwater Biology, 45, 123 (2000) ; LA-UR-00-4107
   
27. Extremal-Point densities of interface fluctuations
  Z. Toroczkai, G. Korniss, S. Das Sarma, and R. K. P. Zia
  Phys. Rev. E 62, 276 (2000)
   
26. From massively parallel algorithms and fluctuating time horizons
  to non-equilibrium surface growth
  G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold
  Phys. Rev. Lett. 84, 1351 (2000)
   
25. Nonuniversal mound formation in nonequilibrium surface growth
  S. Das Sarma, P. Punyindu, and Z. Toroczkai,
  Surf. Sci. Lett., 457, L369 (2000)
   
24. Chaotic advection, diffusion, and reactions in open flows
  T. Tél, G. Károlyi, Á. Péntek, I. Sheuring, Z. Toroczkai,
  C. Grebogi and J. Kadtke
  Chaos, 10, 89 (2000)
   
23. Nanonscale fluctuations at solid surfaces
  Z. Toroczkai, and E.D. Williams
  Phys. Today, 52, 24 (1999)
   
22. Fractality, chaos, and reactions in imperfectly mixed open
  hydrodynamical flows
  G. Károlyi, Á. Péntek, I. Sheuring, T. Tél, Z. Toroczkai, C. Grebogi, and J. Kadtke
  Physica A 274, 120 (1999)
   
21. Sign-time distributions for interface growth
  Z. Toroczkai, T. J. Newman and S. Das Sarma
  Phys. Rev. E 60, R1115 (1999)
   
20. Chemical or biological activity in open chaotic flows
  G. Károlyi, Á. Péntek, Z. Toroczkai, T. Tél, and C. Grebogi
  Phys. Rev. E 59, 5468 (1999)
   
19. Diffusive persistence and the "sign-time" distribution
  T. J. Newman and Z. Toroczkai
  Phys. Rev. E 58, R2685 (1998)
   
18. Random walk with a hop-over site: a novel approach to
  tagged diffusion and its applications
  R.K.P. Zia and Z. Toroczkai
  J. Phys. A: Math.Gen. 31, 9667 (1998)
   
17. Advection of active particles in open chaotic flows
  Z. Toroczkai, G. Károlyi, T. Tél, Á. Péntek, and C. Grebogi
  Phys. Rev. Lett. 80, 500 (1998)
   
16. Brownian-vacancy mediated disordering dynamics
  Z. Toroczkai, G. Korniss, B. Schmittmann, and R.K.P. Zia
  Europhys. Lett. 40, 281 (1997)
   
15. The Brownian vacancy driven walk
  Z. Toroczkai
  Int. J. Mod. Phys. B 11, 3343 (1997)
   
14. Periodic one-dimensional hopping model with one mobile
  directional impurity
  Z. Toroczkai, and R.K.P. Zia
  J. Stat. Phys. 87, 545 (1997)
   
13. Wada dye boundaries in open hydrodynamical flows
  Z. Toroczkai, G. Károlyi, Á. Péntek, T. Tél, C. Grebogi, and J.A. Yorke
  Physica A239, 235 (1997)
   
12. Transient chaotic mixing in open hydrodynamical flows
  Á. Péntek, T. Tél, and Z. Toroczkai
  Int. J. Bif. Chaos. 6, 2619 (1996)
   
11. Stabilizing chaotic vortex trajectories: an example of
  high dimensional control
  Á. Péntek, J.B. Kadtke, and Z. Toroczkai
  Phys. Lett. A224, 85 (1996)
   
10. A model for electrophoresis of polymers with impurities:
  exact distribution for a steady state
  Z. Toroczkai, and R.K.P. Zia
  Phys. Lett. A217, 97 (1996)
   
 9. Continuous Extension of the Geometric Control Method
  B. Sass, and Z. Toroczkai
  J. Phys. A: Math.Gen. 29, 3545 (1996)
   
8. Fractal boundaries in open hydrodynamical flows:
  signatures of chaotic saddles
  Á. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, and J.A. Yorke
  Phys. Rev. E 51, 4076 (1995)
   
7. Chaotic advection in the velocity field of leapfrogging vortex pairs
  Á. Péntek, T. Tél, and Z. Toroczkai
  J. Phys. A: Math.Gen. 28, 2191 (1995)
   
6. Fractal tracer patterns in open hydrodynamical flows:
  the case of leapfrogging vortex pairs
  Á. Péntek, T. Tél, and Z. Toroczkai
  Fractals 190, 33 (1995)
   
5. Geometric method for stabilizing unstable periodic orbits
  Z. Toroczkai
  Phys. Lett. A190, 71 (1994)
   
4. A generalized Kac model as a dynamical system
  Á. Péntek, Z. Toroczkai, D.H. Mayer, and T. Tél
  Z. Naturforsch. 49a, 1212 (1994)
   
3. Detecting phase transitions in intermittent systems by using the
  thermodynamical formalism
  Z. Toroczkai and Á. Péntek
  Z. Naturforsch. 49a, 1235 (1994)
   
2. Kac Model from a dynamical system's point of view
  Á. Péntek, Z. Toroczkai, D.H. Mayer, and T. Tél
  Phys. Rev. E 49, 2026 (1994)
   
1. Classification criterion for dynamical systems in intermittent chaos
  Z. Toroczkai and Á. Péntek
  Phys. Rev. E 48, 136 (1993)
   

Book chapters:

3. Virtual Time Horizon Control via Communication Network Design
  Z. Toroczkai,  G. Korniss,  M. A. Novotny and H. Guclu
  in Volumeon: Complexity and Statistical Physics, Santa Fe Institute Studies in the
  Sciences of Complexity Series eds.: A. Percus, G. Istrate and Chris Moore
  (Oxford University Press, 2004) LA-UR-03-0611
   
2. Effects of Inter-agent Communications on the Collective
  Z. Toroczkai, M. Anghel, G. Korniss, K.E. Bassler
  in: Collectives and the Design of Complex Systems,
  eds.: K. Tumer and D.H. Wolpert
  (Springer, 2004, in  press) LA-UR-03-0611
   
1. Chaotic tracer dynamics in open hydrodynamical flows
  G. Károlyi, Á. Péntek, T. Tél, and Z. Toroczkai
  in: Nonlinear Dynamics, Chaotic and Complex Systems,
  eds.: E. Infeld, R. Zelazny, and A. Galkowski,
  (Cambridge University Press, Cambridge, 1997, pp. 24)
   

 

Proceedings:

3. Non-equilibrium Surface Growth and Scalability of Parallel Algorithms
  for Large Asynchronous Systems
  G. Korniss, M.A. Novotny, Z. Toroczkai, and P.A. Rikvold
  Computer Simulation Studies in Condensed Matter Physics XIII,
  eds. D.P. Landau, S.P. Lewis, and H.-B. Schuttler, 86, 183 (2001)
   
2. Hydrodynamically driven chemical or biological activity in open flows
  G. Károlyi, Á. Péntek, T. Tél, and Z. Toroczkai
  Proceedings of the conference: British-Finnish-Hungarian Workshop on
  Refined Flow and Transport Modeling in Shallow Water Environment,
  Budapest, Hungary, 18-21 April, 1999, to appear
   
1. Controlling symmetric vortex configurations
  Á. Péntek, J.B. Kadtke, and Z. Toroczkai
  in: Proceedings of ANDM'97 (Applied Nonlinear Dynamics
  and Stochastic Systems near the Millenium) AIP Conference
  proceedings, no. 411, pp. 109
  (American Institute of Physics Publishing, 1997)
   

Other publications:

4. Éltető káosz a planktonok világában (in Hungarian)
  Á. Péntek, Z. Toroczkai
  Korunk, 3, 76 (2000)
   
3. Analytic results for hopping models with excluded volume constraint
  Ph.D. Dissertation
  Z. Toroczkai
  Virginia Tech, Blacksburg, Virginia, USA, 1997
   
2. Haosul intermittent. Tranzitii de fazâ (in romanian)
  Diploma Thesis
  Z. Toroczkai
  Babes-Bolyai University, Cluj, Romania, 1992.
   
1. Asymptotic behavior of discrete dynamical systems in chaos
  Z. Toroczkai
  Studia Universitatis Babes-Bolyai, PHYSICA 1, 73 (1990)