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We derive a cell-centered 2-D diffusion differencing scheme for arbitrary quadri-
lateral meshes in-zgeometry using a local support-operators method. Our method
is said to be local because it yields a sparse matrix representation for the diffusion
equation, whereas the traditional support-operators method yields a dense matrix
representation. The diffusion discretization scheme that we have developed offers
several advantages relative to existing schemes. Most importantly, it offers second-
order accuracy even on meshes that are not smooth, rigorously treats material discon-
tinuities, and has a symmetric positive-definite coefficient matrix. The only disad-
vantage of the method is that it has both cell-center and face-center scalar unknowns
as opposed to just cell-center scalar unknowns. Computational examples are given
which demonstrate the accuracy and cost of the new scheme relative to existing
schemes. (© 1998 Academic Press

1. INTRODUCTION

The diffusion equation that we seek to solve can be expressed in the general form

0 o o
E—V-DW)—Q, 1)

wheret denotes the time variabl¢ denotes a scalar function that we refer to as the intens
D denotes a scalar diffusion coefficient, aQ@ddenotes a source or driving function. Th
boundary conditions for Eq. (1) can be of the Dirichlet, Neumann, or Robin (mixed) ty
It is sometimes useful to express Eq. (1) in terms of a vector funcBothat we refer to
as the flux,

F=_-DVe¢. 2)
We have taken the terms “intensity” and “flux” from the radiative transfer literature |
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18 MOREL, ROBERTS, AND SHASHKOV

but we have not explicitly considered the radiative diffusion equation because the sub
of this paper relates to essentially any type of diffusion problem.

We define a cell-centered diffusion discretization scheme as one that numerically
presses the integral of Eq. (1) over each spatial cell. In particular, substituting from Eq.
into Eq. (1) and integrating that equation over a cell volume, we obtain

/a—(pd\“rj’{ ﬁ.ﬁdA:/de, (3)
V8t Vv \%

whereV denotes the cell volumé) denotes the cell surface, andienotes the outward-
directed unit surface normal. Note that we used the divergence theorem to convert the se
integral in Eq. (3) from a volume integral to a surface integral. In physical terms, Eq.
generally represents a statement of particle or energy conservation over the cell. Thu
can simply state that cell-centered schemes are conservative over each mesh cell.

If one considers only non-orthogonal meshes with material discontinuities, existi
vertex-centered diffusion discretizations are generally more advanced than cell-cent
discretizations. This is primarily so because of the enormous success of Galerkin fir
element methods [2] and variants of those methods. Nonetheless, there are applicatior
which cell-centered schemes appear to yield superior accuracy relative to vertex-cent
schemes. For instance, when coupling diffusion calculations with cell-centered hydro
namics calculations, a cell-centered diffusion scheme is highly desirable because it av
the excessive numerical dissipation which can occur with vertex-centered diffusion sche
[3]. Our new scheme was developed with coupled radiation-diffusion/hydrodynamics
plications in mind.

The following could be said of an ideal cell-centered diffusion scheme for 2-D quad
lateral meshes:

(1) Itgives second-order accuracy on both smooth and non-smooth meshes either
or without material discontinuities.

(2) It has only cell-center intensity unknowns.

(3) It has alocal stencil.

(4) It has a symmetric positive-definite matrix representation for the diffusion equ
tion, i.e., a positive-definite “diffusion matrix.”

A local stencil is loosely defined to have coupling only between points that are spatic
“close” in some sense. Cell-centered schemes such as those of Kershaw [4] and Per
satisfy properties (2) through (4), but do not satisfy item (1). The scheme of Morel, Den
Hall, and White [6] satisfies properties (1) and (3), but does not satisfy properties (2) and
In particular, it has face-center intensity unknowns in addition to cell-center intensity L
knowns, and it has an asymmetric diffusion matrix. The scheme of Van Beek, Van Nooy
and Wesseling [7] satisfies properties (2) and (3), but not (1) and (4). In particular, it is n
convergent whenever the transverse component of the flux is discontinuous across a r
rial interface. In addition, its diffusion matrix is asymmetric. Aavatsmark, Barkve, Bge, a
Mannseth [8] have introduced two diffusion discretizations that they refer to as the U-mett
and the O-method. The U-method satisfies properties (2) and (3), but it has an asymm
diffusion matrix. The O-method also satisfies properties (2) and (3), and it appears to y
a symmetric diffusion matrix in practice. However, it has not been proven that it will alwa
yield a symmetric diffusion matrix. Neither the U-method nor the O-method was actua
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shown to converge with material discontinuities. The support-operators scheme of Shas
and Steinberg [9] (derived only ix-y geometry) satisfies properties (1), (2), and (4), bt
does not satisfy property (3). Their scheme has a dense diffusion matrix, which arises
a dense gradient matrix multiplied by a local divergence matrix. This difficulty can be «
cumvented for time-dependent calculations by transforming the dense equations into a
form in which the unknowns are the normal components of the flux located at face cen
For steady-state calculations, Shashkov and Steinberg recommend that the dense int
based system be solved using a conjugate-gradient approach. This would initially af
to require the multiplication of a vector and a dense matrix during each conjugate-grac
iteration. However, Shashkov and Steinberg show that this dense matrix-vector multiply
be effectively performed by solving a sparse diagonally dominant SPD matrix system.
suggests a nested conjugate-gradient solution process: an outer conjugate gradient
solves the dense intensity-based system, and an inner conjugate-gradient process
the sparse system associated with the dense matrix-vector multiply required for each
conjugate-gradient iteration. Although this approach would probably be much more
cient than actually performing a dense matrix-vector multiply, it could nonetheless be g
expensive relative to simply solving a sparse SPD matrix representation for the diffu:
equation.

The purpose of this paper is to use the support-operators approach [9] to derive a
centered diffusion discretization scheme for arbitrary quadrilateral meshegj@ometry.
As previously indicated, the traditional cell-centered support-operators methodology
by Shashkov and Steinberg [9] leads to a dense diffusion matrix on non-orthogonal g
Here we introduce a new variant of the cell-centered support-operators methodology w
always leads to a local diffusion stencil at the expense of additional face-center intensity
knowns. Hence we refer to this new variant as a “local” support-operators method. We s
that the local cell-center/face-center system that we obtain is equivalent to the dense
center system obtained with the traditional support-operators methodology in the sens
both systems yield the same cell-center intensity solution. Thus our new diffusion sch
represents a generalizationrta geometry of thex-Y geometry scheme of Shashkov anc
Steinberg [9]. Interestingly, our new scheme is very similar to the scheme of Morel, Der
Hall, and White (MDHW) [6]. In particular the two schemes have the same unknowns,
same cell-center stencil, and nearly the same face-center stencil (7-point for the MD
scheme, versus 9-point for the new scheme.) Of course, the significant difference bet
the schemes is that our new scheme has a symmetric positive-definite diffusion m
whereas the MDHW scheme has an asymmetric diffusion matrix. The similarity betw
these schemes suggests that the MDHW multigrid solution technique [6] could be
to construct a multigrid preconditioner for our scheme. Indeed, we have developed st
preconditioner and it is later shown that it performs quite well.

In summary, our new diffusion discretization scheme has the following properties:

e It gives second-order accuracy on both smooth and non-smooth meshes either
or without material discontinuities.

e It has both cell-center and face-center intensity unknowns.

e It has alocal stencil.

o It has a symmetric positive-definite matrix representation for the diffusion opera

Note that it satisfies ideal properties (1), (3), and (4), but not (2). We know of no fini
difference cell-centered scheme that satisfies all four ideal properties. We believe tha
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new scheme has the best combination of ideal properties of any previous finite-differe
scheme.

Although basis functions do not appear in our formalism, the support-operators metl
might be related to mixed finite-element methods [10]. For instance, mixed finite-elem
schemes preserve the integral of Eqg. (1) over each spatial cell and have primary inter
unknowns at the cell centers. Unfortunately, the matrix associated with the pure cell-ce
systemis generally indefinite and thus difficult to solve. As long as continuity of the intens
and the normal flux component need only exist at the center of each cell face rather 1
at vertices, this difficulty can be circumvented by eliminating continuity as a trial-spa
requirement and imposing it via Lagrange multipliers. These multipliers can be showr
be equivalent to face-center intensity unknowns. This results in an SPD system of equat
for both the cell-center and cell-edge intensity unknowns. The similarity of this formulati
to our local support-operators formulation in terms of cell-wise integration and the locati
of the intensity unknowns is striking and suggests the possibility of a deeper connect
This question should be investigated in the future. Arbogtat.[11] and Caiet al. [12]
have very recently developed mixed finite-element methods that appear to be some
similar to our support-operators method.

The remainder of this paper is organized as follows. We next explain the central the
of the support-operators method, describe our local methodology, and apply it to the sin
case of a rectangular meshritrz geometry. This is followed by a derivation of our method
for general quadrilateral meshesrirz geometry. Our multigrid-preconditioned solution
technique for logically rectangular meshes is then described. Finally, computational res
are given, followed by conclusions and recommendations for future work.

2. THE SUPPORT-OPERATORS METHOD

In this section we describe the support-operators method. It is convenient at this p
to define a modified gradient operator given JejD%. The diffusion operator of interest
is given by the product of the divergence operator and the modified gradient opera
—V - DV. The support-operators method is based upon the following three facts:

e Given appropriately defined scalar and vector inner products, the divergence
modified gradient operators are adjoint to one another.

e The adjoint of an operator varies with the definition of its associated inner produc
but is unique for fixed inner products.

e The product of an operator and its adjoint is a self-adjoint positive-definite operat

The mathematical details relating to these facts are given in [9]. Our support-operal
method can be described in the simplest terms as follows:

(1) Define discrete scalar and vector inner products that approximate the analytic ir
products on a single arbitrary cell.

(2) Define the discrete version of the divergence operator on a single arbitrary cel

(3) Use the adjoint property to define the discrete version of the modified gradie
operator on a single arbitrary cell.

(4) Obtain the global matrices by connecting adjacent mesh cells in such a way a
ensure that the adjoint relationship is maintained over the whole grid. This simply amou
to enforcing continuity of intensity and flux at the cell interfaces.
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FIG. 1. Global coordinate and mesh indexing. The global indexing for mesh,gels illustrated. Vertices
are marked by circles and carry half-integer indices. Face centers are marked by squares and carry both
and half-integer indices. Cell centers are marked by a triangle and carry integer indices. The fundamental
coordinates lie at the vertices. If the mesh is orthogonaly theordinates need carry only the indieand the
z-coordinates need carry only the indgxbut if the mesh is non-orthogonal, both indices are required for ea
coordinate pair.

(5) Combine the divergence matrix and the modified gradient matrix to obtain
diffusion matrix.

To make this process concrete, we generate the diffusion matrix for a rectangular me
r-z geometry. Our first step is to define the discrete unknowns. The global coordinate
mesh indexing is illustrated in Fig. 1. The local mesh indexing (local to each cell) is shc
in Fig. 2. Each mesh cell is assumed to be homogeneous, but material properties may
between cells. As shown in Fig. 3, the intensities (scalars) are defined to exist at bott
center(¢<;), and face-cente(g, . ¢, 4. ¢';). Note that the use of local indices implies
that a quantity is uniquely associated with a single cell. Thus, for instance, one shoulc
necessarily assume thﬁ;‘fJ Plia j-As shown in Fig. 4, the vectors are defined in terms «
surface-normal components located at the midpoints of the cell fa§8s.f2, f5, fT;.).

For mstance)c denotes the dot product Bfwith the outward-directed unit surface norma
located atthe Center oftheright face of ¢ell. The other surface-normal vector component
are defined analogously. Since it takes two comgonents to deflne a full vector, the full ve

-

are considered to be located at the cellcorr(ﬁf;sJ , F,,J JFiisFij ) As shown in Fig. 5,
each corner vector has surface-components located on the two faces that share that «
e.g.,

Fio = (fR, £2). (4)

The other corner vectors are defined analogously.
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FIG. 2. Local mesh indexing. Corners are denoted by TR (top-right), RB (right-bottom), BL (bottom-left
and LT (left-top). Faces are denoted by R (right), B (bottom), L (left), and T (top). Note that local indexing c
accommodate multiple unknowns at the same location. For instance, the intensity on the right fade pheeld
not necessarily be equal to the intensity on the left face oficell, j.

As explained in [9], the adjoint relationship between the modified gradient and diverge!
operators is embodied in the integral identity

f ¢|3|-ﬁdA—/ D*lﬁ-D%dvz/dﬁ.ﬁdv, (5)
MY \% \%

where ¢ is an arbitrary scalar functiorH is an arbitrary vector functiony denotes a
volume,dV denotes its surface, arddenotes the outward-directed unit normal associate
with that surface. The vectdd has the same mesh locations as the flux veEtobut is

¢T
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¢L? ° ® "
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FIG. 3. Locations of intensity unknowns. The intensity unknowns are located at cell centers and face cent
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FIG. 4. Locations of vector component unknowns. One vector component is located at each face cente
represents the dot product of the flux vector with the outward-directed face normal vector.

not necessarily equal to DV¢. We stress that the functiap at this point represents an
arbitrary scalar function, and not necessarily the solution of the diffusion equation. The |
step in our support-operators method is to discretize Eq. (5) over a single arbitrary cell
special manner. Specifically, we explicitly discretize all but the modified gradient opera
which is expressed in an implicit form consistent with our choice of discrete unknowns.
assume indices of j for the arbitrary cell, but suppress these indices whenever possibl
the discrete approximation to Eq. (5) that follows. We first discretize the surface integr

j'{ oH -fidA~ ¢RhRAR 4 ¢BhBAB 4 gth AL + ¢ThT AT, (6)
oV

where AR denotes the face area associated with the right face of the cell

AR = 2nri 1Az (7)
L |
Torir Tr
Tonr @

FIG. 5. Effective locations of complete flux vectors. Full flux vectors are considered to be located at
corners and are composed of the components on the two faces associated with each corner. This is illustre
the top-right corner vector, which is composed of the top-face and right-face flux components.
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(the remaining face areas are defined analogously), and where
Az=27;,1 -7 1. (8)
Next we approximate the modified gradient volumetric integral,

RB) ] ﬁBL

/—D*1I:|~D5¢dV%(D*lI:|RB-IE VRE L (D-1H"". FPhyveL
\

IELT TR)

+ O T ETHVET 4 (0 TR ETHVTR  (9)
where E denotes—DV¢, and VRB denotes the volumetric weight associated with the

right-bottom corner,

1
VREB — 21ArAzzyrri+%, (10)

Ar =ri1-r

1.
=3

11

In analogy with Eqg. (10), the volumetric weight associated with each corner consists
one-fourth the Cartesian cell volume multiplied by fimes the value of the radius at that
corner. These corner weights do not represent “true” volumes in any sense, but they do
to the total cell volume,

VRB L VBL L VT 4 VIR=V =7 (r2, — 12 1) Az =271 Ar Az, (12)
2

where
1
I zé(ri_%+ri+%). (13)

We choose these weights simply because they give us better properties than other |
straightforward choices. The choice of weights is one of several free parameters in
support-operators method.

Finally, we approximate the divergence volumetric integral,

/W-Hdv=¢C[hRAR+hBAB+hLAL+hTAT]- (14)
\

Equations (6), (9), and (14) are certainly not unique, but they are fairly straightforwa
For instance, Eq. (6) represents a face-centered second-order approximation to a su
integral. Equation (9) represents a corner-based volumetric integral consisting of a
product contribution from each pair of corner vectors. Equation (14) is a particularly simj
second-order approximation which gives all of the weight to the cell-center vajuebile
using a surface-integral formulation f8r- H that is analogous to the surface-integral usec
in Eq. (6).

Note that Egs. (6), (9), and (14) define the discrete inner products discussed in [9]. T
discretizing the fundamental integral identity expressed by Eqg. (5) defines the discrete ir
products associated with the adjoint relationship. We can now use this relationship to s
for the modified gradient operator components by substituting from Eqgs. (6), (9), and (
into Eg. (5) and requiring that the resulting discretized identity holdfatiscreteH andg
values. More specifically, we obtain an equation for the modified gradient component ¢
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given face by setting the componenﬁ@b?fon that face to unity while setting the component
on all other faces to zero. For instance, settifig=1, h® =0, h- =0, h" =0, we obtain
an equation forf R, which when solved yields

2D
fR= —E(¢R—¢C>. (15)

Equation (15) represents a standard expressiorf fothat is exact wher is linearly
dependent upon. Similar expressions are obtained for the other face components. Sul
tuting these expressions into the discrete volume-integrated divergence operator defir
Eq. (14) yields the discrete diffusion operator for a single cell,

/ _V.DV¢dV ~ —@[@R — ) AR — (¢© — ph) AL
v Ar
2D+ Cy\ AT c By AB
—E[@ —¢)A — (¢~ —¢°)A"]. (16)

Combining expression (16) with standard point spatial discretizations for the time deriva
and the source, we obtain the spatially discrete diffusion equation,

8 C 2D R C R C L L
Vﬁd’ _E[(d) — ¢ )A" — (¢~ —pT)AT]
2D
— E[(qﬂ — ¢S AT — (¢© — ¢B)AP] = Q°V. 17

Equation (17) represents the equation for cell centers. To obtain the equations fo
face-center intensities, we “connect” the cells in such a way that our discrete versio
Eqg. (5) holds over the entire mesh. It is not difficult to see that this requirement will
met if the surface integral in Eq. (5) is made to cancel between cells, resulting in a sur
integral over the outer mesh boundary. This can be achieved by making the surface-nc
fluxes and the intensities continuous across cell interfaces. For instance, considerin
right face of celli, j, we require that

by = P (18)
and that
5 =—fle) (19)

Note that a— occurs within Eq. (19) because the surface normals associatedfi\ﬁith
and filll,j are opposite in sign. Enforcing continuity of the intensities leaves us with ¢
intensity unknown at each face. Thus we can now uniquely refer to a face-center intel
in terms of its face-center index, i.e., the intensity at the right face of cgland the left
face of celli 4 1, j can now be uniquely referenced @és.1,2 ;. In addition, we can now
neglect the superscri@ for the cell-center intensities. The continuity-of-flux equation &
each cell face serves as the equation for the intensity at that face. However, to maintain
symmetry of the matrix and positive diagonal elements, we re-express Eqg. (19) as

f R

A S = AL fihy =0, (20)
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where
Ai+%,j = Ai?j = AiL+1,j- (21)
Evaluating Eq. (20) in terms of the intensities, we obtain the equatiog fay j,
Ai+1,i2Di ] Ai+1,i2Dit
T@M%,j —¢ij) _ﬁ((ﬁi-ﬂ,j ~di11;) =0. (22)

The continuity-of-flux equation at an interface on the outer boundary of the grid is ana
gous to Eq. (20). However, there is only one real cell adjacent to the interface rather t
two. The normal flux component associated with cell “outside” of the grid is given by ¢
expression derived from the analytic boundary conditions. For instance, let us cons
Eq. (20) evaluated at an interface on the right boundary of the mesh,

AL B = AL fh =0, (23)

where | denotes the maximum index of Cell | +1, j does not exist, so we use the
standard extrapolated boundary condition (standard in the radiation and neutron diffu:
literature [1]) to obtain an expression féf, , ;. This condition takes the following form at
the boundary,

¢ +deVe - Ti = de, (24)

whered, denotes the extrapolation distanggdenotes the extrapolated intensity value, anc
il denotes the outward-directed unit normal vector. Note from Eqg. (24) that this extrapola
condition is equivalent to a Robin or mixed condition. Recognizing Ith‘atb - plays the
role of fIL+1,j' we use Eq. (24) to obtain the desired expression for the “outside” flL
component,

D. .
f|L+l.j = dil:(‘f’e_‘ﬁw%,i)- (25)
Using Egs. (15), (23), and (25), we obtain the equatiorfar, ;,
2Dy DI
I+1.j A—ZII’J(¢|+§,1—¢|,J')— dle] (¢e_¢|+%,j) =0 (26)

A typical value ford, is 2D. This yields the Marshak boundary condition [1]. Note from
Eq. (24) that ifde = 0, one obtains the Dirichlet boundary condition with the boundar
intensity given byge. Furthermore, in the limit ade — oo, one obtains the Neumann
condition.

Note from Eqg. (22) that the continuity-of-flux equation for cell faces interior to the mes
relates the face-center intensity to the two adjacent cell-center intensities. Similarly r
from Eq. (26) that the continuity-of-flux equation for faces on the outer boundary relates
face-center intensity to the only adjacent cell-center intensity and the extrapolated boun
intensity. Using these relationships to eliminate the face intensities from Eq. (16) result
the standard 5-point cell-center diffusion scheme. For instance, the following expressic
obtained for the normal flux component on the right face oficell

(Piv1j — i)

ij = ~Diti Afy.: (27)
2
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where

ATj Aliq1 1 -1
P i el 28
hal {( Di - Dit1 ) Ari+Ariz ) (&

and

1
Al 1= é(Ari + Ariq1). (29)

2
Note that Eq. (27) contains only cell-center intensities. Further note that the definitior
the face-center diffusion coefficient arises directly from the process of eliminating the fe
center intensities. Thus we see that the method defines the face-center diffusion coeff
in terms of a specific averaging of the adjacent cell-center diffusion coefficients. In the
of a uniform mesh, this averaging reduces to the expected harmonic averaging. It is
known that the standard 5-point diffusion operator is symmetric positive-definite and
many other desirable properties.

3. THE QUADRILATERAL SCHEME

In this section we derive our new quadrilateral diffusion discretization scheme. -
procedure is analogous to that for the orthogonal-mesh case. Note thatiffiecoordinates
carry full two-dimensional indices rather than the one-dimensional indices associated
an orthogonal mesh. A coordinate pair is assigned to each vertex in the mesh.

We again formulate a discrete approximation to Eq. (5). For the case of a general qu
lateral, the general form of the discrete surface integral is identical to Eq. (6). However
expression for the face areas are slightly more complex than those of the orthogonal
For instance,

: (30)

roa1: 14+r, 1.1
R _ +3.1-3 +30ts )\ ||Ip 2
A= 277( 5 >||ri+%$j+% —Mitdj-4
where
r={(,2), (31)

and where the symbd| - || denotes the Euclidian vector norm. The other cell areas ¢
defined in analogy with Eq. (30).

For the case of a general quadrilateral, the general form of the discrete modified gra
volumetric integral is identical to Eq. (9). However, there are two important difference:s
the definitions of certain quantities. First, since vectors are expressed in terms of no
surface components and the mesh is generally non-orthogonal, the dot product of two ve
cannot be taken in the standard way. For instance, in the orthogonal case, we can defi
dot product in terms of the following inner product

=(H LF H=h"TfT +hRfR (32)

However, to take the dot product in the general non-orthogonal case, one must mul
either H or F by a particular SPD matrix, denoted I8 before performing the inner
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(i+172, j+1/2)

(i-172, j+1/2)

(i+172, j-172)

FIG. 6. S-matrix angle. The angle appearing in tBenatrix for the top-right corner is illustrated.

product,

) IETR: (STRHTR, IE'TR) _ <|_—|>TR, STRIETR)

=sIRhT 1T +sTRNT R+ sERARFT 4 sTRARER (33)

-TR
H

TheS-matrixis completely defined by the angle formed by the sides of the corner asssoci:
with the two vector components. This angle is depicted in Fig. 6 for the top-right corner.
particular,

TR_ 1 1 cog®TR) (34)
"~ SiP(OTR) | cog@®@TR) 1

Note that this matrix is invariant to the ordering of the surface-normal vector componer

The S-matrix is derived in Appendix A.

The second significant difference between the rectangular and quadrilateral cases &
in the volumetric weights assigned to each corner. In the orthogonal case, each ca
weight is defined to be one-quarter of the cell area multipliedsbties the radius at that
cell corner. For the quadrilateral case, we define each corner weight as one-quarter o
area defined by the parallelogram associated with that corner multiplied tiyn2s the
radius at that corner. The parallelogram associated with the top-right corner is illustrate
Fig. 7. The parallelograms associated with the other corners are analogously defined. ¢
these weights for the quadrilateral case do not necessarily sum to the total cell volume
normalize them to ensure that they do so. For instance, the unnormalized volumetric we
for the top-right corner is given by

ivzges) s (s jos =P jyg)2ernig . (39)
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TR

/ BL

FIG. 7. Corner parallelogram. The parallelogram associated with the top-right corner of a quadrilateral c
lays that quadrilateral.

wheref denotes a right-handed 90-degree rotation of the véctorr, z):
f=(z —r). (36)

The remaining volumetric weights are defined in analogy with Eq. (35). The normali:
volumetric weight for the top-right corner is given by

VTR — TRy (VTR 4 JRB L \7BL L LTy, (37)

whereV denotes the true volume of céllj,

NE|

(oo =Fiogio) (iegiog =T o)l (g oy Fricgiog Friogiey):

(38)

Note that all of the corner weights are multiplied by the normalization factor appearin
Eq. (37).

It would seem that more straightforward corner weights could be chosen that wc
not require renormalization. However, we found the choice of corner weights critica
obtaining certain important properties. In particular, we found no other choice of weig
that gave us both second-order accuracy on non-smooth meshes and spherically sym
solutions on spherically symmetniez meshes.

It is important to note that the expression given for the unnormalized corner weigh
Eqg. (35) gives a negative weight when the corner an@lR!, is greater thanr. In this
case, the cell is re-entrant and the corner volume is in fact negative. Negative weight:
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result in a diffusion matrix that is not positive-definite. To avoid this difficulty, we simpl
substitute the absolute value of the corner volume for the true corner volume in Eq. (3¢

~ 1

VIR = 2l Ficg s = Tiegio) - (regios = Papged) 270y g (39)
This procedure plays the role of the “parallelogram fixup” used in the MDHW scheme [{
but it is much simpler and just as effective.

For the case of a general quadrilateral, the general form of the discrete divergence v
metric integral is identical to that of Eq. (14). However, as previously noted for Eq. (6), t
definition of the areas is given by Eq. (30) rather than Eq. (7).

To obtain expressions for the surface-normal components of the discrete gradient oper
we now proceed exactly as in the rectangular-mesh case. In particular, we first subst
from Egs. (6), (9), and (14) (using the quadrilateral-mesh definitions for the compone
of these equations) into Eq. (5). Then we obtain an equation for the modified gradi
component on each face by successively setting the compon&tomf a given face to
unity while setting the components on all other faces to zero. In the rectangular-m
case, fourindependenequations for the flux components are obtained. However, in tt
quadrilateral-mesh case, we obtain feaoupledlinear equations for the flux components
that can be symbolically represented as

Maf — Mpp =0, (40)

where
f=(fR £B, fL fT), (41)
¢ =" 9% 0" 07,9, (42)

and whereM, is a 4 x 4 matrix andM,, is a 4 x 5 matrix. To obtain expressions for the
flux components in terms of the intensities, one need simply ioverand apply it taMy,

f=ré, (43)

whereF = M3 M,. BecauseM, is nearly full, we choose to invert it numerically. Un-
fortunately, this means that we cannot give explicit expressions for the flux component
the quadrilateral-mesh case. Nonetheless, a useful constructive expresgiaa fiven in
Eq. (71) in Appendix B.

It can be shown thaM, is non-singular as long as the quadrilateral is not degenerat
i.e., as long as it does not have coincident vertices or corner angles equal to 180 deg
Nonetheless, solutions can be obtained for degenerate cases simply by taking approy
limits. For instance, equations for triangles are easily obtained. A triangle is viewed a
quadrilateral with one face of zero area. The unknowns associated with such a degen
face completely decouple from the other unknowns, allowing one to arbitrarily define t
degenerate unknowns while leaving the other unknowns unaffected.

The conditions for connecting cells are identical to those of the orthogonal case: ¢
tinuity of intensity and flux across cell interfaces. Continuity of the intensity leads to
unigue intensity at each cell face. The equation for each face-center intensity expre
the continuity of flux. For the quadrilateral case, the flux-continuity equation has the sa
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FIG. 8. Stencil for the cell-center intensity at mesh locationj§.

general from as Eq. (20), but the area elements are given by Eg. (30) rather than Eg
and the modified gradient components are given by Eq. (43) rather than Eq. (15). Sinc
extrapolated boundary condition given in Eq. (24) is analytic, it can be applied to qua
laterals as well as rectangles to obtain the normal flux component on a boundary face
instance, Eg. (25) is valid on both rectangles and quadrilaterals. The point discretiza
for the time derivative and source terms used in Eq. (17) are also used in the quadril
case. This completes the specification of our quadrilateral-mesh scheme.

As previously demonstrated, the face-center intensities on a rectangular mesh c:
eliminated via the continuity-of-flux equations to obtain a 5-point cell-center diffusi
scheme. Unfortunately, in the quadrilateral case this process yields a cell-center diffu
scheme that has a full coefficient matrix. This is saenecell-center scheme that one would
obtain by applying the standard support-operators method of Shashkov and Steinbel
in conjunction with our definitions for the discrete inner products.

Our quadrilateral scheme vyields a 5-point stencil for the cell-center equations ar
9-point stencil for the face-center equations. The stencil for the cell-center intensity at n
location {, j)isillustratedin Fig. 8. The stencil for the face-center intensity at mesh locati
i, j + 1 isillustrated in Fig. 9.

Although we do not consider tensor diffusion in this paper, the local support-opera
formalism which we have described readily admits such diffusion as long as the diffu:
tensor is SPD. In particular, the discretizations for Eq. (5), given in Egs. (6), (9), and (.
remain valid with an SPD tensor diffusion coefficient. In the quadrilateral case, one n
simply ensure thaD and D~ are transformed from the standard Cartesian basis to 1
appropriate surface-normal basis.

4. SOLUTION OF THE EQUATIONS

We use a multigrid-preconditioned conjugate-gradient [13] method to solve our disc
diffusion equation. The preconditioner is based upon an approximate 5-point cell-ce
diffusion operator. As previously discussed, our cell-center/face-center system of equa
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FIG. 9. Stencil for the face-center intensity at mesh location ¢ %).

can be reduced to a 5-point cell-center system when the mesh is orthogonal by eliming
the face-center intensities. This is possible whenever the c&neaitrices are diagonal.
However, they are rigorously diagonal only when the mesh is orthogonal. We obtain our
proximate cell-center system simply by first setting the off-diagonal elements of the cor
S-matrices to zero, and then eliminating the face-center unknowns. In the preconditi
ing step, we do not fully solve this approximate system, but rather perform a set num
of V-cycles using Dendy’s black-box multigrid algorithm [14]. When the mesh is orthoc
onal, the “approximate” system is actually exact, but as the mesh becomes increasi
skewed, it becomes less accurate. Nonetheless, as shown in the next section, this m
performs extremely well on moderately skewed meshes and fairly well on highly skew
meshes.

Itis useful to consider certain details which arise when deriving and solving our appro
mate cell-center operator. Let us assume that our full cell-center/face-center equation:
expressed in terms of the matrix equation

Mé¢ =g, (44)

where M is the coefficient matrix$ is the solution vector, andlis the source vector. The
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preconditioning step in the conjugate-gradient method consists of solving a matrix equi
of the form [13]

—

M3$ =5, (45)

where M denotes the approximation to1 (called the preconditioner) ani_ﬁ denotes a
residual. The matrix appearing in Eq. (45) consists of the full cell-center/face-center sys
modified with the diagonal approximation for the coriematrices. As can be seen from
Eq. (20), the face-center (continuity of flux) equations associated with our scheme norn
do not contain sources. However, the face-center equations associated with Eq. (45
have sources arising from the residual vector. Thus when the 5-point cell-center pre
cﬂioning system is derived from Eg. (45) by eliminating the face-center component:
3¢, one must include the face-center residual components in the elimination process.
'ﬂermore, after the V-cycles have been carried out to obtain the cell-center componer
8¢, one must use these components together with the face-center equations to calculz
face-center components @

5. COMPUTATIONAL RESULTS

In this section we present computational results which demonstrate the accuracy o
method and the efficiency of our solution technique. The method of Morel, Dendy, H
and White (MDHW) was computationally compared with several existing cell-centel
Lagrangian-mesh diffusion differencing schemes in [6]. The accuracy of this method
clearly superior to that of the other schemes, but it was also significantly more expen:
Our scheme has the same unknowns as the MDHW scheme, the same cell-center s
and nearly the same face-center stencil (our scheme has a 9-point face-center stencil
the MDHW scheme has a 7-point face-center stencil). Nonetheless, our method is
expensive than the MDHW scheme because we use conjugate-gradient iterations |
than fine-mesh line relaxations to solve our equations. The cost of solving the MDI
equations is dominated by the cost of performing such relaxations. We are able to us
conjugate-gradient solution technique because our coefficient matrix is SPD. The MD
equations cannot be solved with the conjugate-gradient technique because the MI
scheme has an asymmetric coefficient matrix.

We have performed many of the calculations that appear in [6], but we have also perfor
several calculations relating to the convergence of our scheme on spherical meshes
first set of calculations that we performed relate to the accuracy of our scheme on hi
skewed mesh. We consider the Kershaw-mesh problem given in [6]. A 1@ Kershaw
mesh is shown in Fig. 10. The following equation was solved,

19 9] [ 0 ]

forr € [0, 1], z € [0, 1]. The problem has reflective boundaries alorg0 andr =1, a
Marshak vacuum boundary alozg= 1, and a unit extrapolated Marshak boundary cond
tion alongz=0. The solution to this problem is a linear functionof6]. Although the
MDHW scheme yields the exact solution to this problem, our scheme does not. We \
unable to define inner product weights that would enable our method to yield exact lir
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FIG. 10. The 10x 10 Kershaw mesh.

homogeneous solutions while maintaining all the other desirable properties of our sche
Nonetheless, one would expect our scheme to converge to the exact solution as the me
refined. The intensity contours for the ¥QLO mesh using our support-operators method ar
shown in Fig. 11. The exact contours are constant lout the support-operators contours
are not constant. Rather they show some mesh distortion. However, the same calculatior
repeated with a 4& 48 mesh. This mesh is shown in Fig. 12. The corresponding intensi
contours are shown in Fig. 13. The contours appear to be constaritliis demonstrates
the convergence of our method on highly shewed meshes.

The second set of calculations addresses the accuracy of our method on highly distc
meshes with re-entrant cells. We solve the same basic problem for the second set of
culations that was solved for the first set of calculations. A single calculation is performr
on the 32x 32 Shestakov mesh referred to in [6]. This mesh is shown in Fig. 14. It
clearly both highly skewed and highly distorted. It contains several cells that are re-entr
and thus have negative corner volumes. For such cases, we substitute the absolute
of the negative weight, and then renormalize all four of the cell weights so that they s
to the correct volume. This is the analogue of the “parallelogram fixup” defined for tl
MDHW scheme. However, the support-operators “fixup” is much simpler, just as effecti
and does not have to be implemented as often as the MDHW fixup. The intensity contc
are shown in Fig. 15. These contours are nearly constantTihis represents a very good
result considering the fact that some of the cells are re-entrant.

: 0
0 0.5 1

r

FIG. 11. Intensity contours for the 18 10 Kershaw mesh. The exact contours are constant in
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FIG. 12. The 48x 48 Kershaw mesh.
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FIG. 13. Intensity contours for the 48 48 Kershaw mesh. The exact contours are constant in
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FIG. 14. The 32x 32 Shestakov mesh.
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FIG. 15. Intensity contours for the 32 32 Shestakov mesh. The exact contours are constant in

The third set of calculations addresses the convergence of our method on grids tha
mildly distorted. Cylindrical random grids were used for similar purposes in [6]. We ha
used spherical random grids to demonstrate that our method converges on meshes cont:
triangles as well as quadrilaterals. These random grids were generated by moving each |
vertex to a random position on a circle centered about the original vertex position. The rac
of each circle was roughly one-fifth of the cell width. The 2-2equivalent of the following
1-D equation was solved,

—%%{RZDS—:};} =a+bR, (47)
for Re [0, 1], whereR denotes the spherical radius, i< +/r 2+ z2, D denotes a region-
dependent diffusion coefficient, amd= b = 1. The problem domain consists of a two-
region sphere illustrated in Fig. 16. The inner region is definedbyR0< 0.5, and the outer
region is defined by 8 < R < 1.0. The diffusion coefficient is 1 in the inner region and 2
in the outer region. There are reflective boundary conditions atoeag0 andr = 0, and
a Marshak vacuum boundary condition aloRg= 1. The analytic solution to this prob-
lemis

¢_a1+1+1+b2+1+3 aR? bR 49)
1=\ 3" 24D, " 8D, 5 320D, 64D, 6D; 20D;’

FIG. 16. Spherical test problem domain.
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FIG.17. The 10x 10 random spherical mesh. Note that the interface between material regions is not disto

1 1 2 1 arR> bR}
"’Fa(é*e—oz)*b(%*m)‘e—oz‘m’ (49)

whereg, and¢, respectively denote intensity solutions in the inner and outer regions,
D; and D, similarly denote the diffusion coefficients in the inner and outer regions.

Calculations were performed using our scheme on several randomly distorted grids
instance, a 16 10 spherical random grid is shown in Fig. 17 and ax220 spherical
random grid is shown in Fig. 18. The relatilzg error norm is plotted in Fig. 19 for each
calculation as a function of radial cell width. This relative norm consists of the stand
L, norm of the cell-center intensity errors divided by thenorm of the exact cell-center
intensity solution. The error dependence expected with second-order convergence is
plotted in Fig. 19. The computed errors clearly agree with the expected errors, indice
that our scheme is second-order accurate on these randomly distorted spherical mesh
contain both a material discontinuity and triangular cells.

The fourth set of calculations is primarily intended to address the accuracy of our sch
relative to the MDHW scheme as a function of the mesh distortion. We performed calc
tions for a problem defined in [6]. The following equation was solved,

_}i{r[)i_‘ﬂ —E{Da—‘q =q7Z, (50)

0z

FIG.18. The 20x 20 random spherical mesh. Note that the interface between material regions is not disto
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FIG. 19. Error versus radial cell width.

forr €0, 1], z€ 0, 1], whereq is a constant. There are reflective boundary condition
alongr =0 andr =1, and Marshak vacuum boundaries alarg0 andz= 1. The diffu-
sion coefficient has a value of unity throughout the problem. The analytic solution to tl
problem is

¢ =a+bz+c, (51)
where
]
= 135|110, ©
=t (54)

We have computed the solution to this problem using our support-operators scheme an
MDHW scheme on a 48 48 orthogonal mesh, a 4848 random mesh, a 4848 Kershaw
mesh, and a 32 32 Sheshtakov mesh. The relatlvgerrors for these calculations are given
in Table 1. The support-operators and MDHW methods give the same error on the orthog
mesh because they are identical on such meshes. They give comparable errors on all
other meshes. This is similar to the results obtained by Steinberg and Shashkov w
comparing their support-operators method with the MDHW methodyngeometry [9].
We also used the fourth set of calculations to compare the iterative convergence

of our multigrid-preconditioned conjugate-gradient solution technique with the MDH\

TABLE 1
Comparison of Support-Operators and MDHW Accuracy

Mesh SO error MDHW error
48 x 48 orthogonal &2 x 10°° 472 x 10°°
48 x 48 random B1x 10° 438 x 10°°
48 x 48 Kershaw 23x 10 219x 10*

32 x 32 Shestakov 88 x 1074 7.50 x 10
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TABLE 2
Iterative Convergence Comparison of Support-Operators
and MDHW Schemes

Mesh SO iterations MDHW iterations
48 x 48 orthogonal 3 6
48 x 48 random 11 8
48 x 48 Kershaw 59 84
32 x 32 Shestakov 94 50

multigrid solution technique. The iterations required to converge the support-opera
and multigrid solution techniques are given in Table 2. The solutions were conside
converged when the, norm of the residual vector divided by thhe norm of the source
vector was less than 1. It can be seen from Table 2 that mixed results were obtaine
In two cases the support-operators scheme took fewer iterations and in two other
the MDHW scheme took fewer iterations. Neither scheme ever took more than twice
iterations required by the other. A direct timing comparison between these two mett
is difficult because the support-operators and MDHW calculations had to be perfort
on different computers (a SUN workstation and a CRAY-YMP, respectively.) Nonethele
we can make some rough quantitative statements about the relative costs of thes
schemes based upon the following information. The fraction of the total solution time sy
in conjugate gradient iterations was roughly 0.33 for the support-operators method, an
fraction of the total solution time spent in line relaxation iterations was roughly 0.83
the MDHW method. The support-operators and MDHW solution techniques significar
differ only in that the support-operators scheme uses a conjugate-gradient iteration in |
of the line relaxations used in the MDHW scheme. The multigrid component of these
methods is essentially identical. Given this fact, it follows from these time fractions t
a line relaxation iteration is roughly an order of magnitude more costly than a conjug
gradient iteration. Furthermore, it follows that the support-operators method shoulc
roughly 4 times faster per iteration than the MDHW method on the same computer. S
the MDHW scheme never takes less than half the iterations taken by the support-opet
method, it follows that the support-operators method should never be less than 2 times
than the MDHW scheme on the same computer. It is not our purpose to make a det
quantitative comparison of the efficiency of these schemes for a large class of probl
Rather we simply seek to demonstrate that our support-operators scheme can be expe
be significantly faster than the MDHW scheme for problems similar to those modeled in
calculations.

It is important to note from Table 2 that the iterative convergence rates for both
support-operators method and the MDHW method degrade as the mesh becomes in
ingly distorted. This is not surprising since both methods use an approximate 5-point
center diffusion operator to improve the convergence rate, and these operators are t
inaccurate on distorted meshes. This degradation of our preconditioner is perhaps the
significant deficiency of our solution technique. There is clearly much room for impro
ment in the preconditioner.

In closing this section, we consider the cost of our support-operators scheme rel;
to a cell-center diffusion scheme. Since our scheme has both cell-center and face-c
unknowns, it is clear that it must be significantly more expensive than a pure cell-ce
scheme. In general, one should compare two discretization schemes in terms of accura



40 MOREL, ROBERTS, AND SHASHKOV

unit computational cost. However, such a comparison is somewhat ill-posed for the cas
are considering because, to our knowledge, all cell-center finite-difference schemes
sparse diffusion matrices are non-convergent for certain classes of realistic problem:
well-behaved but non-smooth meshes. Thus for certain problems, the desired accuracy
only be attainable with our method.

Let us consider a 9-point cell-center diffusion scheme that is being solved using the c
jugate gradient technique in conjunction with multigrid preconditioning. Since our schel
has as 9-point stencil for the face-center equations and a 5-point stencil for the cell-ce
equations, the average bandwidth of our scheme is a little less than 8. The cost of a me
vector multiplication is roughly proportional to the length of the vector times the matr
bandwidth, and the cost of a dot product is proportional to the vector length. The wi
associated with a conjugate-gradient iteration (neglecting the preconditioning compon
is dominated by matrix-vector multiplication and dot products. Thus if we neglect the mul
grid preconditioning step, the cost per conjugate-gradient iteration of our support-opera
method should be no more than about 3 times that of a 9-point cell-center scheme. The rr
grid preconditioning step would be fairly similar for both schemes except that our sche
would require the additional step of solving for the face-center unknowns in the prece
ditioning equation once the cell-center unknowns have been obtained from the multic
V-cycle.

6. SUMMARY AND FUTURE WORK

We have developed a new “local” version of the support-operators method and app
it to the discretization of the diffusion operator on quadrilateral meshes. This local sche
yields a sparse banded diffusion matrix in contrast to the standard support-operators
roach of Shashkov and Steinberg [9], which yields a dense diffusion matrix. However,
local approach requires face-center intensity unknowns in addition to the cell-center
tensity unknowns, and thus is more costly than pure cell-center schemes. The additi
cost is roughly a factor of 3 in both memory and CPU time per iteration. This is clearly
significant increase in cost, but our support-operators scheme yields a sparse banded
metric positive-definite diffusion matrix, and converges with second-order accuracy e
on grids that are not smooth and contain material discontinuities. We are unaware of
cell-center finite-difference scheme that has these properties. In addition, our scheme
serves energy over each spatial cell, yields spherically symmetric solutions on spheric
symmetricr -z grids, and is sufficiently robust to provide a conservative solution even
meshes that contain re-entrant cells, e.g., boomerang and bowtie cells [6]. The only
striction on the re-entrant cells is that they must have a positive total volume. We beli
that this highly desirable set of properties more than justifies the additional cost of ¢
scheme.

In the future we intend to investigate the solution of the system which results frc
eliminating the cell-center intensity unknowns in our equations. This could reduce the C
time associated with our scheme by a third. We also intend to investigate new approxin
diffusion discretizations for preconditioning our support-operators equations. Our int
is to find a preconditioner that suffers less degradation as the mesh becomes increas
distorted. An obvious candidate would be a 9-point cell-center discretization. Finally, 1
intend to investigate the generalization of our quadrilateral-mesh method to 3-D hexahe
meshes.
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APPENDIX A

Inthis appendix we derive the mati®thatis defined in Eq. (34). We begin by considerin
the top-right corner of the quadrilateral shown in Fig. 6. The flux vector associated with
corner is expressed in terms of its components with respect to the top-face and right
normals:

F=(F- A", F-AR=(fT, fR). (55)

Note that the superscripf™R’ for the vectorF has been suppressed in Eq. (55) for simr
plicity. Itis trivial to relate the standardandz components oF to the normal components.
In particular,

GF = F, (56)
where
'nT r]T
G=| " %1, 57
F fr], (58)
_fz
[T
F = fR], (59)

and where a subscriptdenotes an-component and a subscriptienotes a-component.
The vectorf is said to be in the-z basis, while the vectdr is said to be in the face-normal
basis. Invertings in Eq. (56), we get

F=G'F. (60)
By definition, the dot product of any twoz basis vectorsE andH, is given by
F-H=fh + fh, (61)
It follows from Egs. (60) and (61) that
F-H=G'F.GH, (62)

whereH is the face-normal counterpart . Using the inner product defined in Eq. (32),
we can re-express Eg. (62) as

F-H=(F[GY'GH)
= ([G'G™*F, H), (63)

where a superscript™ denotes the matrix transpose. Comparing Egs. (33) and (63), i
evident that

STR — [Gfl]IGfl. (64)
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Equation (34) can be obtained from Eqgs. (57) and (64) after tedious but straightforw
algebraic manipulations.

APPENDIX B

In this appendix we demonstrate that the coefficient matrix which arises from our ©
cretization method is Symmetric Positive Definite (SPD). For simplicity, we ignore tt
contributions from the time-derivative term in Eq. (1). If standard temporal differencir
(e.g., fully implicit or Crank—Nicholson) is used, this term will not affect the positive
definite character of the matrix because it contributes only to the diagonal elements.

Before we begin the demonstration we need to prove that the null space of a sun
matrices having Cholesky decompositions is the intersection of the null spaces of the i
vidual matrices. For each value of the integglet M denote a matrix that has a Cholesky
decomposition, and lett denote the sum over atlof these matrices,

M= M.
c

= LcL, (65)

whereL. is a real lower triangular matrix with non-negative diagonals. The inner produ
of M with a vectorx is then

XMx = th/\/lcx,
C
= Zx‘ﬁcﬁcx,
C

= Z yéyc’
C
> 0. (66)

The only way the equality can be satisfied is if each term in the sum is itself equal to ze
and therefore eacl is the zero vector. This implies thais in the null space of everyi,
since

Mcx = KCELX,
= £cyc,
—o0. (67)

In addition Eq. (66) demonstrates that is Symmetric Positive Semidefinite (SPS). If the
intersection of the null spaces are the empty set then the inequality in Eq. (66) beco
strictly greater, and\t is SPD.

Our demonstration proceeds as follows. First we consider the matrix equation fo
single-cell mesh with Neumann boundary conditions, and show that it has a Chole
decomposition. Next we show that the matrix for a multi-cell mesh with reflective conditio
on the outer boundary faces can be constructed from single-cell matrices, and use this fe
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determine the null space of the multi-cell matrix. Any well-posed steady-state problem n
include at least one outer boundary face with a Dirichlet or extrapolated boundary cond
(see Eg. (24)). Without loss of generality, we consider only the extrapolated condition.
next show that the multi-cell matrix becomes SPD when the Neumann condition at or
more boundary faces is replaced with an extrapolated boundary condition. In particulal
show that the extrapolated boundary condition reduces the null space of the matrix t
empty set.

Before proceeding, there are several natural assumptions that must be made abo
mesh. The first is that the corner weights defined by Eq. (37) are positive. The set
assumption is that all of the face areas defined by Eq. (30) are positive. All of these ass
tions are valid if the quadrilaterals are non-degenerate. Our diffusion matrix is also ¢
with certain types of degenerate cells, e.g., triangles, but we do not consider such cells

We begin the demonstration by constructing the matrix equation for a single-cell m
with Neumann conditions. This requires the definition and construction of several c
stituent matrices. For instance, consider the matrix formed by the weighted sum of
S-matrices defined in Eq. (34):

SZVTRSTR+VRBSRB+VBLSBL+VTLSLT. (68)

Under the assumptions previously descrikgd; a real 4x 4 SPD matrix, as is its inverse,
S~1. These matrices operate on the space of real 4-vectors representing the surface-r
flux componentsf = (fR, fB, fL, £T). Nextwe define two matrices that are constructe
from the face areas,

- AR
AB 4x1
./4 == A|_ € R x ) (69)
| AT
TAR 0 0 0
0 AB 0 O 4x4
W=l ‘o a o|eR™ (70)
L O 0 0 AT

These matrices can be used to define the fundamental matrishich expresses the flux
componments in terms of the intensities,
f = F¢,

= [F1, Fl¢,

= DS -, Alg, (71)
whered = (¢R, ¢B, -, ¢7, ¢©). Note thatZ is a 4x 5 real matrix expressed in block
form. The first block operates off the face-center intensities and the second block ope
on the cell-center intensity.

The equation for the cell-center intensity corresponds to a statement of energy cons
tion over the cell,

f;vﬁ-ﬁdAz/\/QdV. (72)
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In discrete form, this equation is
ARFR L. ATFT = QCv, (73)
whereV denotes the cell volume. This equation can be expressed as
ALF$ = QOv. (74)
The equations for the face-center intensities arise from the Neumann boundary cond
at each face of the cell. In particular, each surface-normal flux component must be zerc
achieve symmetry, we express this requirement as follows for the right-face intensity:

—ARfR = (75)

The equations for the other face-center intensities are analogous. The equations for ¢
the face-center intensities can be expressed as

~WFé =0, (76)
where0 is a 4-vector.

Using Egs. (74) and (76), we can construct the matrix equation for the intensities o
single-cell mesh with Neumann boundary conditions:

—W]—'] - [ ws=tw —WS‘lA} 5 — { 0 ] (77

Msf = [ Aar [P=P _asw asia Qv

We now begin a demonstration that the mattits has a Cholesky decomposition.
Because the matri€~! is SPD, it can be expressed as

St =rsLk, (78)

whereLs has positive diagonal elements [15]. Furthermore, one can readily verify that

Ms = LmL,, (79)
where
[wes 0
ca=[ s 9 o)

SinceW has positive diagonal elements, the proddt s is lower-triangular with positive

diagonal elements. Thereforg,, is lower-triangular with 4 positive diagonal elements

and 1 zero diagonal element. This demonstratesthighas a Cholesky decomposition.
We now determine the null space &5 by finding all solutions(B, v) to the equation

wff]-[2
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These solutions form the null space 6s. Straightforward algebraic manipulation of
Eq. (81) reveals that

-1
null(Ms) = span{ [Wl A] } , (82)
1
=span{ | : e R¥™L (83)
1

Equivalently, any vector will satisfy Eq. (81) if it has the form

-

b=a(1,1,11, 1), (84)

wherex is any real number.

To determine that the matrix resulting from a multi-cell mesh with reflective bound:
conditions is SPS, we first define a single-cell matrix for each cell in a multi-cell mesh, :
denote each one hy1s . wherec is the cell index. We next assume that there are a tof
of N intensity unknowns on the multi-cell mesh, and re-express each mietigixas a full
N x N matrix. We denote this matrix b1y c,

Mse € RS - My e RNN, (85)

To establish the null-space #ft y ¢, we first defineB. as the set of indices for the intensities
contained in celt:

B: = {all i such that My ¢)ii # 0}. (86)
Recalling the null space o¥1s , it follows that

Null(Mn,¢) = spari(é1, ¢2, ..., dn)}, (87)

whereg; = 1ifi € B¢, and¢; is otherwise arbitrary. This null space has a dimension
N —4

We now demonstrate the effect of summing the single-cell matrices from two adja
cells. Consider two adjacent cells with indexdsandc2. Without loss of generality, we
assume that these cells are oriented such that the right face ot éeklso the left face of
cell c2. Let us next consider the intensity at the interface between the two cells, which
denote bypeco. It is important to recognize that onyty 1 and My ¢ have an equation
for this intensity. The equation f@fy 2 given by My ¢ is

~ALfd =0, (88)
while the equation fopcyc, given by My 2 is
—Apfs =0 (89)

Note that when these equations are added together, the correct continuity-of-flux equ
for ¢c11c2 (See Eq. (20)) is obtained:

_Ach chf - AI(:_2 ch2 =0. (90)
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Therefore, the sum over allof My ¢ yields the diffusion matrix for our support-operators
scheme with Neumann conditions on the outer boundary faces. We denote this matrix

M = ZMN,o (91)

This matrix is SPS, since the sum of matrices with Cholesky decompositions is guarant
to be SPS. The null space of a sum of matrices with Cholesky decompositions is
intersection of the cell matrix null spaces,

null(M') = () null(M ). (92)

Since the union of all of th8; is the set from 1 td\,

UBC={1,2,...,N}, (93)

the null space of\’ contains all vectors with the same value in all of its columns:

1
null(M’) = spar{ | * e RN<L, (94)
1

Now we assume that there is at least one aglthat has a face with an extrapolated
boundary condition. At least one such face must exist to ensure that a unique solution tc
steady-state version of Eq. (1) exists. Without loss of generality, we assume that this
is the rightmost face. The extrapolated boundary conditions for this face can be expre:
in the form

AR DR — 1F) = Afafol. (95)

Although it might not be obvious, this form is equivalent to that expressed in Eq. (24). F
instance, the Marshak boundary condition is obtainedtit= 0.5.

This face equation will contribute an additional term to the sum in Eq. (91). This yiel
the final support-operators diffusion matrix that we seek: the matrix for a multi-cell me
with an extrapolated boundary condition at one face, and Neumann boundary conditior
all of the other faces. We denote this matrix.by,

M = ZMN’C + M;a (96)
Cc

where the matrix\M/, contains only one non-zero elemeAffAR, which is located on the
diagonal corresponding to the intensity on the extrapolated boundary face:

0 0 O
M, =10 ARR 0|eRMN, (97)
0o 0 O

The matrix, M/, with only one non-zero element that is positive and located on tf
diagonal, obviously has a Cholesky decomposition. Its null space contains all vectors \
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a zero in the location corresponding to the intensity on the extrapolated boundary face
obvious that this null space is disjoint from the intersection of the null spaces of the matr
forming the sum in Eq. (91), and therefore

null(M) = (1) null(My,e) () nullM)), (98)
=9, (99)

the empty set. Using the theorem proved at the beginning of this Appendix, we have del
strated thajM is SPD.
APPENDIX C

In this appendix we demonstrate that our new solution method preserves the sphe
symmetry of a solution on a spherically symmetric mesh. A spherically symmetticesh
is illustrated in Fig. 20. The mesh coordinates are labeled with #xés in thed direction
and thej axis in theR direction, where

R=r2+ 2. (100)

In order to demonstrate that this scheme perserves a spherically symmetric solutio
will show that the new scheme admits a solution with cell-center intensities independe
thei coordinate, i.e.,

o) =05 (101)

and that these symmetric intensities lead to fluXgs, independent af, having only radial

FIG. 20. The spherically symmetric mesh.
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components, i.e.,

B B

T T
fiy =1,
fl. =o. (102)

To establish the above relations we must first show that the factor used to scale
volumetric weights in Eq. (37) is independent of

W = Vi
i = 3 ~ ~ ~1T
IR+ VTP + VG + VT

=W, (104)

(103)

The unnormalized volumetric weights for the corners are related to the parallelepif
volumes,V, by

\7i-,rjR = aniJr%,jJr%ViTjR’ (105)
ViRE = 27Tri+%,j7%Vifsz9 (106)
VSt =2V (207)
Vi =2 (108)

Due to the regularity of this mesh the parallelpiped volumes are simply related,

Vi =Vt = Vs (109)
VRE=VE =V, (110)
where
Ri-4
j+1
and the expression for the volumetric weight scaling factor, Eq. (103), is
2 2
"6 R, +R, ’
I=3 I+3

where Eq. (38) was substituted fdr;.

There are two sets of equations that we will examine. The first set is used to find
expression forfiTj from celli, j and its top neighbor, cell j + 1. This expression will be
found to be independent ofor a spherically symmetric problem. The second set is used 1
find an expression fofiﬁ- from celli, j anditsright neighbor, cell ¢-1, j). This expression
will be found to be zero for a spherically symmetric problem. Due to current continuity v

will not need to examinéi?j ,hor fi}j . These expressions will be derived referring to Fig. 20
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To derive an expression fd{Tj , we use the" equation for cell, j and thep® equation
for celli, j + 1:

LT TR
] T L i T RY _ T T C
sinza(fi’j + cosafly) + sinza(fi’j +cosafl) = —DA! (¢, —¢7) (113)
ViS5 V5t
Silnjz ) (qujH + cosy fi',"j 1) + Silnjz_y (fi?jJrl + COSVfiﬁ'H)

=- DAil?i+1(¢iE,31'+1 - ¢Ei+1)~ (114)

The sirf o and sirf y terms arise from the form of th&1-matrix (see Eq. (34)).
We now rely on the continuity between neighbor cells, i.e.,

¢| J+1 ¢| B (115)
f%=—"f7. (116)

and geometric relations between the two cells,
siny = sing, independent of, (117)

to eliminate the face-center unknowm,J , from the equations. In doing so we assume th:
the intensities and volume scaling factors depend only,@nd thatf- = fR =0

Wi + W, 1 _
JsinzozHlvl+l fiy = =5 Dl AT 5| (#721 — #7), (118)

with
||Ar]+ H - ||r,+2 i+3 Fi7%,j+% ’, independent of. (119)

We have used Egs. (21), (30), (104), (105)—(108), and (109) to arrive at Eq. (118). Itis
that f;; depends only on:

T =7, (120)

Now that we have shown that the first set of equations, with the assumption of ra
fluxes, yields spherically symmetric fluxes, we will demonstrate that spherically symme
fluxes yield radial fluxes for the second set of equations.

To derive an expression fdﬁ- we use the R equation for cell, j and thep' equation
for celli + 1, j, respectively,

TR RB
L (1R al (R £8) = —DAR (oR —¢C), (121
Sinzoz( +cosafl}) + 3|n2ﬁ( + cospf’) AT (of —¢5). (121)
VL-E. VBL
Sllr-jl_z J (f||-_k1] +COSaf|+1l) + szﬂ (fll-_klj +Cosﬂfi-8kl,j)

DA|L+1 j (¢iL+1,j - ¢ic+1qj ) . (122)
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We now rely on the continuity between neighbor cells, i.e.,

Phaj =B (123)

and geometric relations between the two cells,

sinB = sina, independent off, (125)
VIS = ViR, (126)
VgL = V% (127)

to eliminate f;, ; and the face-center unknowns?, and ¢\, ;, from Egs. (121) and
(122). In doing so we assume that the intensit@%, volume scaling factorsjV ;, and
radial fluxes,fi,Tj and fi?j , depend only orj (independent off). Equations (121) and (122)
become

2
= ViR + Vi8] 15 = DA (¢51; — 4) (128)
= —DAY (67 — ¢°). (129)
=0 (130)

Since the factor in front of % is non-zero, we must conclude that
fR =0, (131)

which implies that a spherically symmetric initial solution results in a radial flux.

We have succeeded in demonstrating that the new method, on a spherically symm
r-z mesh, preserves a spherical solution that consists of fluxes with only non-zero ra
components.
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