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Abstract—We construct local fourth-order finite difference approximations of first and second
derivatives, on nonuniform grids, in one dimension. The approximations are required to satisfy
symmetry relationships that come from the analogous higher-dimensional fundamental operators:
the divergence, the gradient, and the Laplacian. For example, we require that the discrete divergence
and gradient be negative adjoint of each other, DIV* = —GRAD, and the discrete Laplacian
is defined as LAP = DIVGRAD. The adjointness requirement on the divergence and gradient
guarantees that the Laplacian is a symmetric negative operator. The discrete approximations we
derive are fourth-order on smooth grids, but the approach can be extended to create approximations
of arbitrarily high order. We analyze the loss of accuracy in the approximations when the grid is not
smooth and include a numerical example demonstrating the effectiveness of the higher order methods
on nonuniform grids.

1. INTRODUCTION

Difference approximations that retain the symmetry properties of the continuum operators are
called mimetic. Partial differential equations solved with mimetic difference approximations often
automatically satisfy discrete versions of conservation laws and analogies to Stoke’s theorem that
are true in the continuum and therefore are more likely to produce physically faithful results.
These symmetries are easily preserved by local discrete high-order approximations on uniform
grids, but are difficult to retain in high-order approximations on nonuniform grids. The main goal
of this research is to construct local high-order mimetic difference approximations of differential
operators on nonuniform grids. Local approximations only use function values at nearby points
in the computational grid and are especially efficient on computers with distributed memory.
High-order approximations can often be used to solve partial differential equation (PDEs) to a
prescribed accuracy with only a fraction of the grid points that would be required by a first or
second order method [1].

Because our eventual goal is to construct high-order mimetic approximations in two and three
dimensions, we derive two approximations of the first derivative, analogous to the divergence and
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the gradient, and require they be the negative adjoint of each other. The symmetry requirements
for these operators are obtained analogous to the higher-dimensional case. The second derivative
(Laplacian) is approximated by the composition of the first-order operators and consequently is
a symmetric operator. This approach, based on the support-operator method |[2,3], guarantees
that the resulting difference scheme has the desired symmetry properties. One of the most costly
parts of many simulations is the inversion of the discrete Laplacian. Some of the most efficient
methods for solving these equations require the discrete Laplacian to be a negative definite,
symmetric operator. Mimetic discretizations of the Laplacian or, more generally, symmetric
elliptic operators, automatically produce discrete operators that are symmetric and negative
definite [2,3].

The use of higher-order approximations reduces the number of points needed in the discretiza-
tion and consequently reduces the computational cost to achieve a desired accuracy [1]. This
savings is inversely proportional to the number of grid points raised to the order of the method.
Also, because the number of grid points in a calculation increases as the power of the dimension,
the higher-order methods are extremely effective in higher dimensions. If, however, the higher-
order approximations are less accurate or less stable than low order methods on rough grids, then
all of the advantages may be lost.

The methods we consider are based on using the mapping method. In the mapping method,
a function defined on a nonuniform grid is first mapped to a function defined on a uniform
reference grid. The derivatives are approximated on the uniform reference grid and then these
approximations are mapped back to the original nonuniform grid space. The accuracy of the
approximation depends as much upon the smoothness of the grid as the smoothness of the
function being differentiated. Thus, a fourth-order approximation on smooth grids degenerates
to lower order on rough grids. In this paper we will analyze this loss of accuracy and verify
that it occurs gracefully. We also verify that even on relatively rough grids, the fourth-order
discretizations are computationally more efficient than the standard second-order discretization.

The importance of errors introduced into second-order difference scheme by nonuniform grids
has been extensively studied [4-13], but there has been little analysis or numerical comparisons
for higher-order approximations on nonuniform grids [1,14]. The construction and analysis of
the higher-order schemes proceeds by first using Lagrange interpolation to construct higher-
order approximations on a uniform grid and then using the mapping method [15,16] to extend
the approximation to nonuniform grids. The resulting approximation is then shown to be an
example of a support-operator [2,3] method, and consequently that the scheme is mimetic.

It can be difficult to generate a smooth grid for complex domains. Consequently, it is important
to understand the impact of roughness in the grid on the quality of the approximations. We
prove analytically, and confirm numerically, that the approximations we propose are fourth-order
accurate on smooth grids and that the accuracy of the approximation decreases slowly as the
smoothness of the grid decreases. The numerical verification is first done using an analytic
transformation, with a jump in one of its derivatives, to map the grid. Next, we numerically
study the accuracy of the difference approximations on a sequence of random perturbations of
different order with respect to the uniform grid spacing.

After defining the notation and basic ideas, we construct the higher-order mimetic approxima-
tions and analyze their errors and compare their accuracy and efficiency in numerical experiments.

2. DISCRETIZATIONS AND TRUNCATION ERRORS

In this section, we discuss the discretization of the domain, the distinction between discrete
scalar and vector functions and the definition of the truncation errors.

We introduce two discretizations for the first derivative based on the projections of the gradient
and divergence operators. In higher dimensions, the gradient grad operates on a scalar function
to produce a vector function, while the divergence div operates on a vector function to produce
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a scalar function. In one dimension, a vector function w = (w,,0,0) has only one component
and div is the derivative of this component. The grad is the usual derivative of a scalar function.
We require the approximations to satisfy symmetry properties that come from an analogy to
the higher-dimensional divergence, gradient, and Laplacian. In the continuum, the divergence
and gradient are negative adjoints of each other, div* = —grad, and the Laplacian is given
by A = divgrad. The adjointness requirement on the divergence and gradient implies that the
Laplacian is a negative symmetric operator. One goal here is to construct high-order discrete
analogs, DIV and GRAD, of the divergence and gradient so that DIV* = —~GRAD and then
use LAP = DIV GRAD as an approximation of the second derivative. The approximations
constructed are fourth-order, but the construction can be extended to create approximations of
arbitrarily high order.

The domain for the functions to be discretized, without loss of generality, can be chosen as the
unit interval. This interval is divided into cells with endpoints called nodes. We denote functions
defined at the nodes nodal functions. These functions are analogous to vector functions, while
cell functions are analogous to scalar functions defined at some point within the cells.

Consider the domain [0, 1] and the irregular grid with nodes {z;, i =1,..., M}, with z; < ©;41
(see Figure 1). The size of the grid is measured by Ar = maxj<i<m—1lzit1 — z;|. In one
dimension, discrete vector functions have one component, W = (WX,0,0) with values defined
at the nodes: WX = {WX;, WX,,..., WX}

U.
YUsn  Usp w12 Uip Uyt
—_—0+—0—t+—6—+—6—+c+—6——H6—
] 2 i-] i i+l M- M

WX
28 WX, WX, WX, WX, , WX M

Figure 1. One-dimensional grid.

Within a cell with end points z; and z;,1, we introduce the point £;,;/2. On uniform grids,
the point Z is the midpoint ;11,2 = Z;41/2 = (Tig1 + 7;)/2 of the cell, and it is near the
midpoint on nonuniform grids. The point £;,,/, is the location where the discrete scalar function
values U = (Usy, ..., Un—1/2), are defined (see Figure 1). (An exact definition of Z;, /5 will be
given later.)

To maintain the analogy that vector functions are defined on the nodes and scalar functions
are defined on the cells, the discrete divergence DIV maps nodal functions to cell functions, and
the discrete gradient GRAD operator maps cell functions to nodal functions. The two simplest
natural approximations of these operators are

W= W

Uii1n —Us
- i (GRADU); = X2~ i-l/2
i+1/2 Tit1 — T4

(DIV W) (2.1)

Zir1/2 — Tio1)2

We define the truncation error as the difference between the projection to a grid point of the
derivative of a smooth function and the discrete difference approximation of the derivative using
values of the smooth function projected to the grid points. The cell projection operator py maps
a smooth scalar function to discrete cell-valued functions

(pn u)i+1/2 = Ugpry2 = w(Fiv1/2)- (2.2)
The nodal projection operator Pp, maps a smooth vector function to its values at the nodes
(Pr ), = Wy = W(z;). (2.3)

If 1 is a smooth vector function, then the truncation error of the discrete divergence Ypyv is
the nodal function

—

dw

vorvii=p () ~ DIV (Py0) (2.4
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If u is a smooth scalar function, the truncation error of the discrete gradient wgrAD is

YGRADU = GRAD(pru) — P (%) - (2.5)

The approximations (2.1) are second order on uniform grids but the gradient is only first order
on nonuniform grids. One goal of this paper is to derive higher-order analogs of these discrete
operators.

2.1. Lagrange Interpolation

A Lagrange interpolating polynomial can be differentiated to give an accurate high-order ap-
proximation to the derivative of a function defined on a nonuniform grid [17]. On nonuniform
grids, the difference approximations to grad and div generated by Lagrange interpolation are
rarely mimetic. Furthermore, their composition to form the Laplacian operator is often not
negative definite. If, however, the grid and function are first mapped to a uniform grid, the
derivatives are approximated there using Lagrange interpolation, and the results then mapped
back to the original nonuniform grid, the resulting finite difference approximations can be shown
to be mimetic, provided that at each step of the process the symmetry relationships are preserved.
In this paper, we will derive an approach that preserves these relationships and guarantees the
resulting high-order approximations are mimetic.

The error estimate for the Lagrange interpolant of order n (using n + 1 points) for a smooth
function f is

_(fn+ls
50 - Loto)] < P2HL ) pagyen, 6)
and if dL, )
. (z) = e (z) + O(Azx) 2.7

where Z is a point in the interpolation interval, R is some constant which depends on the in-
terpolation points and scales as h™. Thus L3 gives a third-order approximation for the first
derivative on nonuniform grids. (On a uniform grid, fortunate error cancellation grids makes this
approximation fourth-order at the midpoint of the center cell.)

Let zg, z1, T2, and z3 be four points in the grid and f; = f(z;). Then

L3(:L‘) = Dy + (IE — mo) Do1 + (.’E - .'L‘())((E — .TL‘1)D012

(2.8)
+(z — zo)(z — 21)(x — 22)Do123,
where
DO = fO’
o= F1=F0
T — g
-D
Doz = Dz = D o (2.9)
To — X
Dia23 — D,
Dopgs = 2128 012
I3 — To

are divided differences.
The first derivative of the interpolant is

dids(i) = Dg1 + [(z — zo) + (z ~ 21)] Do12
x (2.10)
+(z — z0)(z — 71) + (z — z2)[(x — o) + (z — z1)]] Do12s.

On a uniform grid, with zo = z;_1, 1 = x4, T2 = Ti41, T3 = Ti42, and T = T;41/2, this becomes

_fi+2+27f2,-1_1A;27fi+fi—1_ (2.11)

(Dz flivr/2 =
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2.2. The Mapping Method

The mapping method is described in the books [15,16] and it was also used in [14] to construct
high-order approximations. The main idea is to assume that the grid is given by a smooth
mapping X,

z; = X (&), i=1,..., M, (2.12)

where the ¢; give a uniform grid with mesh spacing » = 1/(M — 1) in the interval [0, 1] which is
called logical space (the grid is called the logical grid). The first derivative is defined by

df df (dz\7
2= (%) (213

This approach transforms the problem of approximating a derivative on a nonuniform grid to
approximating two derivatives, % and é—d’é on a uniform grid.
The second derivative can be constructed using the chain rule

d?u &y dr  du d®z dz\?
z-(Fiuw) (&) (214

where all derivatives are approximated on a uniform grid, or it can be constructed as a composition
of the DIV and GRAD operators. The chain rule direct approach does not preserve many of
the symmetry properties of the Laplacian, such as the divergence form, and is considerably
more complicated in higher dimensions. Therefore, we will only consider constructing the higher
derivatives as a composition of the elementary operators DIV and GRAD.

The truncation error of difference approximations constructed by the mapping method depends
on the smoothness of the grid. If D; approximates adg on a uniform grid to O(h?), where h =
&i+1 — &, then the approximation of D, on a nonuniform grid

_ D¢ f(§) +0(hY) _ D f(€)

= DeX@ 100 ~ Dex(g T o) 1O =F=E), (2.15)

D, f(z)

is also O(h?).
For example, if second-order central-differences are used to approximate the derivatives on the
logical grid in (2.13)

-1

. Uin1 — Ui  Tivl — Tie Uirq — Us

(Dzu) — 1+1 i 1( i+1 [ 1) - i+1 ) 1’ (216)
i Gy — &l \Gip1 — & Tit1 — Tie1

the truncation error ¥

d .
wi = -d—z N ot (Da: (ph u))i
1 diu (2.17)
T2 dg? N [(Tit1 — i) — (25 — zim1)] + O (AZ?)

is, in general, first-order with respect to Az. If the transformation is smooth, then the coefficient
of the second derivative is O(h?),

(Tsg1 — &) — (@ — Ti—1) _ fb__2_ Tix1 — 2 + Ti—1
2 2 h?

2

o O (h?). (2.18)

In solving PDEs, often it is natural to require that the function being differentiated, f(x),
is smooth, but the grid may be prescribed by a process where we cannot assume that X (§) is
smooth. Consequently 7(£) = f(X(£)) may not be smooth, even when f is well behaved as a
function of x. Therefore, estimates of the truncation error in (2.18) for high-order approximations
must include an analysis based on both the smoothness of the function and the transformation.
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3. HHIGH-ORDER APPROXIMATIONS
In this section, the mapping method is used to construct high-order approximations for the
divergence and gradient.
3.1. The Operator DIV
On a uniform grid (2.11),

WX o +2TW X —2TWX + WX,
w12 24 h

(DIV vf/) (3.1)
provides a fourth-order approximation for the divergence at &1/ = (& + &i+1)/2 with the
truncation error

dW X

(YDIV) 4172 = 3 - (DIV W)

£iv1/2

—0(hY). (3.2)

+1/2
On a nonuniform grid, using this formula in (2.13) for smooth functions and transformations,
the mapping method approximation for the divergence

_ ~WXipa +2TWX, 1 —2TWX, + WX,
i+1/2 - —Tipo+ 272401 — 2723+ 259

(p1vw) (3.3)
is O(h*) accurate at the image of &iv1/2 Tivra = X(&yry2)- Usually 110 # Tigry2 =
(i + it1)/2. Because the difference between £;,1/7 and ;.17 is O(Az?), this distinction only
plays a role for high-order methods. In our truncation error analysis we are careful to ensure that
the midpoint projection is the image under the transformation of the midpoint in logical space
and not the center point of the central interval. If function X (£) is not known explicitly, then
this point can be approximated by Lagrange interpolation to fourth-order by

:i‘i—f—l/Z ~ (—.’13,‘4.2 + ng—l + 91,‘1 - .'L‘,,._l)/16 (34)

Note that on rough grids the denominator in (3.3) can vanish. Even though X is a one-
to-one mapping, the numerical approximation of the map may not be, causing the difference
approximation to fail. Luckily, this only occurs on very rough grids.

3.2. The Operator GRAD

The formula for the operator GRAD is obtained similarly. On a uniform grid, (2.11) translated
by 1/2 is a fourth-order approximation for the gradient

~Usiysja +2TUip1y2 = 2TUi_1/0 + Us_3/2

(GRADU); = o

(3.5)

On a nonuniform grid, for smooth functions and transformations the approximation

(GRADU), = w92+ 2T hsyja = 2 imajp + Voo (3.6)
Y —Zigsze + 2T 812 — 2T Ei1y2 + oz

is fourth-order accurate at the image X (§;), that is at ;.

3.3. The Integral Identity

In the support-operator method, the approximations of the divergence and gradient must
satisfy a difference analog of integral identity

/ udivu';'dV+/ (w, gradu) dV = fu(u')’, i) dS. (8.7)
v v
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This identity can also be written in terms of inner products,

(hoyn= [ roav.  (af), = [ (ab)av (39)
For functions which are equal to zero on the boundary, the integral identity (3.7) is
(u,div) g + (gradu, @)y = 0. (3.9)
That is, differential operators div and grad are negative adjoints of each other:
grad = —div*. (3.10)

A discrete analog of the adjoint relationship (3.10) can be found by introducing the following
inner products in spaces of discrete functions:

(F,G)n, = Z Fit1/2Giv172VCitiya, (/I, E)H = Z AX; BX,VN;, (3.11)
. h .

where the volumes of the cell VC; /2 and the volumes of the nodes V'N; are

VCitiy2 = —Toqo + 273541 — 2735 + 251,

R . R . (3.12)
VN; = —Ziy3/2 +27Z540170 — 2725172 + Ti_3/2-
If the discrete functions are zero near the boundary, then
U; DIVW Ve, WX, (GRADU); VN, = :
Z; i+1/2 ( )¢+1/2 Ciyr2 + Z} (GRADU); VN; =0, (3.13)
or
(U, DIV W) + (GRAD U, W) =0, (3.14)
Hy, Hy,
and consequently the discrete operators are also negative adjoints of each other:
GRAD = -DIV™. (3.15)

The volumes VC and VN must be positive to insure that the expression (3.11) satisfies the
axioms of an inner product. To illustrate how this failure can occur, consider the function u; =1
for ¢ = ip and u; = 0 for all other 7, and then

(w,WH, = VCigt1/2 (3.16)

which must be positive. When a volume V' C is zero or negative the length of a nonzero vector is
zero or negative, and then the expression given in (3.11) does not satisfy the axioms of an inner
product. Similar results hold for the inner product of discrete vectors. This can produce some
nonphysical consequences; for example, some quantity which is always positive in the physical
model, such as energy, can be zero or negative. Thus, to use the mapping method for some given
grid, one must check that VC and VN are always positive.

4. ERRORS ON ROUGH GRIDS

The accuracy of the discrete divergence, gradient and Laplacian operators depends upon the
smoothness of the grid transformation. In this section, we analyze the truncation errors for DIV,
GRAD and LAP on grids generated by an analytic transformation with different levels of
differentiability and on randomly generated grids. We describe the analytic grid transformation
as C* when the first k& derivatives of the map are continuous. (In our examples, the k+1 derivative
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has a jump discontinuity.) For our random grid examples, the identity map is perturbed by a
random multiple of h*.
The first set of examples are based on the analytic map
£, o<e<n

X(€) = (4.1)

Qi

k .
1 bj*(§~r)3
.'._._E - s < EL
dj:l ‘7! ’ T*g_l,

where .
bj * (1 - T')j
d=1+ Z —-—J‘——
i=l1

is introduced for normalization of mapping. The number of terms in sum, k, is a parameter. This
function produces a family of mappings with varying smoothness at the point £ = r. The C°
grid is defined by setting b; = 1 for 1 < i < k. The C! mapping (shown in Figure 2) is defined
by setting by =0 and b; = 1 for i > 1. Smoother mappings are defined similarly.

14 -

1.2 _

0.8 S dx

0.6 | 4

04 i
X(€)

0 | | | 1
0 0.2 0.4 0.6 0.8 1

Figure 2. The C! transformation X (¢) and its first two derivatives.

If f is a C*~! function and the k*! derivative is bounded, then

k=l vGYpi Fopk
fla+hy =" f7—+%— (4.2)

Jj=0
where F} is some average value of ). For a C° mapping with bounded derivatives, by Taylor
series expansion about the point x;, we can express

Tizk = Ti ThhCixi (4.3)

where Cj1; are bounded by the first derivative of X.
For a C! mapping with bounded second derivative, we have

dX k?
Titk = Tj +kh (d—ﬁ) ' + 3’ h2 C’q‘,j:k (44)

where C;1, are bounded by the second dérivative of X.
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The second set of examples is constructed using random perturbations of a uniform grid. We
define the O(h*) grid by

z; =& + b R;, (4.5)

where the R;’s are random numbers uniformly distributed in [-1/4,1/4].

4.1. Truncation Error Analysis

After analyzing the truncation errors of the second-order approximations to DIV and GRAD
on rough grids, we compare them with the fourth-order approximations. In the analysis, we
expand the discrete operators at the points &;11/2 and #;_1/2, evaluate the derivatives at the
fourth-order accurate approximation (3.4), and then analyze how the continuity of the grid trans-
formation affects the truncation error.

Let us at first consider operators given by formulas (2.1), which have second order truncation
errors on a smooth grid. We need to mention here that the definition of £;,,/2 has to be consistent
with the formal order of the approximation; then for second order approximation,

. T4l T T
Tiy1/2 = —

and
ji+1/2 =Tit1/2:

If w(x) is a smooth function of z, then a Taylor expansion about z;,1/2 gives an expression
for the truncation error for operator DIV, given by formula (2.1),

)T ~or). (4.5

w = s
YDIV [a:1+1/2 P (dz Tit1 — T4

For a scalar function u, the truncation error for GRAD, (2.1), at z; is

Uit1/2 — Ui—1/2 (du)
y|, = —"—~"t2 P —} = O(h). 4.7
YGRADUYI,, s —die ' \@ (h) (4.7)

The truncation error for GRAD is one order less than the error for DIV, because z; is not
necessarily the midpoint of #;_;/2 and £,41/2.

The truncation error for the fourth order operator DIV, (3.3), operating on a smooth func-
tion w@(x), is obtained by Taylor series about £;41/2

14 d%0 1A3d3d 1 Ay dia

I e o R Wit 48
YDIVOle = 34, da? T 6 4y dad | 24 A; dad (48)
where
Ap =27 [(Zig1 — Zig1/2)* — (2 — Bip1/2)"] (4.9)
+ [(Zio1 = Bigry2)* = (Tiv2 — Fip1/2)*] -
The denominator
Ay = 2o+ 27241 — 2735 + 7451 (4.10)

is order h.
The image of the midpoint in logical space plays a critical role in our analysis. Because,
in general, the mapping is not known explicitly, it is important to accurately approximate this

CAMWA 30-8-E
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image in analyzing the truncation error of the fourth-order methods. Using the definition of £;/2
in (3.4) gives
27

Ap = W((QJHZ = zi) + T(@ig1 — T3) + (Tim1 — 20))F
27
- W((Iwz —2;) = 9 (Tig1 — i) + (Tim1 — T))F
(4.11)

1
+ W((Iwz —23) — 9 (Tit1 — 2i) + 17 (Tim1 — 23))F

1
- 1—6z(17(33i+2 — ;) ~ 9(Tip1 — zs) + (Tiy — 7).

The leading term in the truncation error ¥pyvy is the coefficient of ‘j—fg, As/A;. For a CY
mapping, using (4.3),

Ay = - (+C'll-1 - 27 Ci+1 +2 CH-?) h,

0 (4.12)
A = 3 (Ci-1 = 3Cit1 +2Ciy2) (Ci_1 + Ciy1 — 2Ciy2) K,
quotient A2/A; and yYprv are order h. The same result is obtained for YgraD-
For a C! mapping,
Al = 24 X'(ﬁl) h + 05 (Ci-—l + 27 Ci+1 — 401_4..2) h2,
9
Ay = ) (Ciz1 = Ciy1 +4Cipa) (Cicy +3Ciqp1 — 4Ciy2) B,
and Az/A; and Ypry are order h3.
This not the case for the truncation error for GRAD, (3.6):
1 Bg d2u 1 Bg d3u 1 B4 d4u
YerADU.. =5 5 72 T § B, ad | 24 B, &oF (4.13)
where
By =27 [(&ir1/2 — 2:)* = (Fic1y2 — li)k] (4.14)
+ [(531'—3/2 — ;) - (£ip3p2 — Cﬂi)k] .
The denominator
1
B, = 1-6 (371;4_3 — 36,40 +261l2;49 — 26121 +3625_2 — $i_3) , (415)
is order h.
‘We can write B, as
27Th® _, 4
Bs = ? X (§i)(C’i_3 —8C; 2 +7C_1 + 7Ci+1 - 8Ci+2 + Ci+3) + O (h ) . (416)

The leading term for ¥ grAD is B2/B;. Here B; is proportional to h3 instead of h*, resulting
in only a second-order approximation. On order h random grids,

Ay =24+ Ri-1 —2TR; + 2T Ri1 — Riy2) h, (4.17)
9
As = 3 (Ri—1 —3R; +3Riy1 — Riy2) (Riz1 — Ri — Riy1 + Riya) B2,
and Ypyv is first-order. Similarly ¥gRrap is also first-order. For order A%, random grid

Ay =24h+ (Ri_1 —27TR; + 27 Rix1 — Riy3) h, (4.18)
9
Ay = g (Ric1 —3R;+3Ri41 — Riyy2) (Ri-1 — Ry — Rit1 + Riyo) Kt
50 ¥prv is third-order; but similar to 4.16, ¥qrAaD is only second-order.
The cases for higher-order smoothness of the analytical grid and high order random perturba-
tion of uniform grids are handled similarly, and results are summarized in Table 1.
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Table 1. Theoretical estimates for the order of approximation of the fourth-order discrete operators,
analyzed in Section 4.

Mapping | GRAD | DIV | LAP
co 1 1 0
ct 2 3 1
Cc? 3 4 2
c8 4 4 3
ct 4 4 4

4.2. Truncation Error for the Laplacian

Because DIV = —GRAD*, the Laplacian LAP = DIV GRAD is symmetric and nega-
tive (but may not be negative definite). We now estimate its truncation error in terms of the
truncation errors for the divergence and gradient.

For a uniform grid, the superposition of DIV, (3.3), and GRAD, (3.6), is

1
(LAP U)i+1/2 = 3‘7—6—h2' (Ui+7/2 - 54 U1‘+5/2 + 783 Ui+3/2
(4.19)
— 1460 Ui+1/2 + 783 U’i—l/2 - 54 Ui—3/2 + Ui—5/2) .
The standard fourth-order Laplacian with a minimal stencil is
-U; 16U; — 30U, 16U; 1,0 — U,
(LAPU);yy/s = i+5/2 + i+3/2 it1/2 + i-1/2 i-3/2 (4.20)

12h2

Although this approximation of the Laplacian has a smaller stencil than (4.19), it cannot be
decomposed into a product of GRAD and DIV = ~GRAD"*.
Combining (2.4) and (2.5), the truncation error for the Laplacian can be written as

YrAap = pr(divgrad) — DIV GRAD(p; u). (4.21)
Using
GRAD(py(u)) = Pu(gradu) — YGRAD: (4.22)
this can be rewritten as
¥YDIV GRAD ¥ = pr(div grad u} — DIV (Py(grad u)) — DIV ¥grAD. (4-23)

Next, using the definition of ¥prv and taking @ = grad u to transform first two terms in (4.23),
we have

¥DIVGRAD U = ¥prv(grad u) — DIV ¥grAD(u)- (4.24)

The truncation error of the first term on the right-hand side of this equation is the same as
for DIV, but the truncation error for the second term is one order less than for the GRAD.
Because this truncation error was estimated by using the estimates for the individual operators
independently, there may be some undetected cancellation and the truncation error may be
less than these estimates. However, the numerical results for random grids confirm that the
estimates are, in fact, optimal. Similar results can be obtained for the operator grad div and its
approximation GRAD DIV.

In summary, on the rough grids the truncation error for LAP is one order less than that
of GRAD, and the truncation error for DIV is one order higher than the truncation error
for GRAD; for smooth grids and for a very smooth grid (C3 and higher) the truncation errors
for both operators are fourth order.



52 J. E. CASTILLO et al.
5. NUMERICAL EXPERIMENTS

We first verify the order of the truncation error estimates by numerical experiments on the grids
described in the previous section. We then solve the time-dependent heat equation to determine
the convergence rate of the fourth-order spatial discretization, combined with a high-order time
discretization.

‘We show that the convergence rate for the maximum and mean-square norms are the same. We
also confirm that the second-order method has a second-order convergence rate for all grids and
that the fourth-order method has at least a second-order convergence for all grids. However, as the
smoothness of the grid increases, so does the order of convergence for the fourth-order method. We
finally demonstrate that on smooth nonuniform grids the fourth-order method is computationally
more efficient than the second-order method for a prescribed accuracy. Furthermore the fourth-
order method gives more accurate results when both use the same computational effort, even on
rough grids.

5.1. Numerical Errors in the Operators
The asymptotic truncation error Ej on a grid of M nodes h = 1/(M — 1) is estimated by
En=ch?+ 0 ('), (5.1)

where ¢ is the order of the error and the constant ¢, the convergence-rate constant, is independent
of M.

In numerical examples the truncation errors were evaluated on a sequence of grids, h = 277,
then the convergence rates estimated from the ratio between the norms of the errors, (5.1), and

h?
Eh/2 =c 2_q + 0O (hq+1) . (52)

The order of convergence, ¢, can be estimated from the ratio

Ey c (2—r)q
= =29 5.3
Eh/2 [4 (2_7-_1)11 ( )
or
Ey,
=~ lo . 5.4
q g2 Eh/2 ( )

The convergence rates were estimated using both the maximum norm
M .
Enax = ”U - phu“max = I{l=a.1X |U1;+1/2 —u ($i+1/2)‘ » (5~5)

and the mean-square norm

M—1 1/2
U - prullL, = Ep, = ( Z (Uitr/2 —u (i‘z‘+1/2))2 VCH—I/?) ; (5.6)

i=1

where U, /2 is the solution of the finite-difference scheme and u(z) is the exact answer.

The truncation errors were computed by applying the discrete operators to a number of test
functions including the sine, cosine, exponential, and polynomials for 6 < r < 9. All of the con-
vergence estimates agree with our theoretical analysis for grids generated using transformations
and for random grids.
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5.2. Numerical Error for the Heat Equation
The time-dependent one-dimensional heat equation,

2

ou Uu
— = d’ d = —
ivgradu el

ot

with periodic boundary conditions and the exact solution

O<zx<2m, (5.7)

u(z,t) = e * sin(x) (5.8)

was solved to determine how the accuracy depends upon the smoothness of the grid. Five grids,
each with M points, were used: a uniform grid, a smooth periodic grid,

z; =27 (i —1)h+0.2 sin(27 (i — 1)h), t=1,...,M, (5.9)

and three random perturbations of the uniform grid,

.’L'1=0,
mi:27r(i—1)h+Ri27rh3, 1=2,...,M~-1,
.’L‘M=27I',

where the R;, i = 2,..., M — 1 are random numbers, R; € (—1/4,1/4), and s = 3,2,1.

The spatial derivatives were approximated by the second- (2.1) and fourth- (3.3), (3.6) order
approximations. The equations were integrated in time by a variable-order, variable-time step
Adams-Bashforth-Moulton method to time accuracy of 10~°, so that the errors related to time-
integration are negligible.

The accuracy of the solutions at t = 1 are displayed in Table 2. The type of the grid is in the
first column, the number of grid points M is in the second column, the order of the method on a
uniform grid is in third column, the next two columns give the maximum and mean-square error
norms, and the estimated orders of convergence are in next two columns. Note that the order of
convergence for the maximum and mean-square norms are the same.

The second-order method has a second-order convergence rate for all grids and the fourth-order
method has at least a second-order convergence for all grids. However, as the smoothness of the
grid increases, so does the order of convergence for the fourth-order method.

5.3. Efficiency of the Second- and Fourth-Order Methods

The fourth-order approximation of the Laplacian requires 2.6 times as many arithmetic op-
erations as the second-order approximation (13 arithmetic operations for fourth-order versus 5
for the second-order method). We compared the two methods in solving the previous example
by using M = 16 cells for the fourth-order method and 2.6 M = 42 cells for the second-order
method. The resuits in Table 3 for the max and L2 norm errors demonstrate that the fourth-
order method is significantly more accurate than the second-order method on the smooth grids.
On rough grids, the fourth-order method is only slightly worse, even with far fewer mesh points.
These results agree with similar comparisons of finite difference and finite volume methods on
nonuniform grids [1].

When using these approximations to solve systems of partial differential equations, often the
cost of applying the discrete operator is small compared with the cost of evaluating the function
that is to be operated on. For example, in a fluid dynamics calculation where the equation-of-
state is evaluated by a table lookup, it may cost up to thirty arithmetic operations to evaluate
the pressure at a mesh point. The five extra arithmetic operators for the fourth-order method
compared to the second-order method is small compared to the large gain in accuracy. The real
gain comes from requiring fewer mesh points in a calculation that has the same accuracy.
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Table 2. Convergence analysis, and comparison of sccond- and fourth-order schemes. The con-
vergence rates using the maximum, gmax, and L2 norm, ¢z are computed on the series of grids
with M = 17,33, and 65 points. These estimates agree with the theoretical estimates from Sec-
tion 4.

Type of grid | M | Order | max-norm La-norm Imax q2
4.17E - 03 | 7T43E - 03 | 1.90 | 1.91
6.31E — 05 | 1.12E - 04 | 3.80 | 3.80

L]

Uniform grid | 17

33 1.11E - 03 | 1.96E — 03 | 1.95 | 1.96
4.52E — 06 | 8.02E — 06 | 3.90 | 3.91
65 2.86E — 04 | 5.06E — 04 - -

3.01E - 07 | 5.32E - 07 - -
4.78E — 03 | 8.06E — 03 | 1.90 | 1.92
1.53E —04 | 224E - 04 | 3.75 | 3.79

Smooth grid | 17

33 1.28E — 03 | 2.12E - 03 | 1.95 | 1.94
1.13E - 05 | 1.62E — 05 | 3.88 | 3.91
65 3.20E - 04 | 551E — 04 - -

7.66E — 07 | 1.0TE — 06 - -
4.61E — 03 | T45E — 03 | 2.02 | 191

Random grid | 17

O(h3) 526E — 04 | 5.04E — 04 | 3.91 | 3.81
33 113E—03 | 1.96E — 03 | 1.97 | 1.96
3.49E — 05 | 3.59E — 05 | 4.32 | 4.31

65 287E —04 | 5.06E — 04 | - -

1.74E — 06 | 1.80E — 06 - -
5.73E - 03 | 783E - 03 | 2.14 | 1.97

Random grid | 17

O(h?) 141E — 03 | 1.14E — 03 | 3.04 | 2.64
33 1.30E — 03 | 1.99E — 03 | 2.10 | 1.97
1.71E — 04 | 1.83E — 04 | 3.40 | 3.36

65 3.03E — 04 | 5.08E — 04 | - -

1.61E - 05 | 1.77E — 05 - -
9.36E — 03 | 1.02E - 02 | 1.96 | 1.91

Random grid | 17

O(h) 4.46E — 03 | 4.02E — 03 | 2.04 | 1.87
33 2.40E — 03 | 2.71E — 03 | 2.38 | 2.23
1.08E — 03 | 1.09E — 03 | 2.73 | 2.47

65 461E — 04 | 5.75E — 04 | - -

LR LR I BRI IV I BV o U A 0 T U I O I I G0 I Il BN O VN T OO NG B O ) N

1.62E — 04 | 1.96E — 04 - -

Also, when solving time dependent equations with an explicit method, the stability restriction
for the time step is a function of the mesh spacing. For the heat equation, the stability bound
depends approximately upon 1/min(Ax)?. Thus, if the time step is limited by the stability,
rather than accuracy, the fewer mesh points required by the fourth-order method allow much
larger time steps for the same accuracy.

From this example, we conclude that for grids with varying degrees of smoothness, the fourth-
order method is generally more efficient than the second-order method.

6. CONCLUSIONS

By combining the support-operators method with mapping, we have derived new mimetic
fourth-order accurate discretizations of the divergence, gradient, and Laplacian on nonuniform
grids. The discrete divergence is the negative of the adjoint of the discrete gradient and con-
sequently the Laplacian is symmetric and negative. We verified our analytical estimates of the
truncation errors by computational experiments on both smooth and rough grids. The methods
displayed fourth-order truncation errors on smooth grids, and this accuracy degraded gradually
as the smoothness of the grid degenerated.
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Table 3. Comparison of accuracy of second- and fourth-order methods.

Type of grid | M | Order | max-norm | Lg-norm
Uniform 42 2 6.54E — 4 | 1.15E — 3
16 4 6.31E - 5 | 1.12E ~ 4

Smooth 42 2 754E ~ 4 | 1.05E - 3
16 4 1.53E — 4 | 2.24E ~ 4

Random grid | 42 2 6.54E ~ 4 | 1.15E — 3
O(h%) 16 4 228E — 4 | 2.12E ~ 4
Random grid | 42 2 6.57E — 4 | 1.15E — 8
O(h®) 16 4 5.26E ~ 4 | 5.04E — 4
Random grid | 42 2 741E — 4 | 1.16E - 3
O(h?) 16 4 141E -~ 3 | 1.14E - 3
Random grid | 42 2 143E ~3 | 1.53E - 3
O(h) 16 4 4.46E ~ 3 | 4.02E - 3

A numerical investigation of the order of convergence for the heat equation verified that the

fourth-order method converges to at least second-order in even the roughest grids, and the order
of convergence increases from 2 to 4 as the smoothness of the grid increases. Moreover, the
fourth-order method was significantly more accurate than the second order-method when both
methods use the same computational effort.
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