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Abstract

In this article we describe two areas of recent progress in the construction of accurate and robust ®nite di�erence algorithms for

continuum dynamics. The support operators method (SOM) provides a conceptual framework for deriving a discrete operator cal-

culus, based on mimicking selected properties of the di�erential operators. In this paper, we choose to preserve the fundamental

conservation laws of a continuum in the discretization. A strength of SOM is its applicability to irregular unstructured meshes. We

describe the construction of an operator calculus suitable for gas dynamics and for solid dynamics, derive general formulae for the

operators, and exhibit their realization in 2D cylindrical coordinates. The multidimensional positive de®nite advection transport al-

gorithm (MPDATA) provides a framework for constructing accurate nonoscillatory advection schemes. In particular, the nonoscil-

latory property is important in the remapping stage of arbitrary-Lagrangian±Eulerian (ALE) programs. MPDATA is based on the

sign-preserving property of upstream di�erencing, and is fully multidimensional. We describe the basic second-order-accurate method,

and review its generalizations. We show examples of the application of MPDATA to an advection problem, and also to a complex ¯uid

¯ow. We also provide an example to demonstrate the blending of the SOM and MPDATA approaches. Ó 2000 Elsevier Science S.A.

All rights reserved.

1. Introduction

In this article, we review two areas of progress in the construction of accurate and robust ®nite di�erence
schemes. The ®rst area is the development of consistent spatial di�erence operators. The second area is the
development of multidimensional nonoscillatory advection schemes, which can be used in Eulerian and
continuous rezone (ALE) programs. The techniques we will describe were ®rst developed outside the ®eld of
numerical solid dynamics, but should have useful applications there as well.

The underlying idea of the support operators method (SOM) is to develop a discrete operator calculus ±
i.e., ®nite di�erence approximations to ®rst-order spatial di�erence operators like divergence, gradient, and
curl ± that faithfully reproduces selected properties of the analytic calculus. We will show how to construct
such a discrete calculus that is suitable for continuum dynamics. One important advantage of the support
operator theory is that it may be applied with equal facility to regular, irregular, and unstructured meshes
encountered in both Eulerian and Lagrangian simulations.

The multidimensional positive de®nite advection transport algorithm (MPDATA) provides a conceptual
framework for nonoscillatory advection. MPDATA was ®rst developed for geophysical applications where
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the preservation of the sign of ®elds, which on physical grounds must remain nonnegative, is of paramount
importance. The application of MPDATA to the advection equation with variable coe�cients (in partic-
ular, to the momentum equation) guarantees the nonlinear stability when the timestep is suitably restricted.
MPDATA is not based on any ¯ux-limiting procedure, and is fully multidimensional. The absence of
spatial (directional) splitting errors is especially important on irregular grids. Recent enhancements allow us
to use MPDATA as a full ¯uid solver, meaning that we treat the forcing terms (such as the pressure
gradient) consistently to the second-order in time.

The structure of this paper is as follows. In Section 2 we give a brief review of the method of support
operators, as applied to the equations of gas dynamics, and then describe the extensions to construct the
operators required by the equations of solid dynamics. A formal exposition of SOM, with applications to
elliptic and parabolic PDEs, as well as to electromagnetic theory, can be found in [15,20±23,29,31±35].

In Section 3, we outline the concept of basic MPDATA as applied to a model equation for continuum
dynamics, and then review its generalizations. A full review (and technical details) of MPDATA in the context
of geophysical applications can be found in [44]. In Section 4, we explore the possibility of combining the two
approaches, and demonstrate potential advantages in the example of shallow ¯uid ¯ow on a rotating sphere.

2. Method of support operators

2.1. Basic idea

Most PDEs of mathematical physics can be formulated in terms of only a few fundamental di�erential
operators, such as divergence, gradient, and curl. SOM provides a systematic approach to spatial di�er-
encing by constructing discrete analogs of these operators. The di�erential operators satisfy relationships
that closely relate to conservation laws and other physically important principles. Experience has shown
that the best results usually are obtained when the numerical approximations of the fundamental operators
reproduce those properties of the analytic operators. In this sense, SOM is principally concerned with
developing a discrete analog of the di�erential operator calculus.

As a practical matter, the development of this calculus proceeds in two steps. First one chooses a discrete
form for one of the fundamental operators, which we term the prime operator. Then, based on the subset of
analytic properties that one chooses to maintain, one constructs the other fundamental operators, which we
term the derived operators. The choice of the prime operator depends on the application and details of the
discretization.

In this section, we illustrate the procedure with three examples of relevance to solid dynamics. In Section
2.2 we show how to derive a discrete divergence operator (prime operator) by requiring consistency of the
divergence of the velocity ®eld with the time rate of change of volume of a ®nite di�erence cell. In Section
2.3 we show how to construct the discrete gradient operator, based on requiring the exact conservation of
total energy, which implies the adjointness of the discrete gradient and divergence. In Section 2.4 we
consider the approximation of the divergence of a tensor, and the gradient of a vector, both required by the
equations of solid dynamics. Finally in Section 2.5, we present an example that illustrates the advantages of
the consistent approximation of the divergence operator.

Throughout Section 2 we will focus on the usual staggered mesh, where thermodynamic quantities are
stored at cell centers and velocities are stored at cell vertices. The staggered mesh has proven very successful
for high-speed ¯ow simulations and is well suited for SOM. However, SOM can be applied to any data
structure. A typical staggered mesh grid cell, including the data structure, is shown in Fig. 1.

In this paper, we distinguish between the di�erential operators grad and div, and the discrete operators
GRAD and DIV. In addition, in Section 2.4, we will have need for the discrete approximations for the
divergence of a tensor and the gradient of a vector, which we will denote as DIV and GRAD, respectively.

2.2. The divergence operator

Our ®rst task is to de®ne a prime operator. For the Lagrangian staggered grid shown in Fig. 1, the
natural choice for a prime operator is DIV, for reasons that will become clear shortly. In a continuum, the
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time rate of change of a Lagrangian volume element, V �t�, is related to the divergence of velocity, ~u, as
follows:

dV
dt
�
Z

V �t�
div~u dV 0; �2:1�

(cf. [26,34]). In the discrete case, a natural choice of V �t� is the computational cell itself. For a computa-
tional cell �i; j; k�, the volume is a function of the coordinates of cell vertices and does not depend explicitly
on time

Vi;j;k�t� � V xa
a�t�

ÿ �
; a � 1; 2; 3 and a 2 A; �2:2�

where A is the set of all the vertices of the cell �i; j; k�. Therefore, we can write

dVi;j;k

dt
�
X
a;a2A

oVi;j;k

oxa
a

dxa
a

dt
�
X
a;a2A

oVi;j;k

oxa
a

ua
a; �2:3�

where ua
a denotes the a-component of~u at vertex a. The integral on the r.h.s. of (2.1) can be expressed (from

the mean value theorem) asZ
V �t�

div~u dV 0 � V div~uj~x� ; �2:4�

where~x� is some point in the cell. Using (2.3) and (2.4) in (2.1), we de®ne DIV via

DIV~u
� �

i;j;k
:� 1

Vi;j;k

X
a;a2A

oVi;j;k

oxa
a

ua
a; �2:5�

Eq. (2.5) is a very convenient way to write a discrete divergence, because it is coordinate invariant, and can
be used for Cartesian, cylindrical, spherical, etc., coordinate systems. It can also be used when the edges of a

Fig. 1. A typical staggered mesh grid cell, coordinates and components of the velocity vector are located in the nodes, and pressure and

internal energy are located in the cell.
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grid cell are not segments of straight lines, but are some more general curves. All that is needed to im-
plement (2.3) is an expression for the volume of a cell as a function of the coordinates of its vertices, and
perhaps those of neighboring vertices. Note that the de®nition (2.5) proceeds from the particular physical
principle (2.1); however the coe�cients of velocity in de®nition (2.5) depend only on geometry of the grid,
and so (2.5) is generally applicable to any vector ®eld.

In order to illustrate the application of (2.5), we consider the case of 2D cylindrical coordinates �r; z�,
which has great practical importance. The volume of a cell ± an example of (2.2) ± is

Vi;j � 1

3
riÿ1=2; jÿ1=2

ÿ � ri�1=2; jÿ1=2 � riÿ1=2; j�1=2

� 1

2
riÿ1=2; jÿ1=2�zi�1=2; jÿ1=2

ÿ ÿ ziÿi=2; j�1=2�

� ri�1=2; jÿ1=2�ziÿi=2; j�1=2 ÿ ziÿi=2; jÿ1=2� � riÿi=2; j�1=2�ziÿi=2; jÿ1=2 ÿ zi�1=2; jÿ1=2�
�

� 1

3
ri�1=2; jÿ1=2

ÿ � ri�1=2; j�1=2 � riÿi=2; j�1=2

� 1

2
ri�1=2; jÿ1=2�zi�1=2; j�1=2

ÿ ÿ ziÿi=2; j�1=2�

� ri�1=2; j�1=2�ziÿi=2; j�1=2 ÿ zi�1=2; jÿ1=2� � riÿi=2; j�1=2�zi�1=2; jÿ1=2 ÿ zi�1=2; j�1=2�
�
: �2:6�

Corresponding examples of the r and z derivatives of this volume are:

oVi;j

ori�1=2; j�1=2

� 1

6
ri�1=2; jÿ1=2�zi�1=2; j�1=2

ÿ ÿ zi�1=2; jÿ1=2� � 2ri�1=2; j�1=2�ziÿi=2; j�1=2 ÿ zi�1=2; jÿ1=2�

� riÿi=2; j�1=2�ziÿi=2; j�1=2 ÿ zi�1=2; j�1=2�
�
: �2:7�

and

oVi;j

ozi�1=2; j�1=2

� 1

6
�ri�1=2; jÿ1=2

ÿ � ri�1=2; j�1=2 � riÿi=2; j�1=2��ri�1=2; jÿ1=2 ÿ riÿi=2; j�1=2�
�
: �2:8�

The other derivatives are easily found by cyclic permutation. These expressions are written more compactly
in a local notation in [26], where the consistency of these expressions with their Cartesian counterparts for
cells far from the axis of symmetry is also demonstrated.

We o�er the following interpretation of the discrete divergence in cylindrical coordinates using the
formulae (2.7), (2.8), and their permutations. Analytically, this divergence is usually written as

div~u � 1

r
o�ru�
or
� ov

oz
;

where ~u � �u; v�. A direct discretization based on this form does not usually preserve the connection be-
tween volume and velocity (2.1). Our approach corresponds to discretizing the expression for divergence in
conservative form

div~u � 1

r
o�ru�
or

�
� o�rv�

oz

�
:

The consistency between the change of volume and de®nitions of operators on the discrete level is par-
ticularly important in solid dynamics, where the velocities are used to estimate strain rate tensor, see Section
2.4.

2.3. The gradient operator

Our next task is to derive the discrete gradient GRAD. To proceed we will continue in the framework of
continuum mechanics. In particular we will consider the equations of gas dynamics and employ the con-
servation of total energy.

The Lagrangian form of the equations of gas dynamics is:

dq
dt
� ÿqdiv~u; �2:9�
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q
d~u
dt
� ÿgradp; �2:10�

q
de
dt
� ÿp div~u; �2:11�

where q is the density, p the pressure, and e is the internal energy.
The conservation law for total energy is derived from the momentum equations and the internal energy

equation, by taking the scalar product of (2.10) with the velocity vector, adding the result to the equation
for internal energy and integrating over a volume V �t�:

d

dt

Z
V �t�

~u
��� ���2

2

0B@ � e

1CAqdV 0

264
375 � ÿ Z

V �t�
�gradp;~u�dV 0 �

Z
V �t�

p div~udV 0
" #

�
I

oV
p�~u;~n�dS; �2:12�

where~n is the unit outward normal vector to oV . This equation states that in the absence of external forces,
the change in total energy within the volume V �t� is equal to the work done by surface forces. The last
equality in (2.12) is an integral identity that holds for any scalar function p and vector ®eld~u, and expresses
the adjointness of grad and div operators. If DIV and GRAD are constructed independently, they may not
satisfy a discrete analog of (2.12), whereupon the energy will be only conserved to the order of the trun-
cation error. However, if we de®ne GRAD from a discrete analog to (2.12), then the resulting numerical
scheme will conserve energy to roundoff error.

To actually construct the discrete gradient operator in cylindrical coordinates, here we employ the
simplest discrete analog of the integral identity relating divergence and gradient and assuming a zero
boundary integralX

cells

pi;j �DIV~u�i;jVi;j �
X
nodes

�Gr
i�1=2; j�1=2ui�1=2; j�1=2 � Gz

i�1=2; j�1=2vi�1=2; j�1=2�Vi�1=2; j�1=2 � 0; �2:13�

where Gr
i�1=2; j�1=2, and Gz

i�1=2; j�1=2 are, respectively, r and z components of GRAD p, at a node
�i� 1=2; j� 1=2�. The Vi�1=2; j�1=2 is a volume associated with a node such thatX

nodes

Vi�1=2; j�1=2 �
X
cells

Vi;j � total volume:

By comparing the coe�cients of ui�1=2; j�1=2 in the ®rst and second sums, we obtain an explicit expression for
Gr

i�1=2; j�1=2, and similarly for Gz
i�1=2; j�1=2:

Gr
i�1=2; j�1=2 � ÿ

1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ori�1=2; j�1=2

pi�k; j�l; �2:14a�

Gz
i�1=2; j�1=2 � ÿ

1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ozi�1=2; j�1=2

pi�k; j�l: �2:14b�

The coe�cients in these expressions are the same derivatives of the cell volumes with respect to nodal
coordinates that appear in DIV in (2.5). As in the case of the divergence, the coe�cients of pressure in
(2.14a) and (2.14b) depend only on geometry of the grid, and so (2.14a) and (2.14b) are generally applicable
to any scalar ®eld.

When external pressure is applied to the boundary, the discrete analog of the surface integral term
should be included in (2.13) (cf. Section 3.3.2 in [34]). This leads to a consistent de®nition of GRAD at the
boundary. 3

3 Note the advantage for preserving the symmetry of elliptic pressure operators in implicit formulations, important for the

convergence of conjugate-gradient methods (cf. [5]).
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2.4. Extensions to solid dynamics

The equations of mechanics of continuum media in Lagrangian form can be written as follows:

dq
dt
� qdiv~u � 0; �2:15a�

q
d~u
dt
� div r̂; �2:15b�

q
de
dt
� r̂ : _̂�; �2:15c�

where r̂ is the stress tensor and _̂� � 0:5 r~u� r~u� ��� � is the strain rate tensor. Note that these equations
contain two new di�erential operators related to the tensors ± the divergence of a tensor, div r̂, and the
gradient of a vector, r~u � grad~u. In discretizing these equations on the staggered grid, the discrete di-
vergence, DIV, uses cell-centered quantities to produce a vertex quantity. Likewise the discrete gradient,
GRAD, uses vertex quantities to produce a cell-centered quantity.

Before introducing the discrete operators, it is necessary to identify which properties of the di�erential
operators imply the conservation laws associated with (2.15a)±(2.15c). For the equations of solid dynamics,
the conservation laws for mass and volume have the same form as for gas dynamics, relying on the ad-
jointness of the divergence of a vector and the gradient of a scalar. The conservation law for momentum
follows from 2.15a)±(2.15c) and the divergence property of div r̂:

d

dt

Z
V

q~u dV
� �

�
Z

V
div r̂dV �

I
oV

r̂ �~ndS: �2:16�

The conservation of total energy follows from (2.15a)±(2.15c) and the integral identityZ
V
r~A : r̂� dV �

Z
V
�~A; div r̂�dV �

I
S
~n; �r̂ �~A�
� �

dS; �2:17�

as follows

d

dt

Z
V

q e

 "(
�~u

2

2

!#
dV

)
�
Z

V
�div r̂;~u�dV �

Z
V

r̂ : _̂�dV

�
Z

V
�div r̂;~u�dV �

Z
V
r~u : r̂dV

�
I

oV
~n; �r̂ �~u�
� �

dS: �2:18�

The identity (2.17) expresses the adjointness of the divergence of a tensor and the gradient of a vector. Let
us note that if r̂ � ÿpÎ then div r̂ � ÿgrad p.

To design a ®nite di�erence approximation for (2.15a)±(2.15c), we can use (2.5) for DIV~u, but need to
construct DIV r̂ and GRAD~u. The analysis above implies that DIV must satisfy the discrete analog of
the Stokes' theorem (2.16), and that DIV and GRAD have to be adjoint to each other (2.17). Finally, it is
natural to require that in the case where r̂ � ÿpÎ the ®nite di�erence scheme has to coincide with the ®nite
di�erence scheme for gas dynamics, that is we require that DIV�pÎ� � GRAD p.

To proceed we need two additional integral identitiesZ
V

grad�uw�;~A
� �

dV �
Z

V
u�~A; gradw�dV �

Z
V

w�~A; gradu�dV ; �2:19�

Z
V
r~A : wr̂� dV �

Z
V
�~A;wdiv r̂�dV �

Z
V
�~A; �gradw � r̂��dV �

I
S
�w~n; �r̂ �~A��dS: �2:20�
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We summarize the procedure of discretization in the following sequence of steps:
(1) We choose DIV as the prime operator and construct it exactly as in the case of gas dynamics. We also

construct the operator GRAD as we did in the case of gas dynamics. Recall that GRAD uses cell-centered
quantities to produce a vertex quantity.

(2) Next we use the discrete analog of the identity (2.19) to construct another discrete analog of the
gradient that uses vertex quantities to produce a cell-centered quantity. We denote this operator as GRAD.
The special choice of ~A as a unit coordinate vector allows us to identify individual components of GRAD.
In the discrete case we choose / to be a scalar function in the cell centers and w to be a scalar function in the
vertices. The discrete analog of the volume integral on the l.h.s. in (2.19) contains the product of / and w.
Since / and w are de®ned at di�erent locations, some averaging is required [31].

(3) Next we construct DIV using the discrete analog of identity (2.20) and GRAD. This identity de®nes
the projection of vector DIV r̂ onto directions de®ned by the vector ~A. The derivation follows a similar
logic as in step two with one new feature; we have to discretize r~A � grad~A. However, this discretization is
uniquely determined by the natural requirement that DIV�pÎ� � GRADp.

(4) Finally, we construct GRAD using the discrete analog of the integral identity represented by the last
equality in (2.18), which guarantees the conservation of total energy in the discrete case. Note, that this
identity is a special case of (2.20).

The divergence property of operator DIV, which is needed to enforce conservation of momentum in
the discrete model, can be veri®ed from the fact that operator GRAD applied to a constant function
vanishes. This latter property follows from step two in our procedure.

Here we present the ®nal formulae for DIV r̂ and discrete analog of strain rate tensor
_̂� � 0:5�GRAD~u� �GRAD~u��� in 2D cylindrical coordinates. A detailed derivation is presented in [31].

In 2D cylindrical coordinates, the stress tensor has the form

r̂ �
rrr 0 rzr

0 r// 0
rzr 0 rzz

0@ 1A;
and the strain rate tensor has the same structure.

The formulae for the components of DIV r̂ � �Dr;Dz� are:

Dr
i�1=2; j�1=2 � ÿ

1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ori�1=2; j�1=2

rrr
i�k; j�l

� 1

Vi�1=2; j�1=2

X
k;l�0;1

rrr
i�k; j�l

Vi�k; j�l

X
s;t��1=2

oVi�k; j�l

ori�k�s; j�l�t

 !

ÿ 1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ozi�1=2; j�1=2

rzr
i�k; j�l

ÿ 1

Vi�1=2; j�1=2

X
k;l�0;1

r//
i�k; j�l

Vi�k; j�l

X
s;t��1=2

oVi�k; j�l

ori�k�s; j�l�t

 !
; �2:21�

Dz
i�1=2; j�1=2 � ÿ

1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ori�1=2; j�1=2

rzr
i�k; j�l

� 1

Vi�1=2; j�1=2

X
k;l�0;1

rzr
i�k; j�l

Vi�k; j�l

X
s;t��1=2

oVi�k; j�l

ori�k�s; j�l�t

 !

ÿ 1

Vi�1=2; j�1=2

X
k;l�0;1

oVi�k; j�l

ozi�1=2; j�1=2

rzz
i�k; j�l: �2:22�
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The formulae for the components of strain rate tensor are:

_̂�rr
i;j �

1

Vi;j

X
k;l��1=2

ui�k; j�l
oVi;j

ori�k; j�l
ÿ 1

4

X
k;l��1=2

ui�k; j�l

 !
1

Vi;j

X
k;l��1=2

oVi;j

ori�k; j�l

 !
; �2:23�

_̂�zr
i;j �

1

2Vi;j

X
k;l��1=2

ui�k; j�l
oVi;j

ori�k; j�l

�
� vi�k; j�l

oVi;j

ozi�k; j�l

�

ÿ 1

8

X
k;l��1=2

vi�k; j�l

 !
1

Vi;j

X
k;l��1=2

oVi;j

ori�k; j�l

 !
; �2:24�

_̂�zz
i;j �

1

Vi;j

X
k;l��1=2

vi�k; j�l
oVi;j

ozi�k; j�l
; �2:25�

_̂�//
i;j �

1

4

X
k;l��1=2

ui�k; j�l

 !
1

Vi;j

X
k;l��1=2

oVi;j

ori�k; j�l

 !
: �2:26�

2.5. Numerical example: simulating a cratering event

The velocity gradients play a signi®cant role in solid dynamic simulations, where the constitutive law is
usually history dependent and is given as a di�erential relation between the stress rate and the strain rate
tensors. When the relation between the time rate of change of volume and the trace of the velocity gradient
tensor is not preserved in the discrete model, the situation may arise where a particular cell has been
compressed ± i.e., its density increases ± while the trace of its stress tensor is tensile. In this case, the internal
stresses will try to further compress the cell rather than to resist compression by its neighbors. More
generally, this situation is not restricted to the trace, but may arise for any component of the stress tensor.
The lack of agreement between the geometrical state of the cell and the stress tensor can lead to oscillations
and even instability in a calculation.

To illustrate the importance of using compatible approximations for the strain rate tensor, we show
results from two calculations ®rst published in [26]. In that period many popular solid dynamic codes used
the Cartesian form of the velocity gradients for both plane �x; y� and cylindrical �r; z� coordinates. See, for
example [4,47] (in particular [47, p. 83, Eqs. (4.39) and (4.41)]). The two calculations were performed on the
SHALE code [9], and di�er only in that the ®rst uses a Cartesian form for the strain rates, while the second
uses the expressions presented in (2.23)±(2.26).

The physical problem that is simulated is a cratering event in the ¯oor of an oil shale mine. A cylindrical
borehole is drilled vertically into the ¯oor, partially ®lled with a chemical explosive, and the top is tamped.
The explosive is detonated from the bottom, generating strong stress waves in the rock. The rock close to
the explosive is fractured. The ultimate goal of the calculation is to estimate the size and shape of the
fractured region and to predict the size distribution of the rubble that is formed.

The geometry of the simulation is shown in Fig. 2, where the angle striped area represents the chemical
explosive region, and all other cells are rock. The right and bottom boundaries are transmitting; the top
boundary is a free surface and the left boundary is an axis of symmetry. For the purposes of comparison,
we monitor the volumetric strain and strain rate in a rock cell on the cylindrical axis of symmetry, and
above the explosive. The choice is motivated ®rst by the fact that the di�erence between two sets of strain
rates is of the order of dr=r and hence is the largest near the axis, and second by the fact that the stress wave
history is more complex above the explosive.

The ``estimated'' bulk strain rate (from the Cartesian velocity gradients) is compared with the ``exact''
bulk strain rate (from the actual change in volume of the cell) in Fig. 3. The chosen cell sees a strong vertical
compression; it also compresses more strongly on the axis of symmetry and so sees shear. With the Car-
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tesian velocity gradients, the estimated peak strain rate is more than twice as large as the exact peak. The
estimated and exact strains for the Cartesian calculation are compared in Fig. 4 (these curves are the areas
under the curves of Fig. 3). There is a large and systematic discrepancy apparent here. The corresponding
comparisons for a calculation using the new strain rates (2.23)±(2.26) are shown in Figs. 5 and 6. In each
case these curves, comparing estimated and exact strains and strain rates, lie essentially on the top of each
other.

Fig. 3. A comparison of the estimated and the exact volumetric strain rates using the Cartesian form of the velocity gradients. Both

curves represent a time history for a cell above the explosive and on the cylindrical axis of symmetry. Note the large discrepancy

between the curves at peak compression.

Fig. 2. The initial mesh for the sample problem described in Section 2.5. The cross-hatched region represents a chemical explosive,

while all other cells in the mesh are rock. The top of the mesh is a free surface, and the left side of the mesh is a cylindrical axis of

symmetry. The right and bottom sides are transmitting boundaries.
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2.6. General discussion

We close Section 2 with two summary remarks and references to related work. First, we note that SOM
can be applied to a grid of any structure ± e.g., logically rectangular, triangular, the Voronoi mesh, etc. In
particular, the application of SOM to discretizations for free-Lagrange methods, using Voronoi tesselations
to de®ne the cells, is described in [28].

Second, we note that the adjointness of the discrete operators DIV and GRAD allows us to draw
conclusions about the linear stability of the method on a general grid. For the semi-discrete equations

Fig. 5. As in Fig. 3, but with numerical data taken from a simulation using the compatible volumetric strain rates. The two strain rate

histories are nearly identical.

Fig. 4. As in Fig. 3, but comparing the estimated and exact volumetric strains. There is a large and systematic di�erence between the

curves.
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(continuous in time), one can use the same energy estimates as apply in the continuous case [1,2,11,12,30].
In addition, when using implicit methods, the adjointness of the discrete operators guarantees that the
system of linear equations will be symmetric and positive de®nite.

An alternate approach, using the conservation of total energy, but choosing GRAD as the prime op-
erator has been described in a series of papers [6±8].

Finally, the material presented above should be viewed as part of a more general e�ort to create a
discrete analog of vector and tensor analysis [16±19].

3. MPDATA

3.1. Introductory remarks

MPDATA is a framework for approximating the advective terms in continuum equations. In general
terms, it belongs to the class of nonoscillatory Lax±Wendro� schemes that includes such classical algo-
rithms as FCT [49], TVD [46], and ENO [13]. However, MPDATA is qualitatively di�erent from these
other methods. MPDATA's focus is on sign-preserving multidimensional advection rather than on
monotone solutions of hyperbolic conservation laws in one spatial dimension. Unlike TVD and ENO
schemes, which employ 1D constructions to limit the scalar ¯ux component, MPDATA e�ectively limits the
magnitude of the vector velocity and so is naturally unsplit.

MPDATA is second-order accurate (for su�ciently smooth grids), sign-preserving, conservative, and
computationally e�cient. It is iterative in nature. The ®rst pass is a simple donor cell approximation,
sometimes called upstream di�erencing, i.e., sign-preserving but only ®rst-order accurate. The second pass
increases the accuracy of the calculation by estimating and compensating the (second-order) truncation
error of the ®rst pass. Additional passes can be used to estimate the residual error of the previous pass and
approximately compensate it. This step may be repeated an arbitrary number of times, leading to suc-
cessively more accurate solutions of the advection equation.

Originally MPDATA was designed as a simple scheme for handling the transport of nonnegative
thermodynamic variables (such as liquid water or water vapor) in atmospheric models [36±38]. Over years,
the theory underlying MPDATA has been extended to advection±di�usion equations and to arbitrary
curvilinear frameworks [39], to third-order-accurate approximations [27], as well as to a fully monotone

Fig. 6. As in Fig. 3, but comparing the estimated and exact volumetric strains. The two total strain histories are also nearly identical.
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scheme (in the sense of FCT) [43]. More recently, MPDATA has been generalized for systems of equations
with arbitrary forcing [41,42]. The utility of MPDATA as a general solver for complex ¯uid problems has
been demonstrated in the context of atmospheric dynamics for both compressible- and incompressible-type
formulations of the equations of motion [41,42]. MPDATA has also been used as an interpolator [40] in a
class of semi-Lagrangian ¯uid models, as well as a remapper in arbitrary Lagrangian±Eulerian (ALE)
simulations of high-speed ¯ows [3,24].

3.2. A prototype ¯uid problem

A systematic derivation of general MPDATA beginning with the simplest 1D advection equation can be
found in [44]. Here, we summarize the principal results in the context of a generalized transport equation

oW
ot
� div�~uW� � R; �3:1�

where both ~u �~u�~x; t� and R � R�~x; t� are assumed to be the known functions. In ¯uid dynamics appli-
cations, R may represent the pressure gradient forcing or diffusion terms, and~u is the ¯uid velocity. In the
remapping phase of an ALE method, ~u represents the relative motion of the grid and R � 0.

In order to design a fully second-order MPDATA scheme for (3.1), we assume a temporal discretization
in the form

Wn�1 ÿWn

dt
� div�~un�1=2Wn� � Rn�1=2; �3:2�

where dt is the computational timestep and n labels the time level. Expanding (3.2) into a second-order
Taylor series about t � ndt, expressing the resulting temporal derivatives (with accuracy to O�dt�] in terms
of spatial derivatives (by using (3.2)), and regrouping the terms that do not cancel, leads to the modi®ed
equation

oW
ot
� div�~uW� � Rÿ div

1

2
dt~u�~u; gradW�

�
� 1

2
dt~uWdiv~u

�
� div

1

2
dt~uR

� �
� O�dt2�; �3:3�

where all O�dt� errors due to the uncentered time di�erencing in (3.2) are now expressed by spatial de-
rivatives. Note that, assuming the time levels of both the advective velocity and forcing term are n� 1=2 in
(3.2) eliminates O�dt� truncation errors proportional to their temporal derivatives in (3.3). Any O�dt2�
approximations to ~un�1=2 and Rn�1=2 would su�ce for second-order accuracy in (3.2); particular approxi-
mations are discussed in Section 3.4 of [44].

The O�dt� truncation errors on the r.h.s. of (3.3) have two distinct components. The ®rst is solely due to
advection and depends linearly on W. The second is solely due to the forcing and its dependence on W is, in
general, unknown. In the following section, we present basic MPDATA for homogeneous transport, while
in Section 3.3 we describe how to compensate the errors due to the nonvanishing forcing.

3.3. Homogeneous transport, R � 0

The basic idea of MPDATA is to use the sign-preservation property of donor cell schemes to com-
pensate the residual truncation error on the r.h.s. of (3.3). Thus MPDATA consists of a sequence of donor
cell steps. In the ®rst pass, the velocity is the physical velocity. In the second and subsequent passes, the
velocity is calculated from the ®eld that is being advected and has no physical signi®cance. These velocities
are termed antidi�usive, or equivalently pseudo velocities. The pseudo velocities are de®ned, in part, by
representing the expression under the divergence operator in the second term on the r.h.s. of (3.3) as
~upseudoW. In addition, they must contain similar terms compensating the spatial ®rst-order error of the
donor cell approximation itself. An example of the resulting algorithm for a uniform regular grid is de-
scribed in the following equations:
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W�k�i � W�kÿ1�
i ÿ

X3

I�1

F I�W�kÿ1�
i ;W�kÿ1�

i�eI
; V I�k�

i�1=2eI
�

h
ÿ F I�W�kÿ1�

iÿeI
;W�kÿ1�

i ; V I�k�
iÿ1=2eI

�
i
; �3:4�

where i :� �i; j; k� denotes a location on the grid; eI is the unit vector in the Ith spatial direction; F is the
donor cell ¯ux function de®ned below in (3.7) with V I denoting the normalized advective pseudo velocity in
the Ith direction; and k � 1; . . . ; IORD numbers MPDATA iterations such that

W�0� :� Wn; �3:5a�

W�IORD� :� Wn�1; �3:5b�

V I�k�1� � V I ~V �k�;W�k�
� �

; �3:6a�

V I�1�
i�1=2eI

:� uI jn�1=2

i�1=2eI

dt
dxI

: �3:6b�
The ¯ux function

F �WL;WR;U� :� �U ��WL � �U �ÿWR �3:7�
depends on the nonnegative and nonpositive (� �� and � �ÿ, respectively) parts of the normalized velocity
(a local Courant number) U � udt=dx where dx stands for the length of a cell. With this notation, IORD � 1
variant of MPDATA is the classical donor cell scheme, and various options of MPDATA di�er merely
by speci®cs of the functional form of the pseudo velocity (3.6a). A basic representation of (3.6a) takes
the form

V I�k�1�
i�1=2eI

� jV I�k�
i�1=2eI

j
h

ÿ �V I�k�
i�1=2eI

�2
iW�k�i�eI

ÿW�k�i

W�k�i�eI
�W�k�i

ÿ
X3

J�1;J 6�I

1

2
V I�k�

i�1=2eI
V J�k�

i�1=2eI

W�k�i�eI�eJ
�W�k�i�eJ

ÿW�k�i�eIÿeJ
ÿW�k�iÿeJ

W�k�i�eI�eJ
�W�k�i�eJ

�W�k�i�eIÿeJ
�W�k�iÿeJ

ÿ 1

4
V I�k�

i�1=2eI
V I�k�

i�3=2eI

�
ÿ V I�k�

iÿ1=2eI

�
ÿ 1

4
V I�k�

i�1=2eI

X3

J�1;J 6�I

V J�k�
i�eI�1=2eJ

�
� V J�k�

i�1=2eJ
ÿ V J�k�

i�eIÿ1=2eJ
ÿ V J�k�

iÿ1=2eJ

�
; �3:8a�

where

V J�k�
i�1=2eI

� 1

4
V J�k�

i�eI�1=2eJ

�
� V J�k�

i�1=2eJ
� V J�k�

i�eIÿ1=2eJ
� V J�k�

iÿ1=2eJ

�
: �3:8b�

These expressions are valid only for grids that are uniform in each direction. To extend these formulae for
irregular grids several strategies are possible. The general hexahedral cell can be mapped onto a cube. This
procedure introduces metric coe�cients in formulae (3.1)±(3.4), (3.5a), (3.5b), (3.6a), (3.6b), (3.7), and
(3.8a), (3.8b), see [44]. When the grid is su�ciently smooth the overall algorithm remains second-order-
accurate. For nonsmooth grids, a more general truncation error analysis is required, leading to generalized
formulae for the pseudo velocities.

So far, we have assumed that the transport ®eld W has a constant sign. This assumption is important in
proving that the pseudo velocities are bounded, and hence that MPDATA is stable. Note that the pseudo
velocity includes terms like dW=

P
W which are used to approximate the �1=W��oW=oxI� ratios. These terms

are bounded when W has a constant sign. Otherwise, they are unbounded leading to arbitrarily large pseudo
velocities and unstable schemes. MPDATA can be extended to the transport of variable-sign ®elds in a
number of ways. The simplest and most common way is to replace each W in (3.8a) and (3.8b) by jWj, using
the relationship 1

W
oW
oxI � 1

jWj
ojWj
oxI , a.e. Other possibilities are described in Section 3.2.4 of [44].
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The basic algorithm preserves sign but not monotonicity of the transported variables and, in general, the
solutions are not free of unphysical extrema. In most cases preservation of sign is adequate. When required,
MPDATA can be made fully monotone by employing FCT formalism [49] to limit the pseudo velocities. In
fact, MPDATA is very well suited for this for a number of reasons. First, the initial MPDATA iteration is
the donor cell scheme ± a low-order monotone scheme commonly used as the reference in the FCT design.
Second, assuring monotonicity of subsequent iterations provides a higher-order accurate reference solution
for the next iteration with the e�ect of improving the overall accuracy of the resulting FCT scheme. Third,
since all MPDATA iterations have similar low phase errors characteristic of the donor cell scheme, the FCT
procedure mixes solutions with consistent phase errors. This bene®ts signi®cantly the overall accuracy of
the resulting FCT scheme (see Fig. 5 in [43] and the accompanying discussion).

3.4. Inhomogeneous transport, R 6� 0

If MPDATA is to be used for a fully Eulerian simulation, it is necessary to compensate the O�dt�
truncation error in (3.2) dependent on the advective ¯uxes of the source term; in such simulations R may
represent either the gradient of pressure, or the divergence of the stress tensor. This particular error term
appears in all approximations to (3.1) that simply combine a time-uncentered advection scheme for ho-
mogeneous transport with a second-order approximation of R. Ignoring this error leads to spurious
� O�dt� sinks/sources of energy and, eventually, to nonlinear instability [41]). Compensating this error to
O�dt2� only requires subtracting a ®rst-order-accurate approximation from the r.h.s. of (3.2).

As an example assume that Rn�1=2 can be written as 0:5�Rn � Rn�1� where Rn�1 is an O�dt2� accurate
approximation to R at t � �n� 1�dt. Then a simple, ef®cient, and fully second-order-accurate MPDATA
realization of (3.2) can be compactly written as

Wn�1
i �MPDATAi�Wn � 0:5dtRn; ~V n�1=2� � 0:5dtRn�1

i : �3:9�
In the above equation, MPDATA symbolizes the homogeneous-transport algorithm discussed in Section 3.2.
Advecting the auxiliary ®eld Wn � 0:5dtRn not only compensates the truncation error due to the source term
but also has the physical interpretation of integrating the forces along a parcel trajectory rather than at the
grid point. This makes (3.9) equivalent (to the second-order) to ALE methods, where the equations of motion
are integrated along Lagrangian trajectories [14,25]. The particular compensation (3.9) may be viewed as an
application of Strang splitting [45]. Other possibilities are described in [44] and the references therein.

3.5. Numerical example: transport of the rotating cone

For illustration, Fig. 7 displays the results of a standard solid-body rotation test (cf. [44]) using selected
variants of MPDATA. The 2D rotation test employs a square mesh of 101 by 101 points. The angular
velocity x � 0:1 and the velocity components are �u; v� � ÿx�y ÿ y0; xÿ x0�. The center of rotation �x0; y0�
is the center of the mesh �50dx; 50dx�. The maximum Courant number �judt=dxj � jvdt=dxj� is 0.99, and one
full rotation requires 628 timesteps. The initial condition is a cone centered at the point �75dx; 50dy� and has
a base diameter of 30 and a height of 4. Fig. 7(a)±(c) show the analytic solution, the ®rst-order donor cell
solution, and the second-order solution using basic two-pass MPDATA, all after six rotations. Fig. 7(d)
displays the state-of-the-art third-order-accurate MPDATA option with the analytic summation of the
in®nite series of corrective iterations [27]. The schemes in Figs. 7(c) and (d) use approximately 2.5 and 6.0
times as much computer time as the donor cell algorithm.

4. Combining SOM and MPDATA in Eulerian simulations

4.1. Compatible di�erencing in 1D

The presence of the ¯ux terms in Eulerian simulations imposes additional requirements if the discrete
equations are to exactly conserve energy. These requirements can be expressed as relationships between the
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various ¯uxes (mass, momentum and energy). The goal of this section is to develop a combined Eulerian
algorithm utilizing both SOM and MPDATA in the context of shallow ¯uid ¯ows. In these ¯ows our
combined method uses MPDATA to compute a depth ¯ux and then uses SOM to de®ne the momentum
¯ux in terms of the depth ¯ux.

To motivate our algorithm in 2D, we consider the 1D shallow water equations with ¯at bottom

oh
ot
� o

ox
hu� � � 0; �4:1�

o
ot

hu� � � o
ox

hu2
ÿ � � ÿgh

oh
ox
; �4:2�

where h is the ¯uid depth, u is the ¯uid velocity, and g is the acceleration of gravity. If no work is done at the
boundaries, these equations conserve the total energy E:

E �
Z

V
h

u2

2

�
� g

h2

2

�
dx: �4:3�

We discretize Eqs. (4.1) and (4.2) in space, assuming that both h and u are de®ned at the cell centers, and
keep time continuous

Fig. 7. Isolines of cone advected through six rotations (3768 timesteps) using di�erent variants of MPDATA. The contour interval is

0.25, and the zero contour line is not shown. Plate (a) shows the analytic solution (identical to the initial condition), plate (b) the result

using the donor cell scheme, plate (c) the basic MPDATA scheme, and plate (d) the most accurate MPDATA option discussed in [27].
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ohi

ot
� F h

i�1=2�ui�1=2� ÿ F h
iÿ1=2�uiÿ1=2�

dx
� 0; �4:4�

o�hu�i
ot
� F hu

i�1=2�ui�1=2� ÿ F hu
iÿ1=2�uiÿ1=2�

dx
� ÿghi GRAD h� �i �4:5�

where F h
i�1=2�ui�1=2� is a generic depth ¯ux and F hu

i�1=2�ui�1=2� a generic momentum ¯ux. Here
ui�1=2 � 0:5�ui�1 � ui� is the velocity of the node. The GRAD at this point is also a generic form of the
discrete gradient.

The discrete total energy Ed can be de®ned

Ed �
X
cells

hi
u2

i

2

�
� g

h2
i

2

�
dx: �4:6�

From (4.4) and (4.5) one can derive the time rate of change of the discrete energy

oEd

ot
�
X
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1

2
u2

i

F h
i�1=2�ui�1=2� ÿ F h

iÿ1=2�uiÿ1=2�
dx

 !"(
ÿ ui

F hu
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dx
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i�1=2�ui�1=2� ÿ F h
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� guihi GRAD h� �i

#)
: �4:7�

When the discrete depth and momentum ¯uxes are compatible in the sense

F hu
i�1=2�ui�1=2� � ui�1=2F h

i�1=2�ui�1=2�

the expression in the ®rst square brackets in (4.7) has conservative form ± i.e., the sum over all cells reduces
to boundary terms. When a speci®c form (such as MPDATA) is used for both F h and F hu, the two ¯uxes are
not compatible and that expression does not have conservative form, which implies that discrete energy will
not be conserved exactly (it will be conserved to the order of the truncation error).

Let us now analyze the expression in the second square brackets in (4.7). Its analytical analog is the total
derivative o�h2u�=ox, whose integral depends only on the boundary conditions. In principle, the require-
ment that the expression in the second square brackets be in conservative form constitutes a de®nition of
GRAD. For ¯uxes linear in the velocity ± e.g., donor cell ± this leads to an explicit form of hGRAD, which
is the form required in (4.2). We know from Godunov's theorem that all second-order nonoscillatory
advection schemes must be nonlinear in the velocity [10]; however because of the consistency of the ap-
proximation, a linearized form (in velocity) of the ¯uxes should be su�cient to derive an explicit form of
hGRAD.

In the calculations that follow we have extended some of these ideas to 2D shallow ¯uid ¯ow on the
sphere [44]. In particular, we de®ne the momentum ¯ux in terms of the depth ¯ux. However, we continue to
use a central di�erence form for GRAD. Although this compromise will not yield exact conservation, it will
improve the conservation properties. Moreover, there are additional advantages: ®rst, because we use
MPDATA only for transport of depth, we avoid the problem of transporting ®elds of variable sign
(components of the momentum), (see Section 3.3); second, because we apply MPDATA only once, as
compared with three applications (¯ux of depth and two components of the momentum) in traditional
MPDATA, the new algorithm is much more e�cient.

4.2. Numerical example: 2D shallow ¯uid ¯ow on the sphere

For illustration, we repeat simulations of the Rossby±Haurwitz wave evolution [48] on the sphere dis-
cussed in [44]. The equations expressing conservation of mass and momentum in a shallow ¯uid ¯ow on a
rotating sphere each has the form of the generalized transport Eq. (3.1). The forcing term is 0 in the mass
continuity equation. The momentum equation, in addition to the standard pressure gradient term, also
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includes Coriolis acceleration (due to Earth's rotation) and the inertial metric force (due to representing
momenta in terms of velocities measured in a local tangent Cartesian framework aligned with standard
geographical coordinates; see [44] for details). The uniform, unstaggered mesh consists of 128 points in
longitude, and 64 points in latitude. The timestep dt � 40 s is limited by the propagation speed of the
gravity wave. Fig. 8(a) shows the initial condition. Over several days, we expect this initial pattern to move
from west to east with little change of shape (except for a slight steepening of the wave in mid-latitudes) and
angular velocity � 2:5� 10ÿ6 rad sÿ1.

Fig. 8(b) shows the numerical solution after 15 days of integration using MPDATA for mass continuity
equation and a compatible scheme for momentum (in the spirit of Section 4.1). The corresponding solution
generated with MPDATA used for all variables (not shown) is indistinguishable in the ®gure. Insofar as the
overall accuracy is concerned, a quantitative analysis (Table 1) corroborates that the di�erences between
the two solutions are small; for the sake of reference, the solution generated with the ®rst-order-accurate
MPDATA (i.e., the upwind scheme) is also included. The compatible scheme has slightly lesser numerical
dissipation, as judged by the velocity amplitude, and noticeably smaller conservation errors of energy and
enstrophy. The striking di�erence is in the computational economy, with the compatible approach being
about twice cheaper. Although the upwind solution is even less expensive, it is essentially useless as the
wave dissipates into a zonal ¯ow [Fig. 8(c)].

Fig. 8. Free surface height perturbation (H= �H ÿ 1, where �H � 8 km) and the ¯ow vectors for the Rossby±Haurwitz wave test problem:

(a) the initial condition; (b) the numerical solution after 15 days using a second-order-accurate MPDATA scheme for mass

and a compatible scheme for momentum; (c) the equivalent solution using a ®rst-order-accurate upwind scheme. The contour interval

is 0.05.

Table 1

Comparison of the two schemes after simulated ®ve days of the evolution of the Rossby±Haurwitz wave on the spherea

TABLES run kVk1 Mass Energy Enstrophy CPU

MPDATA 97.45 � 10ÿ12 ÿ5:6� 10ÿ5ÿ1:1� 10ÿ3 2633

COMPT. 99.37 � 10ÿ12 ÿ1:0� 10ÿ5 6:3� 10ÿ4 1407

UPWIND 52.21 � 10ÿ12 ÿ1:8� 10ÿ2ÿ1:3� 10ÿ1 704

a The ®rst row is for the run using MPDATA for all variables, whereas the second row is for the run using MPDATA for mass and the

compatible scheme for momentum. For reference, the third row contains data from the run using a ®rst-order-accurate donor cell

scheme. The ®rst column characterizes the scheme employed. The second column lists maximal speeds in m sÿ1. Columns three to ®ve

list relative conservation errors of mass, total energy, and enstrophy, respectively. The last column contains CPU times in seconds.
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