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Abstract

We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes.
We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence
rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted
meshes, on non-matching meshes, and even on meshes with irregular-shaped polyhedra with flat faces. We show that in
general the meshes with non-flat faces require more than one flux unknown per mesh face to get optimal convergence
rates.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The development of new mathematical models and numerical methods results in the need for discretiza-
tion methods handling unstructured polyhedral meshes. For instance, such meshes appear in the basin
modeling where mesh cells have to approximate sophisticated geological structures. Other examples come
from applications using adaptive mesh refinement algorithms or non-matching meshes where some of the
mesh elements are degenerate and even non-convex polyhedra.

The mimetic finite difference discretization has been successfully employed for solving problems of
continuum mechanics [14], electromagnetics [8], gas dynamics [5], and linear diffusion on simplicial
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and polygonal meshes in both the Cartesian and polar coordinates [7,9,10,13,16]. The family of mimetic
discretizations contains the classical mixed finite element discretizations (on tetrahedral and hexahedral
meshes) [17] and the symmetric version [3] of multi-point flux approximation methods [1].

The discretization methodology is based on the support operator approach (see [7] and references
therein). According to this approach, the constructed discrete operators have to preserve critical proper-
ties of the original continuous differential operators. Conservation law, solution symmetries and relation-
ships between differential operators are examples of such properties. For the linear diffusion problem, this
means that the mimetic discretization mimics: (a) the Gauss divergence theorem to enforce the local con-
servation law, (b) the symmetry between the gradient and divergence operators, G ¼ DIV�, to guarantee
symmetry and positivity of the discrete operator DIVG, and (c) the null spaces of the involved operators
to prove stability of the discretization.

In this paper, we consider a general diffusion problem on a conformal polyhedral partition. The diffusion
problem is formulated as a first-order system consisting of the mass balance equation and the constitutive
equation describing the relationship between the vector unknown (flux) and the scalar unknown (pressure).
The later equation is known as the Darcy law in porous media applications. We assume that the material
properties are described by a 3 · 3 full tensor.

The discretization methodology employs the divide and conquer principle. First, we consider each
mesh polyhedron as a separate domain and construct an independent discretization for this polyhe-
dron. If the polyhedron has flat faces and the diffusion tensor is constant, this discretization will
be exact for linear pressures. Second, the system of element-based discretizations is closed by imposing
continuity and boundary conditions on polyhedron faces for pressure unknowns and normal flux
components.

For sufficiently smooth solutions, it was proved in [4] that the mimetic discretization is second or-
der accurate for the pressure unknown on unstructured polyhedral meshes having degenerate and non-
convex polyhedra with flat faces. In this paper, we extend the analysis to meshes with more general
polyhedra. If the faces of a polyhedron are not flat, we shall refer to them as curved faces. We show
with numerical experiments that the optimal convergence rates are held for polyhedral meshes with
slightly curved faces. More specifically, the deviation from a flat face should be of order h2, where
h is the local mesh size. In the case of meshes with strongly curved faces (see Section 6.3), we show
that more than one flux unknown per curved face is required to get the optimal convergence rate. To
the best of our knowledge, there is no locally conservative discretization method which uses 1 flux
unknown per mesh face, 1 pressure unknown per mesh element and converges on randomly perturbed
meshes.

More than one flux unknown per mesh face is also used in the multi-point flux approximation method
(see e.g. [1,15]). However, the method results in the discretization scheme with a non-symmetric coefficient
matrix whose positivity has not been proved yet. The recently proposed mimetic finite element method
[11,12] on polyhedral meshes is close to our method, but its convergence on randomly perturbed meshes
has not been studied yet. The advantage of our approach is flexibility imbedded in definition of inner
products.

The results obtained in this paper are fundamental extensions of the 2D results presented in [10]. In par-
ticular, we address new issues related to curved mesh faces and propose a new algorithm for computing
interior fluxes through boundary fluxes.

The paper is organized as follows. In Section 2, we formulate the general diffusion problem. In Section
3.1, we describe the local support operator approach and build the mimetic discretization over a single
mesh polyhedron. In Section 3.2, we impose interface conditions and determine how the boundary con-
ditions are involved in the discretization. In Section 4, we derive the inner product in the space of fluxes.
The solution algorithm is described in Section 5. The accuracy and robustness of our discretization meth-
od are analyzed numerically in Section 6.
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2. Problem formulation

Let us consider the 3D linear diffusion equation
�div ðK gradpÞ þ cp ¼ Q in X; ð2:1Þ
where p is an unknown scalar function that we refer to as the pressure, K = K(x) is a full diffusion tensor,
c(x) is a nonnegative function, Q(x) is a source function, and X � R3 is a bounded domain. We assume that
K is a symmetric, bounded uniformly positive definite matrix, i.e.
a1ðn; nÞ 6 ðKðxÞn; nÞ 6 a2ðn; nÞ; 8n 2 R3; 8x 2 X;
with a positive constants a1 and a2 independent of x and n. We assume that the domain boundary oX is
partitioned into two non overlapping sets CD and CR such that CD is a closed set and the closure of CD [ CR

is equal to oX.
Eq. (2.1) is complemented with two boundary conditions:
p ¼ gD on CD;

ðK gradpÞ � nþ rp ¼ gR on CR;
ð2:2Þ
where n is the outward unit normal vector to CR, r(x) is a nonnegative function, and gD and gR are given
functions. We also assume that the data are smooth enough so that problem (2.1) and (2.2) has a unique
solution [6].

We replace the second order problem (2.1) by an equivalent system of first-order equations:
Fþ K gradp ¼ 0 in X;

divFþ cp ¼ Q in X;
ð2:3Þ
where F denotes a vector-valued function that we refer as the flux.
Let Xh be a non-overlapping conformal partition of X into polyhedral elements ei
Xh ¼
[N
i¼1

ei.
The element ei is a closed simply-connected ‘‘generalized’’ polyhedron. In particular, ei may be a non-con-
vex polyhedron or may have 2D angles equal to p. However, we assume that there are no zero 2D angles.
The conformal partition implies that closures of any two elements have either a common vertex, or a com-
mon whole edge, or a common whole face, or do not intersect.

A curved (non-planar) face of a ‘‘generalized’’ polyhedron is defined by a set of ordered vertices in 3D
which makes its precise definition a non-trivial task. We assume that there exists a one-to-one map which
transforms the curved face to a regular (flat) polygon. Many production codes using polyhedral meshes
specify this map by approximating the curved face with a piecewise linear surface. In this paper, we employ
the same approach. First, we define an arbitrary point and call it the center of the curved face. Second, we
connect this point with vertices of the curved face to get a triangular piecewise linear surface which we still
refer to as the curved face.

It is obvious to require that the curved faces defined by the piecewise linear surfaces do not overlap and
result in the valid mesh. In numerical experiments, we use the geometric center as the face center and per-
form a few checks of mesh validity.

Later, we use notation of a polyhedron center. In general, the center of polyhedron e can be an arbitrary
point inside e. However, to simplify the presentation, we assume that this point is the center of mass of e.
We shall also refer to a ‘‘generalized’’ polyhedron simply as a polyhedron.
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3. Mimetic finite difference method

Let us integrate the mass balance equation (the second equation in (2.3)) over arbitrary polyhedron e.
The Gauss divergence theorem gives
X

A2oE

Z
A
F � n dAþ

Z
e
cp dV ¼

Z
e
Q dV .
It implies that one of the natural choices for the discrete unknowns are the normal components of the flux
averaged over the polyhedron faces and the pressure averaged over the polyhedron. The mimetic finite dif-
ference method uses these unknowns to discretize the constitutive equation (the first equation in (2.3)) and
to preserve the essential properties of system (2.3). In order to formulate these properties, we introduce the
generalized gradient, G, and the divergence, D, operators:
Gp ¼ �K gradp and DF ¼
divF on e;

�F � n on oe.

�
ð3:1Þ
For simplicity, we shall refer to the generalized gradient operator as the flux operator.
Let us define the following inner products:
ðF;HÞX ¼
Z
e
F � K�1H dV and ðp; qÞQ ¼

Z
e
pq dV þ

Z
oe
pq dA.
Then, the Gauss–Green theorem,
Z
e
F � gradp dV þ

Z
e
pdivF dV ¼

Z
oe
pF � n dA;
gives us the following relationship between the generalized gradient and divergence operators:
ðF;GpÞX ¼ ðDF; pÞQ.
The last expression clearly states that these operators are adjoint to each other
G ¼ D�.
We show in the next section that the mimetic discretization preserves this property.

3.1. Discretization on element

In this section, we describe the mimetic discretization over the polyhedron e. First, we introduce vector
spaces of discrete functions and inner products on them. Then, we construct the discrete generalized diver-
gence operator and derive the discrete flux operator as the adjoint to it.

We begin by specifying the degrees of freedom for physical variables p and F and their location. The scalar
unknowns are defined at the polyhedron center, p0, and at the centers of its faces, p1,p2, . . .,ps, where s is the
number of polyhedron faces. We denote the vector space of discrete pressure functions~p ¼ ðp0; p1; . . . ; psÞT
as Qh. The dimension of Qh is equal to s + 1. The inner product on this space is given by
ð~p;~qÞQh
¼ p0jV ej þ

Xs
k¼1

pkqkjAkj; 8~p;~q 2 Qh;
where jVej is the volume of e and jAkj is the area of the kth face. It is not difficult to determine the relation-
ship between this inner product and the standard dot product ÆÆ, Ææ on the Euclidean space Rsþ1:
ð~p;~qÞQh
¼ hL~p;~qi; L ¼ diagfjV ej; jA1j; . . . ; jAsjg.
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The vector unknowns are defined as the face-normal components, f 1, f 2, . . . ,f s, located at centers of
polyhedron faces (see Fig. 1). For instance, f 1 approximates the dot product of F with the outward unit
normal n1. Let~f ¼ ðf 1; f 2 . . . f sÞT be a vector of these face-normal components. We denote a discrete space
containing such vectors as Xh. The dimension of this space is equal to s. The inner product on Xh is defined
as follows:
ð~f ;~gÞXh
¼ hM~f ;~gi; 8~f ;~g 2 Xh;
whereM 2 Rs�s is a symmetric positive-definite matrix. The choice of the matrixM is crucial and one of the
most difficult problems in the support operator approach. In particular, this inner product has to approx-
imate the continuous one with sufficient accuracy. In the next section, we present an algorithm for con-
structing a suitable matrix M.

Now, we specify the discrete extended divergence operator. Based on the Gauss divergence theorem,
Z
e
divF dV ¼

Z
oe
F � n dA;
and definition of discrete unknowns, we define the discrete divergence operator,
DIVh~f � 1

jV ej
Xs
k¼1

f kjAkj; ð3:2Þ
and the generalized discrete divergence operator:
Dh~f � ðDIVh~f ;�f 1;�f 2; . . . ;�f sÞT. ð3:3Þ

Finally we derive the discrete flux operator Gh which is adjoint to Dh with respect to the inner products

defined on spaces Xh and Qh:
ð~f ;Gh~pÞXh
¼ ð~p;Dh~f ÞQh

; 8~p 2 Qh; 8~f 2 Xh. ð3:4Þ
Since vector ~f is arbitrary, formula (3.4) implies that
Gh~p ¼ M�1L̂

p0 � p1

..

.

p0 � ps

0
BB@

1
CCA; L̂ ¼ diagfjA1j; . . . ; jAsjg. ð3:5Þ
Fig. 1. Two possible elements and the normals to their faces.



478 K. Lipnikov et al. / Journal of Computational Physics 211 (2006) 473–491
It is pertinent to note that one of the important properties of the continuous flux operator is that
gradp = 0 if and only if p is a constant function. It is highly desirable to have the same property for the
null space of the discrete flux operator. Indeed, if a high-frequency mode enters the null space of the discrete
gradient operator, a special procedure for filtering noise from the solution will be required. Since M is the
positive definite matrix, the null space of G contains only constant vectors.

The definitions of the discrete divergence and gradient operators result in the following local equations:
~f ¼ Gh~p;

DIVh~f þ cep0 ¼ Qe;
ð3:6Þ
where
Qe ¼
1

jV ej

Z
e
QðxÞ dV and ce ¼

1

jV ej

Z
e
cðxÞ dV .
3.2. Interface conditions

The system of discrete equation (3.6) is closed by imposing continuity conditions on mesh faces for
primary variables p and F. Hereafter, we shall use the subscript i for vectors, matrices and inner prod-
ucts which are associated with the polyhedron ei and the superscript k for polyhedron faces. For in-
stance, jAk

i j is the area of the kth faces of ei. The corresponding pressure variable located on that
face is pki and the normal component of the flux is f k

i . For the continuous problem (2.3), we have con-
tinuity of the pressure and of the normal component of the flux across mesh faces. For the discrete
problem, it means that
f k1
i1 ¼ �f k2

i2 and pk1i1 ¼ pk2i2 ; ð3:7Þ
if polyhedron ei1 shares its k1th face with the k2th face of polyhedron ei2 .
Furthermore, we determine how the boundary conditions are involved in the mimetic discretization. If

the kth face of the polyhedron ei belongs to CD, then the corresponding pressure unknown, pki , is equal to
pki ¼
1

jAk
i j

Z
Ak
i

gDðxÞ dA. ð3:8Þ
If this face belongs to CN, then pki and f k
i satisfy to the following relations:
�f k
i þ rk

i p
k
i ¼

1

jAk
i j

Z
Ak
i

gRðxÞ dA; where rk
i ¼

1

jAk
i j

Z
Ak
i

rðxÞ dA. ð3:9Þ
4. Scalar product in the discrete flux space

In this section, we derive the inner product in the space of fluxes for a polyhedron e. The derivation is
based on a partition of e into tetrahedra. Note that this partition is obviously not unique.

We described in Section 2, how to split the curved face into triangles. Now, connecting the polyhedron
center with vertices of these triangles, we get one possible decomposition of e into tetrahedra. An example
of such a partition is shown in Fig. 2.

To construct an inner product over a polyhedron, we use an accurate inner product over a tetrahedron
[7]. We assume the medium in each tetrahedron is homogeneous but material properties (diffusion tensor)
may vary between tetrahedra.



Fig. 2. The partition of a polyhedron into tetrahedra.
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4.1. Derivation of the inner product over a tetrahedron

Consider a single tetrahedron D. Note, that the whole flux (a 3D vector) can be recovered at each vertex
of D from three normal components associated with three adjacent triangles. We denote the recovered vec-
tors by Fk, where k is the vertex number, k = 1, . . . ,4. Suppose that the kth vertex belongs to the faces with
indices i1, i2, i3. Then, the vector Fk can be recovered using the corresponding face-normal components
f i1 ; f i2 and f i3 . Let nik ¼ ðnikx ; niky ; nikz Þ be the unit outer normal to the ikth face. Then,
Fk ¼
ni1x ni1y ni1z
ni2x ni2y ni2z
ni3x ni3y ni3z

0
B@

1
CA

�1
f i1

f i2

f i3

0
B@

1
CA.
With the recovered vectors, the continuous inner product can be approximated as follows:
Z
D
K�1F �H dV � jV Dj

4

X4
k¼1

K�1
D Fk �Hk; ð4:1Þ
where jVDj is the volume of the tetrahedron D and KD is the value of the diffusion tensor at the center of
mass of D. This approximation is obviously exact for constant fluxes and constant tensors. The right-hand
side of formula (4.1) can be written as follows:
jV Dj
4

X4
k¼1

K�1
D Fk �Hk ¼ hMD

~f ;~hi; ð4:2Þ
where ~f ¼ ðf 1; f 2; f 3; f 4ÞT,~h ¼ ðh1; h2; h3; h4ÞT, MD is a 4 · 4 symmetric positive definite matrix and ÆÆ, Ææ is
the standard dot product on the Euclidean space R4.
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4.2. Derivation of the inner product over a polyhedron

According to the procedure described above the polyhedron e can be partitioned into t non-overlap-
ping tetrahedra, Dl, l = 1 . . . t. On each triangular face of this partition, we define a unit normal vector
in such a way that on the face belonging to oe the normal vector is outer. Moreover, we temporary
introduce additional unknowns, normal components of the flux associated with these normal vectors.
Let ~f

int
be the vector of auxiliary unknowns located on the internal faces (with respect to the polyhe-

dron boundary) and ~f
ext

be the vector of auxiliary unknowns located on the remaining triangular faces.
The dimension of vectors ~f

int
and ~f

ext
is denoted by ni and ne. Note that the current partitioning pro-

cedure gives ni = 3t/2 and ne = t.
Furthermore, let ~f l 2 R4 be the vector of normal components of the flux associated with the faces of a

tetrahedron Dl. In this section, we shall use the subscript l for the vectors associated with the tetrahedron Dl

and the superscript i for their components.
Let

~̂f ¼ ð~f ext
;~f

intÞ. Using the above notation, we write the inner product over the polyhedron e as sum of
the inner products over tetrahedra Dl:
hM̂~̂f ;~̂hi ¼
Xt

l¼1

hMDl
~f l;

~hli; ð4:3Þ
where MDl 2 R4�4 is defined in (4.2) and M̂ is a symmetric positive definite matrix obtained by the standard
assembling of matrices MDl ; l ¼ 1 . . . t. This statement follows from the fact that the matrices MDl are sym-
metric positive definite and the matrix M̂ is irreducible.

Our goal is to derive a discretization scheme using only one flux unknown per mesh face. Thus, we have
to eliminate the temporary unknowns in favor of the original unknowns f 1, f 2, . . . ,f s. The unknowns ~f

ext

can be eliminated by setting them equal to the corresponding unknowns associated with the polyhedron
faces. In other words, f i

l ¼ f k if the ith face of Dl is a part of to the kth face of e. In matrix form, this rela-
tion can be written as follows:
~f
ext

¼ Bext
~f ; ð4:4Þ
where Bext is a matrix whose non-zero entries are equal to 1.
The unknowns~f

int
can be eliminated by requiring that the divergence over each tetrahedron is equal to the

divergence over the polyhedron
DIVh
l
~f l ¼ DIVh~f ; l ¼ 1 . . . t. ð4:5Þ
The definition of the discrete divergence operator (3.2) results in the following system of linear equations:
1

jV Dl j
X4
i¼1

ailjAi
ljf i

l ¼
1

jV ej
Xs
k¼1

jAkjf k; l ¼ 1; . . . ; t; ð4:6Þ
where jAi
lj is area of the ith face of Dl, ail ¼ 1 if the normal defined on this face is the exterior normal for Dl

and ail ¼ �1 otherwise.
It is easy to show that this system of equations is linearly dependent. To make it linearly independent, we

exclude one of these equations and consider a system of t � 1 equations. Using (4.4), the reduced system
can be written as follows:
Bi
~f
int

¼ Be
~f ; ð4:7Þ
where Bi 2 Rðt�1Þ�ni and Be 2 Rðt�1Þ0�s. The compatibility of this system is analyzed in the following lemma:
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Lemma 4.1. The system (4.7) has a solution ~f
int

for any vector ~f .

The proof follows the proof of a similar result in [10]. In particular, it may be shown that the solution is
not unique. To guarantee uniqueness, we impose one additional constraint; namely that the vector ~f

int
is a

solution of the following minimization problem:
min
~f
int

1

2
hM̂~̂f ; ~̂f i subject to Bi

~f
int ¼ Be

~f . ð4:8Þ
The matrix M̂ can be represented in block form following the partition of vector
~̂f into vectors~f

int
and ~f

ext
:

M̂ ¼ M̂11 M̂12

M̂21 M̂22

 !
. ð4:9Þ
Since M̂ is the symmetric matrix and the terms not involving ~f
int

do not affect the minimizer of problem
(4.8), we get the following problem:
min
~f
int

1

2
M̂11

~f
int
;~f

int
D E

þ M̂12Bext
~f ;~f

int
D E� �

subject to Bi
~f
int

¼ Be
~f . ð4:10Þ
Lemma 4.2. The minimization problem (4.10) has the unique solution ~f
int

for any vector ~f :
~f
int

¼ Bint
~f ;
where
Bint � M̂
�1

11 �M̂12Bext þ Bi BiM̂
�1

11 B
T
i

h i�1

Be þ BiM̂
�1

11 M̂12Bext

h i� �
.

Proof. The constrained minimization problem can be written, using a Lagrange multiplier ~k, as follows:
M̂11 �BT
i

Bi 0

" #
~f
int

~k

" #
¼ �M̂12Bext

~f

Be
~f

" #
. ð4:11Þ
Solving the first set of equations for ~f
int
, we get
~f
int ¼ M̂

�1

11 ð�M̂12Bext
~f þ BT

i
~kÞ.
This result can be substituted into the second set of equations which can be solved for ~k to produce
~k ¼ BiM̂
�1

11 B
T
i

h i�1

Be þ BiM̂
�1

11 M̂12Bext

h i
~f .
Substituting this result into the formula for ~f
int
, we prove the assertion of the lemma. h

Using (4.4) and Lemma 4.2, we may rewrite the inner product (4.3) as follows:
hM~f ;~hi � M̂11 M̂12

M̂21 M̂22

 !
Bint

~f

Bext
~f

 !
;

Bint
~h

Bext
~h

 !* +
.

It is obvious that M is a symmetric positive definite matrix. Indeed, it is the restriction of the symmetric
positive definite matrix M̂ to the subspace of vectors ðBint

~h;Bext
~hÞT. Thus, it may be used to generate the

inner product on Xh. The explicit formula for matrix M is as follows:
M ¼ B̂
T

extM̂22Bext þ BT
intM̂11Bint þ BT

extM̂21Bint þ BT
intM̂12Bext.
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5. Solution algorithm

Let us collect the face-based flux unknowns and cell-centered pressure unknowns into two global vectors
~f A ¼ ð~f T

1 ;
~f
T

2 ; . . . ;
~f
T

NÞ
T
; and ~p0 ¼ ðp01; p02; . . . ; p0N Þ

T
;

respectively. Taking into account continuity conditions (3.7), we collect unique face-based pressure un-
knowns into a global vector ~pA. The size of this vector is equal to the number of mesh faces.

Then, the system of discrete equation (3.6), flux continuity conditions (3.7), and boundary conditions
(3.8) and (3.9) can be written in the matrix form:
A

~f A

~p0
~pA

0
B@

1
CA ¼

~gD
~Q0

~gR

0
B@

1
CA; ð5:1Þ
with the saddle point matrix
A ¼
M B C

BT �D 0

CT 0 �R

0
B@

1
CA;
where
M ¼
M1 0

. .
.

0 MN

0
BB@

1
CCA
is the block diagonal matrix with symmetric positive definite blocks on the diagonal, D is the diagonal po-
sitive definite or semi-definite matrix and R is the diagonal positive semi-definite matrix.

Lemma 5.1. Using O(N) arithmetical operations the system (5.1) can be transformed into the following

system:
S~pA ¼~hA; ð5:2Þ

where
S ¼ CTM�1C � CTM�1CBðBTM�1Bþ DÞ�1BTM�1C þ R
is the symmetric matrix and
~hA ¼ CTM�1~gD � CTM�1BðBTM�1Bþ DÞ�1ð~Q0 þ BTM�1~gDÞ �~gR.
Proof. It is pertinent to note that the primary variables ~f i and p0i , i = 1, . . .N are only connected within a
single polyhedron. So we can easily exclude the unknowns:
~f A ¼ M�1ð~gD � C~pA � B~p0Þ ð5:3Þ

and
~p0 ¼ ðBTM�1Bþ DÞ�1ð~gD � C~pA � B~p0Þ. ð5:4Þ

The structure of matrices M, B and D implies that matrix BTM�1B + D is diagonal and so it is easily

invertible. This implies optimal arithmetical complexity. The other assertions of the lemma follow by
substituting (5.3) and (5.4) in the last equation of system (5.1). h
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The matrix S is positive definite except the case of the Neumann boundary condition on oX when it is
positive semi-definite. Thus, we can apply a preconditioned conjugate gradient (PCG) method for solving
system (5.2). After that, the primary unknowns ~p0 and ~f A can be recovered locally, element-by-element.

The matrix A has a very useful representation, namely
A ¼
XN
i¼1

NiAiN
T
i ;
where
Ai ¼
Mi Bi Ci

BT
i �Di 0

CT
i 0 �Ri

0
B@

1
CA ð5:5Þ
is the local saddle point matrix for the polyhedron ei and Ni is the corresponding assembling matrix. To
show the important properties of matrices Mi, Bi and Ci and Di, we consider an internal polyhedron ei, i.e.,
ei \ oXh = ;. In this case Mi is a symmetric positive definite matrix,
Bi ¼ �jA1
i j;�jA2

i j; . . . ;�jAsi
i j

� �T
; Ci ¼ diag jA1

i j; jA2
i j; . . . ; jAsi

i j
� 	

and Di ¼ cijV ei j.
6. Numerical experiments

In this section, we present computational results which demonstrate accuracy of the mimetic discretiza-
tion, its flexibility, and efficiency of the solution method.

6.1. Implementation issues

To solve system (5.2) we apply the PCG method with the algebraic multigrid preconditioner discussed in
[18]. This method is applicable to arbitrary matrix stencils; however, its theoretical justification is limited to
M-matrices.

We investigate the convergence of pressure unknowns in the following norms:
ep1 ¼ max
16i6N

pexi � p0i


 

 and ep2 ¼

XN
i¼1

pexi � p0i
� �2jV ei j

" #1=2
;

where pexi is the exact pressure value at the center of mass of the polyhedron ei.
For the flux unknowns, we use two similar norms:
ef1 ¼ max
16i6N

k~f
ex

i �~f ik1 and ef2 ¼
XN
i¼1

hMið~f
ex

i �~f iÞ; ð~f
ex

i �~f iÞi
" #1=2

;

where the components of vector ~f
ex

i are normal components of the exact flux averaged over the faces of
polyhedron ei and i Æ i1 is the maximal norm in the Euclidean space. Note that ep2 and ef2 are mesh norms
equivalent to L2-norms in the corresponding continuous spaces.

6.2. Smooth meshes

In the first group of numerical tests, we investigate the accuracy of the mimetic discretization on smooth
meshes. As the example of a smooth mesh, we consider the mesh obtained by a smooth (C2-regular) mapping



484 K. Lipnikov et al. / Journal of Computational Physics 211 (2006) 473–491
of a uniform cubic mesh. Let us consider a uniform partition of the unit cube [0,1]3 and the following
mapping:
~x

~y

~z

0
B@

1
CA ¼

x

y

z

0
B@

1
CAþ 0.1

1

1

1

0
B@

1
CA sinð2pxÞ sinð2pyÞ sinð2pzÞ. ð6:1Þ
Since the Jacobian of this mapping is positive, the resulting smooth mesh, Xh, does not contain degen-
erate polyhedra. Note that most of the mesh faces are curved, so the convergence theory developed in [4]
can not be applied here. However, the deviation from flat faces is of order h2 which is typical for smooth
meshes. An example of Xh is presented in Fig. 3 where we show the internal mesh structure. We visualize the
polyhedra whose centers are inside domain (0,1)3n[0.25,1]3.

Now, we consider a diffusion problem of type (2.1), with a non-homogeneous Dirichlet boundary con-
dition on oX. Let c(x) ” 0, K(x) ” 1 and the exact solution be
pexðx; y; zÞ ¼ x2y3zþ 3x sinðyzÞ.

The convergence results are shown in Table 1 where h denotes the size of a cubic cell in the original uni-

form partition of the computational domain. We use a linear regression algorithm to estimate convergence
rates. The decrease in both errors e2p and e2f approaches the optimal rate which is 2. This is clear when look-
ing at the errors in rows corresponding to 1/h = 32 and 1/h = 64.

Now we change the setup of the previous experiment in order to analyze the influence of a full diffusion
tensor on the convergence rates. Let K be as follows:
Kðx; y; zÞ ¼
y2 þ z2 þ 1 xy xz

xy x2 þ z2 þ 1 yz

xz yz x2 þ y2 þ 1

0
B@

1
CA. ð6:2Þ
Fig. 3. An example of a smooth mesh.



Table 1
Discretization errors on smooth meshes for K = 1

1/h ep1 ep2 ef1 ef2

8 1.037e � 2 2.250e � 3 1.873e � 1 4.053e � 2
16 5.017e � 3 7.483e � 4 7.211e � 2 1.089e � 2
32 1.669e � 3 2.027e � 4 2.191e � 2 2.707e � 3
64 4.753e � 4 5.177e � 5 5.987e � 3 6.628e � 4

Rate 1.49 1.82 1.66 1.98

Table 2
Discretization errors on smooth meshes for the full tensor K

1/h ep1 ep2 ef1 ef2

8 2.059e � 2 4.359e � 3 8.974e � 1 1.011e � 1
16 5.552e � 3 1.129e � 3 3.008e � 1 2.826e � 2
32 1.402e � 3 2.875e � 4 8.572e � 2 7.278e � 3
64 3.514e � 4 7.229e � 5 2.999e � 2 1.821e � 3

Rate 1.96 1.97 1.65 1.93
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This tensor is symmetric and positive definite for arbitrary x. The exact solution and the meshes are as in
the previous experiment. The convergence results are presented in Table 2. Again, the decrease in both er-
rors ep2 and ef2 approaches the optimal rate. We observed in many other experiments that the full diffusion
tensor does not affect asymptotic convergence rates.

6.3. Randomly perturbed meshes

The next set of tests addresses the convergence of the mimetic discretization on randomly perturbed
meshes. Such a mesh is obtained by random distortion of positions of mesh points in a uniform cubic mesh.
The new positions are determined by the following formulas:
~x ¼ xþ nxh; ~y ¼ y þ nyh; ~z ¼ zþ nzh;
where nx,ny,nz are random numbers between �0.3 and 0.3 and h is the mesh step size. In other words each
mesh point is randomly moved in a cube of size 0.6h which is centered at the point and whose edges are
aligned with the coordinate axes. It is pertinent to note that in many publications related to convergence
of discrete methods on general meshes, the authors consider a sequence of meshes obtained by uniform
refinement of a coarse randomly perturbed mesh. In this case, the mimetic discretization results in optimal
convergence rates. Sequences of true randomly perturbed meshes are more general and more difficult for
convergence analysis.

Applying the distortion described above, we obtain polyhedra with strongly curved faces. To the best of
our knowledge, there is no locally conservative discretization method which uses one flux unknown per
mesh face, one pressure unknown per mesh element and converges on randomly perturbed meshes (see also
Table 3). Therefore, we propose to use more than one flux unknown per strongly curved face. We use our
definition of a curved face to replace it with a set of triangular facets. As shown in Fig. 4, a distorted cube is
transformed into a polyhedron with 24 planar triangular faces. Finally, approximating all curved faces, we
obtain a mesh like one shown in Fig. 5. The mimetic discretization described above will use one flux un-
known per each triangular face and one pressure unknown per each 24-face polyhedron. With respect to
the original hexahedral mesh, we shall refer to this discretization as the discretization with 4 flux unknowns
per mesh face.



Table 3
Discretization errors on randomly perturbed meshes using 1 flux unknown per curved face

1/h ep1 ep2 ef1 ef2

8 4.121e � 2 1.115e � 2 2.993e � 0 3.132e � 1
16 2.165e � 2 6.861e � 3 2.803e � 0 2.297e � 1
32 1.829e � 2 5.756e � 3 4.242e � 0 2.112e � 1
64 1.750e � 2 5.504e � 3 4.544e � 0 2.094e � 1

Fig. 4. Transformation of a cube to a polyhedron with 24 planar faces.

Fig. 5. An example of a randomly perturbed mesh.
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We consider the same diffusion problem as in the previous set of experiments. The computational results
are shown in Tables 3 and 4. For the case of 4 flux unknowns per mesh face, the convergence rates are close
to optimal. Note that there is no superconvergence results for the flux variable on randomly perturbed
meshes. With only one flux unknown per curved face, we lose convergence for both pressure and flux vari-
ables (see Table 3).



Table 4
Discretization errors on randomly perturbed meshes using 4 flux unknowns per curved face

1/h ep1 ep2 ef1 ef2

8 1.160e � 2 2.844e � 3 7.957e � 1 9.861e � 2
16 3.088e � 3 7.140e � 4 6.000e � 1 4.537e � 2
32 1.068e � 3 1.790e � 4 3.494e � 1 2.246e � 2

Rate 1.72 1.99 0.59 1.07
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6.4. Meshes with irregular-shaped polyhedra

In this subsection, we analyze convergence rate and robustness of the mimetic discretization on meshes
with irregular-shaped elements. Following the analysis in [10], we anticipate that in most practically impor-
tant cases, the irregular-shaped elements will not present computational problems.

Let us modify the uniform cubic partition of X = (0,1)3 with mesh step size h in such a way that irreg-
ular-shaped polyhedra appear. We assume that a mesh point with the logical coordinates (i, j,k) has the
physical coordinates (ih, jh,kh), i, j,k = 0, . . .1/h. Let us introduce a distortion parameter a 2 [0, 0.5] such
that the smaller values of a correspond to elements with less shape regularity. Then, for all odd i and k

and for any j the coordinates of point (ih, jh,kh) are changed to (ih � ah, jh,kh � (1 � a)h). The example
of such a modification is shown in Fig. 6.

As we can see in Fig. 6, the neighboring polyhedra have a common face with relatively small area. More-
over, the left polyhedron has two faces with 2D angle between them equal to p.

We consider the same diffusion problem as in the previous set of experiments. But now we investigate the
dependence of convergence rates on shape regularity of mesh elements. The computational results are pre-
sented in Table 5 where r is the ratio of the maximal face area to the minimal one. Thus, r = 1 means that
a hexahedron is transformed into a pentahedron.

The numerical results presented in Table 5 verify that decrease of shape regularity of mesh elements does
not affect convergence of the mimetic discretization.
Fig. 6. The mesh with irregular-shaped polyhedra (left) and two typical neighboring elements.



Table 5
Discretization errors on meshes with irregular-shaped polyhedra

1/h ep2 ef2

a = 0.1 a = 0.01 a = 0.0 a = 0.1 a = 0.01 a = 0.0
r = 700 r = 7000 r =1 r = 700 r = 7000 r =1

8 5.386e � 3 5.858e � 3 5.944e � 3 1.280e � 1 1.459e � 1 1.495e � 1
16 1.358e � 3 1.484e � 3 1.506e � 3 6.101e � 2 6.974e � 2 7.159e � 2
32 3.407e � 4 3.731e � 4 3.789e � 4 2.982e � 2 3.407e � 2 3.501e � 2
64 8.528e � 5 9.353e � 5 9.497e � 5 1.474e � 2 1.683e � 2 1.731e � 2

Rate 1.99 1.99 1.99 1.04 1.04 1.04
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6.5. Non-matching meshes

In the next group of numerical tests, we consider non-matching cubic meshes. Let X1 = (0,1)3,
X2 = (1,2) · (0,1)2 and X = X1 [ X2. We consider the same diffusion problem as in the previous experi-
ment, only now in the bigger domain.

Let X1, h and X2, h be uniform cubic meshes with mesh sizes h1 and h2, respectively. In order to obtain the
conformal partition of X, we introduce additional faces and edges on the non-matching interface. One
example of a conformal partition of X and the modified interface between subdomains X1 and X2 are shown
in Fig. 7.

In the case of non-matching meshes, the interface elements have many more faces then other mesh ele-
ments and their shape regularity may be very poor. For example, one of the interface polyhedra shown in
Fig. 7 has 14 face. However, it was shown in the previous subsection that the presence of degenerate ele-
ments does not affect the rate of convergence. The numerical results presented in Table 6 once again con-
firm this statement. The superconvergence rate of 1.5 for the flux variable is observed in other lower order
discretization methods, e.g., in the mortar finite element method with the lowest order Raviart–Thomas
elements [2].

6.6. Flow through a system containing an impermeable pipe

Let us consider the unit cube X = (0,1)3 and a pipe imbedded in it. We assume that the pipe profile in
any yz-plane is a circle with constant radius r. The circle centers form a curve /(t): {x = x(t),
Fig. 7. An example of non-matching meshes with h1 = 1/5 and h2 = 1/7.



Table 6
Discretization errors on non-matching meshes

1/h1 1/h2 ep1 ep2 ef1 ef2

7 5 1.126e � 3 1.604e � 4 4.61e � 2 3.5029e � 3
14 10 3.206e � 4 4.078e � 5 3.232e � 2 1.144e � 3
28 20 8.627e � 5 1.025e � 5 2.142e � 2 3.837e � 4

Rate 1.853 1.983 0.552 1.595
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y = y(t),z = z(t)} whose starting and ending points are in the planes x = 0 and x = 1, respectively. This
problem was selected to demonstrate capability of the mimetic discretization to produce qualitatively accu-
rate results. Since the problem does not have an analytical solution, it is extremely difficult to quantify accu-
racy of the result.

Let us consider a uniform cubic partition of X. We modify this partition in such a way that the faces of
the new partition, Xh, approximate the pipe surface. In order to do so, we use an algorithm for building
locally fitted meshes. Since the resulting mesh may have degenerate and non-convex elements, we use the
following simple algorithm: if the pipe surface intersects a cubic element and the center of mass of this ele-
ment is inside the pipe than the element vertices located outside the pipe are moved to the pipe surface.
Otherwise, if the center of mass is outside the pipe then the element vertices located inside the pipe are
moved to the pipe surface. The points are moved only in yz-planes. An example of a locally fitted mesh
is shown in Fig. 8.

Now, we consider the diffusion equation (2.1) with c(x) ” 0 and Q(x) ” 0. We impose the non-homoge-
neous Dirichlet boundary condition gD(x) = 1 on the plane x = 0, the homogeneous Dirichlet boundary
condition on the plane x = 1 and the homogeneous Neumann boundary condition on the remaining part
of oX.

The diffusion tensor K is uniform and isotropic everywhere in the computational domain (K = 1) except
in the pipe where it is set such that the component parallel to the local pipe orientation (ki) is equal to 0.1
and other two components perpendicular to the pipe orientation ðk1

? and k2
?Þ are equals to 0.001. Inside the

pipe, K is the full tensor depending on the space coordinate x. The vector ki coincides with the tangent vec-
tor t to the curve t ! /(t):
kk ¼ t ¼ /ðtÞ0.
Fig. 8. A cut of the original and locally fitted meshes by a yz-plane.



Fig. 9. The streamlines of the calculated flux function.
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Vectors k1
? and k2

? coincide with the normal vector n and the binormal vector b to the curve t ! /(t),
respectively:
k1
? ¼ n ¼ /ðtÞ00

j/ðtÞ0j
and k2

? ¼ b ¼ ½t � n�.
Then, the diffusion tensor inside the pipe is calculated by the following formula:
K ¼ T�
0.1 0 0

0 0.001 0

0 0 0.001

0
B@

1
CAT; T ¼

tx nx bx

ty ny by

tz nz bz

0
B@

1
CA.
Fig. 9 displays streamlines of the calculated flux function in the case where /(t) = {x = t,
y = 0.75 � 0.4t2, z = 0.3}. The locally adapted mesh has both non-convex and almost degenerate elements.
However, none of the streamlines intersects the pipe boundary.
Acknowledgments

The authors thank Dr. Rao Garimella (LANL) for his assistance in generating polyhedral meshes and
Prof. Yuri Kuznetsov (University of Houston) for many valuable comments.
References

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6 (2002) 405–432.
[2] T. Arbogast, L. Cowsar, M. Wheeler, I. Yotov, Mixed finite element methods on non-matching multiblock grids, SIAM J. Numer.

Anal. 37 (2000) 1295–1315.



K. Lipnikov et al. / Journal of Computational Physics 211 (2006) 473–491 491
[3] T. Austin, J. Morel, J. Moulton, M. Shashkov. Mimetic preconditioners for mixed discretizations of the diffusion equation.
Technical Report LA-UR-01-807, Los Alamos National Laboratory, 2004. Available from: www.ima.umn.edu/talks/workshops/
5-11-15.2004/moulton/moulton.pdf

[4] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral
meshes, SIAM J. Numer. Anal. (2005) (to appear).

[5] J. Campbell, M. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys. 172 (2001)
739–765.

[6] P. Grisvard, Elliptic Problems in Nonsmooth domains, Pitman, London, 1985.
[7] J. Hyman, J. Morel, M. Shashkov, S. Steinberg, Mimetic finite difference methods for diffusion equations, Comput. Geosci. 6 (3-4)

(2002) 333–352.
[8] J. Hyman, M. Shashkov, Mimetic discretizations for Maxwell�s equations and the equations of magnetic diffusion, Progr.

Electromagn. Res. 32 (2001) 89–121.
[9] J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic

materials, J. Comput. Phys. 132 (1997) 130–148.
[10] Y. Kuznetsov, K. Lipnikov, M. Shashkov, Mimetic finite difference method on polygonal meshes for diffusion-type problems,

Comput. Geosci. 8 (2004) 301–324.
[11] Y. Kuznetsov, S. Repin, New mixed finite element method on polygonal and polyhedral meshes, Russ. J. Numer. Anal. Math.

Model. 18 (3) (2003) 261–278.
[12] Y. Kuznetsov, S. Repin, Convergence analysis and error estimates for mixed finite element method on distorted meshes, J. Numer.

Math. 13 (1) (2005) 33–51.
[13] K. Lipnikov, J. Morel, M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal

meshes, J. Comput. Phys. 199 (2004).
[14] L. Margolin, M. Shashkov, P. Smolarkiewicz, A discrete operator calculus for finite difference approximations, Comput. Meth.

Appl. Mech. Eng. 187 (2000) 365–383.
[15] I. Mishev, Nonconforming finite volume methods, Comput. Geosci. 6 (2002) 253–268.
[16] J. Morel, R. Roberts, M. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r-z meshes, J.

Comput. Phys. 144 (1998) 17–51.
[17] P. Raviart, J.-M. Thomas, A mixed finite element method for second order eliptic problems, in: I. Galligani, E. Magenes (Eds.),

Mathematical Aspects of the Finite Element Method, Berlin, Heidelberg, New York, pp. 292–315, 1977.
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