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Abstract

We designed a new volume-conservative interface reconstruction method.
An input data set for the interface reconstruction algorithm consists of volumes
and centroids of the cell fractions occupied by different materials. Compared
to pure volume fractions, traditionally used by volume-of-fluid (VoF) methods,
this choice of the input data allows to define a linear interface approximation
per mixed cell (i.e. offers Piecewise-Linear Interface Calculation or Construc-
tion (PLIC)) even without exchanging information between neighboring elements.
The location of linear interface in each mixed cell is chosen to preserve the vol-
umes and provide the best approximation to the centroids of the cell fractions.
The technique proposed yields a second order accurate approximation to inter-
faces given by simple C2 curves and is shown to be more accurate than known
VoF-PLIC methods.

1 Introduction
There is a variety of discrete interface models developed for Eulerian simulations
of a multi-phase fluid flow:

• Level sets methods [19, 18, 13, 20, 7] work with implicit representation of the
interface as a zero level set of a discrete signed distance function defined for
each pair of adjacent fluid phases.
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• Interface tracking methods use supplementary Lagrangian surface grid that
marks the interface between different phases.

• The strategy behind interface reconstruction methods is to calculate the in-
terface location at each discrete moment of time from the solution data.
Two major groups of interface reconstruction methods should be mentioned
here: volume-of-fluid (VoF) [4] methods, which construct the interface from
the volumes of the cell fractions occupied by different fluid phases, and La-
grangian particle methods [22, 7, 9], which separate the clouds of test parti-
cles of different origin.

Either approach has its virtues and drawbacks. The resolution of level set and
VoF methods is limited by the resolution of the grid, while interface tracking and
particle methods do not have this limitation. Pure particle methods are time con-
suming and are mostly used in combination with some other major techniques.
Interface tracking is inexpensive and straightforward until it comes to interface
topology modification, which is a challenging task for tracking algorithms. Level
set and interface reconstruction methods, on the contrary, naturally adopt topo-
logical changes of the interface.

Among all the techniques above, VoF is the only one that preserves the mass
of each component. For a wide range of applications the importance of mass
conservation on a discrete level outbalances all the disadvantages associated with
VoF methods.

The basic object of VoF methods is a two-phase medium. Volume fractions
of two components sharing a mixed cell are not independent but complement
each other to 1. Essentially only the volume fractions a of single phase, further
referred to as a reference one, explicitly participate in the interface reconstruction.

The most common interface representation used by VoF methods consists of a
single linear interface per mixed cell (so called Piecewise-Linear Interface Calcu-
lation or Construction - PLIC). The location of linear interface for a given volume
of the reference fraction is uniquely identified by direction of the interface out-
ward (with respect to the reference component) normal. There exists a number
of ways to define the normal:

• by estimating the gradient of the discrete volume fraction function [23, 24, 2];
• by finding a common linear interface for a cluster of surrounding cells that

gives the best approximation to the given volume fractions [14];
• by averaging the normals of linear interfaces that satisfy volume fractions

of adjacent mixed cells [6, 8, 21].
Direct methods based on estimation of the volume fraction function gradient
(Youngs [23, 24], Green-Gauss, and Least Square Gradient (LSG) algorithms [2])
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Figure 1. Interface approximations obtained with different PLIC algorithms.
MoF method is able to reproduce the original shape exactly.

are known to be first order accurate. The iterative techniques, like Least square Vol-
ume Interface Reconstruction Algorithm (LVIRA) [14] and Mosso-Swartz method
[21], are able to approximate C2 interfaces with second order accuracy. In ei-
ther case evaluation of the interface outward normal from the volume fractions
requires data from the surrounding cells. This inherent feature of VoF methods
prohibits the resulting approximation to resolve any interface details smaller than
a characteristic size of the cell cluster involved in evaluation of the normal (see
Figure 1 on how the quality of LSG, LVIRA, or Swartz interface reconstruction
depends on the scale of details in original shape).

In order to overcome this limitation of VoF methods we propose to enrich
input data set with centroids of the cell fractions. The amount of information carried
by the volumes and centroids or, equivalently, by the first two moments of the
cell fractions is sufficient to define mass-conservative PLIC approximation even
without exchanging data between the cells. The location of linear interface in each
mixed cell is chosen to preserve the volumes and provide the best approximation to the
centroids of the cell fractions. We call this strategy moment-of-fluid (MoF) interface
reconstruction.

With no data from adjacent cells participating in evaluation of the interface,
the method is able to resolve interface details as small as the cell itself, i.e. two
to three times smaller than conventional VoF-PLIC methods (see Figure 1). No
data exchange also means that the grid structure is irrelevant for MoF interface re-
construction. Second order accurate approximation provided by MoF algorithm
guarantees that, once the original interface in a mixed cell is linear, it will be
reconstructed exactly (Figure 1, MoF).

Compared to alternative approaches, which exploit purely geometrical prin-
ciples, centroid data involvement has a clear mechanical reason. Each instance of
inexact interface reconstruction introduces some redistribution of the fluid inside
a mixed cell. This fluid motion is unrelated to any physical force presented in
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a discrete model. Any displacement ∆x of the component centroid caused by
the interface reconstruction can be interpreted as an action of an artificial force of
magnitude ∼m∆x/∆t2 (here m is the mass of the component considered, and
∆t is the time increment). Therefore by complying with original centroids we
explicitly reduce these artificial forces and improve approximation properties of
the discrete model of fluid dynamics.

The bibliographic search showed that the idea to employ centroid data for VoF
methods has been around for a while. Mosso and Clancy [11] proposed to use
centroid information to prioritize materials in multi-material 2D flow simulations.
The same technique was independently presented by Benson [3]. But both these
initiatives did not get any further development.

The outline of the rest of this paper is as follows. In Section 2 we describe
general concept of moment-of-fluid (MoF) interface reconstruction and address
questions related to existence, uniqueness, stability, and accuracy. In Section 3
we present implementation detail of MoF algorithm in 2D. Static tests of inter-
face reconstruction are presented in Section 4. In static tests we start with given
interface and computational grid, then we compute the reference moments, per-
form the interface reconstruction, and then compare the resulting interface with
the original one. In this section we present qualitative and quantitative compari-
son of MoF with other methods.

Dynamic tests are presented in Section 5. In dynamic tests interface is moving
with prescribed solenoidal velocity field. Dynamic tests require development of
algorithms for advancing in time of volume fractions for VoF-PLIC methods, as
well as centroids in case of MoF method. These algorithms are presented in the
beginning of Section 5. Next we present numerical results for two test problems
using our new MoF method as well as other previously mentioned methods). Fi-
nally, in Appendix, we present detail of our implementation of Swartz algorithm.

2 Moment-of-fluid interface reconstruction
Let us start with formal definitions. Consider a mixed cell given by an open poly-
gon Ω ⊂ R

2. Each cell fraction occupied by a single component may be repre-
sented by a non-trivial open subset ω ⊂ Ω (ω 6= ∅, ω 6= Ω). The family of all
non-trivial open subsets of Ω we denote as SΩ. As a non-empty open set, ω ∈ SΩ

always has a positive volume (area in 2D)

|ω| ≡

∫

ω

dx, 0 < |ω| < |Ω|
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and a well defined centroid

xc(ω) ≡
1

|ω|

∫

ω

x dx, xc(ω) ∈ hull(Ω);

here hull(Ω) is the convex hull of Ω.
In practice it is common to specify the volume of ω ∈ SΩ in terms of the

volume fraction:
µ(ω) =

|ω|

|Ω|
, 0 < µ(ω) < 1.

The part of the subset boundary ∂ω different from the cell boundary ∂Ω rep-
resents the interface Γ(ω) between ω and its complement Ω \ ω :

Γ(ω) = ∂ω \ ∂Ω.

The cell fractions with linear interface form a distinctive class S
h
Ω of truncation

volumes or cut-offs; formally, each cut-off ωh ∈ S
h
Ω is a non-trivial intersection

ωh ≡ Ω ∩ h

of Ω with an open half-plane h ⊂ R
2 (ωh 6= ∅, ωh 6= Ω).

2.1 Problem formulation
Suppose Ω contains only two fluid components, and ω∗ ∈ SΩ is an original frac-
tion occupied by the reference component. Our optimistic objective is to find
a truncation volume ω∗

h ∈ S
h
Ω that matches the first two moments of ω∗ or,

equivalently, the reference volume fraction µ∗ ≡ µ(ω∗) and the reference centroid
x∗ ≡ xc(ω

∗).
The half-plane h ⊂ R

2 that defines a truncation volume ωh ≡ Ω∩h is uniquely
identified with 2 independent parameters: the polar angle of the outward unit
normal on ∂h and the distance of ∂h from the origin. The reference data space,
formed by reference volume fraction and 2 components of reference centroid, is
three-dimensional. It is highly unlikely that both reference moments can be simul-
taneously satisfied with a single cut-off: such a problem is overdetermined.

Nevertheless one may try to match only a piece of the input data; reference
centroid, for example. Even though such a strategy does not guarantee to preserve
the volume of the reference component, its analysis reveals an important property:

Property 1 Each truncation volume is uniquely identified by its centroid.
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This fact implies that the knowledge of centroid location allows to recover trun-
cation volumes (i.e. reproduce linear interfaces) exactly.

Since the volume conservation is a must, we have to sacrifice the exact cen-
troid matching. Instead, we are going to look for a cut-off of the given volume fraction
whose centroid provides the best approximation to the reference one. This strategy, fur-
ther referred to as a moment-of-fluid (MoF) interface reconstruction, makes the object
of our study.

Let us introduce the following families of cell fractions:
• all cut-offs of the given volume fraction:

S
h,µ∗

Ω = { ωh ∈ S
h
Ω | µ(ωh) = µ∗ };

• all non-trivial open subsets of the given volume fraction:

S
µ∗

Ω = { ω ∈ SΩ | µ(ω) = µ∗ };

and the loci of respective centroids:

X h,µ∗

Ω ≡ xc(S
h,µ∗

Ω ) = { x ∈ R
2 | x = xc(ωh), ωh ∈ S

h,µ∗

Ω },

X µ∗

Ω ≡ xc(S
µ∗

Ω ) = { x ∈ R
2 | x = xc(ωh), ω ∈ S

µ∗

Ω }.

Now moment-of-fluid interface reconstruction can be formally stated as an
optimization problem in S

h,µ∗

Ω :

Problem 1 Find a cut-off ω∗
h ∈ S

h,µ∗

Ω such that

ω∗
h = arg min

ωh∈S
h,µ∗

Ω

||xc(ωh) − x∗||22. (1)

Since each truncation volume is uniquely identified by its centroid (Property 1),
then Problem 1 is equivalent to finding nearest to x∗ point of X h,µ∗

Ω :

Problem 1a Find a point x∗
h ∈ X h,µ∗

Ω such that

x∗
h = arg min

xh∈X
h,µ∗

Ω

||xh − x∗||22. (1a)

Although the latter formulation is of little practical use, it provides a sim-
ple model to analyze correctness of MoF interface reconstruction problem: the
existence, uniqueness, and stability of the solution with respect to reference data
perturbation. Since Problem 1a is about approximating x∗ ∈ X µ∗

Ω with elements
of X h,µ∗

Ω , our attention should be focused on the properties of these two loci:
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Figure 2. Examples of X µ∗

Ω and X h,µ∗

Ω loci (µ∗ = 0.25).

Property 2 X µ∗

Ω is a strictly convex closed set with a smooth boundary

∂X µ∗

Ω = X h,µ∗

Ω .

This property is illustrated by Figure 2.

Property 3 Among all the elements of S
µ∗

Ω , only cut-offs have their centroids located on
the boundary of X µ∗

Ω .

Property 4 Centroid loci given by different values of volume fraction compose a uni-
parametric family

{ X µ∗

Ω | 0 < µ∗ < 1 }

of nested plane sets:
µ∗

1 < µ∗
2 =⇒ X

µ∗

2
Ω ⊂ X

µ∗

1
Ω ,

⋂

0< µ∗<1
X µ∗

Ω = xc(Ω),

⋃

0< µ∗<1
X µ∗

Ω = hull(Ω).

Figure 3 shows examples of nested centroid loci defined by different values of
the reference volume fraction.
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Existence. The search space (X h,µ∗

Ω ) of continuous objective function ||xh − x∗||22
is compact (Property 2), therefore by Weierstrass theorem solution of the mini-
mization problem always exists.

Uniqueness. Even though reference moments are assumed to be given by
some cell fraction, i.e. x∗ ∈ X µ∗

Ω , one better not count on this fact in a real life cal-
culation: miscellaneous discretization and round-off errors may cause the input
data to be inconsistent.

Properties 2 and 3 allow us to classify all input data (µ∗,x∗) ∈ ] 0, 1 [×R
2 into

three categories (see Figure 4a):

1) x∗ 6∈ X µ∗

Ω : the reference moment data are inconsistent, i.e. there is no cell
fraction that satisfies them. Some consolation is supplied by the fact that
solution of (1) (which is unique because x∗ is located outside the convex
region bounded by X h,µ∗

Ω ≡ ∂X µ∗

Ω ) gives the best approximation to the refer-
ence centroid among all the subsets of the given volume fraction.

2) x∗ ∈ ∂X µ∗

Ω : the source of the reference data is known to be a truncation
volume (Property 3), which can be uniquely (Property 1) identified by solv-
ing (1).

3) x∗ ∈ X µ∗

Ω \ ∂X µ∗

Ω : the original cell fraction ω∗ is not a cut-off. This type of
the input is the most common and also requires more careful analysis.
To start with, Problem 1a in this case may have multiple solutions. The
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Figure 4. (a) Classification of the reference data. (b) Example of X̃ µ∗

Ω for
square cell (µ∗ = 0.1). We also show here reference centroid samples
x∗

1,x
∗
2,x

∗
3 ∈ X̃ µ∗

Ω , x∗
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Ω and their respective solutions on X h,µ∗

Ω .

number of multiple solutions is always finite and can be as big as the num-
ber of vertices of the polygon given by the convex hull of a cell.
We use symbol X̃ µ∗

Ω to denote the locus of all reference centroids defining mul-
tiple solutions of (1a). X̃ µ∗

Ω is a non-empty connected set composed of a fi-
nite number of smooth segments that form a tree-like pattern with open
tip branches (see Figure 4b). Since X̃ µ∗

Ω has zero area, one can consider the
input x∗ ∈ X̃ µ∗

Ω to be improbable. Therefore MoF interface reconstruction is
unique with absolute certainty.
The better Γ(ω∗) can be approximated with a line segment, the closer to
∂X µ∗

Ω the reference centroid is. This observation is very useful in the light
of the fact that the lower bound for the distance between X̃ µ∗

Ω and ∂X µ∗

Ω is
strictly positive for any particular value of µ∗. More detailed analysis shows
that for any original interface with sufficiently low (compared to 1/diam(Ω)) cur-
vature the reference centroid is located beyond the reach of X̃ µ∗

Ω , i.e. the Mof
interface reconstruction is unique.

Stability. Each input (µ∗,x∗) of MoF interface reconstruction problem can
be classified either as unique or multiple, depending on the number of resulting
solutions. If MΩ is a subset of the input data space IΩ ≡ ]0, 1[×R

2 composed of all
multiple inputs

MΩ = { (µ∗,x∗) ∈ IΩ | x∗ ∈ X̃ µ∗

Ω },
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then the complement of MΩ

IΩ\MΩ = { (µ∗,x∗) ∈ IΩ | x∗ 6∈ X̃ µ∗

Ω }

is composed of all unique inputs. Not all unique inputs are stable: any input that
corresponds to the tip of an X̃ µ∗

Ω branch (sample x∗
4 on Figure 4b), under infinites-

imally small perturbation may turn into a multiple input. The stability zone of
MoF interface reconstruction is given by the complement of the MΩ closure:

IΩ\MΩ = { (µ∗,x∗) ∈ IΩ | x∗ 6∈ X̃ µ∗

Ω }.

Any sufficiently small perturbation of (µ∗,x∗) ∈ (IΩ\MΩ) defines a unique input
(µ∗+ δµ∗,x∗ + δx∗) with respective solution close to the unperturbed one (see
fuzzy reference data samples x∗

2, x
∗
3 and their respective solutions on Figure 5a).

Approximation properties. MoF interface reconstruction not only preserves
volumes of cell fractions but also results in minimal defect of the first moment

∆M1 ≡ ||M1(ω
∗
h) − M1(ω

∗)||2 = |Ω|µ∗||x∗
h − x∗||2

attainable with a PLIC approximation; here M1(ω) ≡
∫

ω

x dx is the first moment of
ω ∈ SΩ.
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Another way to quantify the interface reconstruction error is to measure the
area of the symmetric difference between ω∗

h and ω∗ :

∆ω ≡ |ω∗
h4ω∗| = |(ω∗

h ∪ ω∗) \ (ω∗
h ∩ ω∗)|.

One may also find the maximum deviation of the original interface Γ(ω∗) from
the cut-line ∂h∗ defining Γ(ω∗

h) = Ω ∩ ∂h∗ :

∆Γ ≡ dist(Γ(ω∗
h), ∂h∗) = max

x∈Γ(ω∗

h
)

min
y∈∂h∗

||x − y||2,

to be more informative than ∆M1 or ∆ω.
As long as the original interface Γ(ω∗) is known to be a C2 curve with curva-

ture radius bounded from below by a positive constant R, the following estimates
hold true:

∆M1 = O(d5/R2), ∆ω = O(d3/R), ∆Γ = O(d2/R), (2)

where d = diam(Ω). ∆Γ estimate shows that MoF interface reconstruction is second
order accurate.

For a non-smooth interface all errors above reach their respective pessimistic
upper bounds:

∆M1 = O(d3), ∆ω = O(d2), ∆Γ = O(d). (3)

3 Implementation of MoF Algorithm in 2D
Let x1,x2, . . . ,xn ∈ R

2 be the vertices of a mixed cell Ω enumerated in counter-
clockwise order. The area and centroid of Ω (as well as of any other polygon with
n vertices) can be calculated by formulas:

|Ω| =
1

2

n
∑

i=1

[xi×xi+1 ], (4)

xc(Ω) =
1

6 |Ω|

n
∑

i=1

[xi×xi+1 ](xi + xi+1), (5)

where [ ·×· ] is 2D vector product, and xn+1 ≡ x1.
In order to proceed with numerical optimization, one have to introduce a

suitable parametrization of the search space. Since X h,µ∗

Ω is a smooth boundary
of a strictly convex set, each xh ∈ X h,µ∗

Ω can be uniquely identified with the polar
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angle φ of the local inward normal on X h,µ∗

Ω (Figure 5b). Note that the same
polar angle specifies the interface outward normal for respective cut-off ωh ∈

S
h,µ∗

Ω , xc(ωh) = xh. There is no need to know xh(φ) dependence explicitly to
evaluate the objective function

f(φ) ≡ ||xh(φ) − x∗||22; (6)

given φ ∈ R mod 2π, one can
1) calculate unit vector n(φ) ≡ (cos φ, sin φ);

2) find the truncation volume ωh(φ) ∈ S
h,µ∗

Ω with the interface outward unit
normal n(Γ(ωh(φ))) = n(φ);

3) calculate xh(φ) as the centroid of ωh(φ) using (5).

Instead of finding ωh ∈ S
h,µ∗

Ω with n(Γ(ωh)) = n(φ), it is more convenient to
identify a cut-off of the given volume fraction among the truncation volumes with
prescribed interface normal

S
h,n(φ)
Ω = { ωh ∈ S

h
Ω | n(Γ(ωh)) = n(φ) }.

Each truncation volume ωh ∈ S
h,n(φ)
Ω is described by its height ξ (the “verti-

cal” direction is assumed to be given by n(φ)). Cut-off volume fraction µ(ξ) ≡

µ(ωh(ξ)), ωh ∈ S
h,n(φ)
Ω is a continuous monotone function of ξ (Figure 6), i.e. has

a well define inverse. Therefore the height ξ∗ of ωh(φ) ∈ S
h,µ∗

Ω ∩ S
h,n(φ)
Ω can be

found by solving
µ(ξ∗) = µ∗. (7)

Second derivative of µ(ξ) is a piecewise-constant function with discontinuity
points given by the vertex altitudes ξ1, ξ2, . . . , ξn. This fact along with mono-
tonicity of µ(ξ) yields an efficient solution strategy for (7), which requires only
O(n) operations for a convex Ω and O(n2) operations in general case. We call it
flood algorithm, since it models the process of filling a vessel with fluid.

Flood algorithm. Let (i1, i2, . . . , in) be an index permutation that puts vertex
altitudes in a non-descending order:

0 ≡ ξi1
6 ξi2

6 . . . 6 ξin . (8)

Since µ(ξ) is either quadratic or linear on each interval [ ξik , ξik+1
], k = 1, n − 1,

then the area of Ω, enclosed between two levels ξ = ξik and ξ = ξik+1
, can be cal-

culated by the trapezoid rule:

|Ω| (µk+1 − µk) =
1

2
(ξik+1

− ξik) (|Γk+1| + |Γk|). (9)
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Here |Ω| is the area of the cell, µk ≡ µ(ξik), and |Γk| is the total length of Γk ≡
Γ(ξik) ≡ Γ(ωh(ξik)), k = 1, n.

First one have to find the interval [ ξik∗ , ξik∗+1
] of quadratically (linearity) of

µ(ξ) that includes µ∗ :

µik∗ < µ∗
6 µik∗+1

, 1 6 k∗
6 n − 1. (10)

Expression (9) gives a basis for recurrent calculation of all µk, k = 2, n − 1.
The search starts from the “bottom”

µ1 = 0, |Γ1| = 0,

and goes all the way “up”

µk = µk−1 +
1

2 |Ω|
(ξik − ξik−1

) (|Γk| + |Γk−1|), k = 2, 3, . . . , (11)

until the reference volume fraction is framed.
Note that each step of the iterative process (11) involves identification of re-

spective “cross section” Γk, k = 2, n − 1 (O(1) operations for a convex cell, O(n)
otherwise).

Once the interval of interest (10) is known, solution of (7) can be found by
means of interpolation:

• if µ(ξ) is linear on [ ξik∗ , ξik∗+1
], i.e. the framed area is a parallelogram

(|Γk∗+1| = |Γk∗ |), then

ξ∗ = ξik∗ +
µ∗ − µk∗

µk∗+1 − µk∗

(ξik∗+1
− ξik∗ );

• otherwise µ(ξ) is quadratic and

ξ∗ =

√

ξ2
ik∗

+
µ∗ − µk∗

µk∗+1 − µk∗

(ξ2
ik∗+1

− ξ2
ik∗

).

Bracketing the reference volume fraction (11) is the most expensive part of the
whole algorithm (the complexity of the initial vertex altitude sort (8) is just O(n)
for a convex cell and O(n log n) in general case). One can reduce the expected
bracketing time by half by implementing the search (11) in backward order for
all µ∗ > 1/2. In this case the search starts from the “top” (µn = 0, |Γn| = 0) and
goes all the way “down” (k = n− 1, n− 2, . . .) to the interval of interest. Another
reason to implement the backward search is more accurate evaluation of ξ∗ for
µ∗ ≈ 1.

Objective function derivative. The choice of the polar angle as an indepen-
dent variable yields inexpensive evaluation of the first derivative of xh(φ):
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• whenever the interface Γ(φ) ≡ Γ(ωh(φ)) consists of a single segment (which
is always the case for a convex cell),

x′
h(φ) =

1

12

|Γ(φ)|3

µ∗|Ω|
t(φ), (12)

where t(φ) = [−sin φ, cos φ ]T is a counter-clockwise unit tangent on Γ(φ).

• for a non-convex cell the interface Γ(φ) may consist of several separate seg-
ments of the cut-line (see Figure 6, non-convex cell); in this case

x′
h(φ) =

M2(Γ(φ))

µ∗|Ω|
t(φ), (13)

where M2(Γ(φ)) is a second central moment of the interface Γ(φ):

M2(Γ) =

∫

Γ

||x − xh(Γ)||22 dΓ, xh(Γ) =
1

|Γ|

∫

Γ

xdΓ.

Expressions (12) and (13) complete the chain rule for the first derivative of the
objective function

f ′(φ) = 2
(

(xh(φ) − x∗) · x′
h(φ)

)

.

Here (· · ·) is a dot product.
Numerical optimization of (6) can be performed with any line search algo-

rithm [12, 5, 15] available. One has to be careful choosing the initial guess and
trial step selection strategy for the line search algorithm: even when the objective
function (6) has a unique global minimum, it may still possess some other local
minima (see Figure 7, µ∗ = 0.02), which can distract the algorithm.

A safe initial guess is provided by the polar angle of xc(Ω) − x∗ vector. If
X h,µ∗

Ω were a circle, this choice of φ0 would give us the exact minimizer of (6). The
more isotropic the shape a mixed cell is, the better X h,µ∗

Ω can be approximated
with a circle for a moderate value of µ∗, the closer to the minimizer of (6) the
initial guess is.

We also claim that suggested φ0 either specifies the point on the slope of a
global minimum valley or marks the top of the hill that divides two global min-
ima. Therefore a conservative trial step selection strategy is guaranteed to lead
the line search started at φ0 to a global minimum. The line search is terminated
when the polar angle of the normal stabilizes within tolφ = 10−6.
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Figure 7. Sample objective function graphs.

4 Static tests
The idea of static test for an interface reconstruction algorithm is trivial: given a
particular shape of the reference component and a computational grid, one has
to calculate the reference moments, run the interface reconstruction, and then
compare the resulting shape of the original one.

Along with MoF method we tested three VoF-PLIC methods for arbitrary
polygonal grids:

• Least Square Gradient (LSG) with reciprocal quadratic distance weights[2],
which we refer to as LSGQ,

• LVIRA [14],
• Swartz method1) [21, 10].
The choice of the last two methods is pretty obvious: these are the only orig-

inal second order accurate VoF-PLIC methods suitable for unstructured grids.
Both LVIRA and Swartz algorithms are iterative and rely on a reasonable initial
guess, usually provided by a direct VoF-PLIC method (LSGQ in our case).

The first order accurate algorithms are represented by LSG; all one have to
know about the grid structure to run it a list of neighbors for each mixed cell.
Frankly, the only real alternative to LSG is Green-Gauss algorithm [2], but the
latter requires adjacent cells to be properly ordered. On a uniform rectangular

1) The implementation details can be found in Appendix.
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grid both LSGQ and Green-Gauss give the same result as Youngs method [24]
with optimal parameter.

The results produced by these PLIC algorithms for six different shapes are
presented on Figures 8 and 9. Although original shapes are not shown, their
names are self-explanatory. As one can see, MoF method has higher resolution
than VoF alternatives, adds no blurring, and takes the maximum out of PLIC
approximation: polygonal shapes “zigzags” and “compass rose”, which are spe-
cially designed to have a piecewise-linear boundary that can be captured on the
16 × 16 grid with a single linear segment per cell, are reproduced by MoF algo-
rithm exactly.

Our next step is quantification of the interface reconstruction error. With focus
of discussion shifting from a single mixed cell to the entire computational grid,
it is necessarily to change the notation. Let Ω ⊂ R

2 now represent a polygonal
domain quasi-uniformly partitioned into N polygonal cells {Ωi}

N
i=1 :

Ω =
N
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ ∀ i 6= j;

open ω∗ ⊂ Ω and ω∗
h ⊂ Ω represent the original and the reconstructed shapes of

the reference component. The restrictions of ω∗ and ω∗
h to a single cell Ωi, i = 1, N

will be referred to as ω∗
i and ω∗

h,i respectively.
Several ways to quantify the interface reconstruction error were mentioned in

Subsection 2.1. Since we already had in our possession fast polygon intersection
routine2), we decided to measure

∆ω = |ω∗4ω∗
h| =

N
∑

i=1

|ω∗
h,i4ω∗

i |.

The interface reconstruction algorithms we examine are volume-conservative, i.e.
|ω∗

h,i| = |ω∗
i |, i = 1, N, therefore

|ω∗
h,i4ω∗

i | =

{

2
(

|ω∗
i | − |ω∗

i ∩ ω∗
h,i|

)

, if Ωi is a mixed cell,
0, otherwise,

which yields the following practical expression for ∆ω :

∆ω = 2
M
∑

i=1

(

|ω∗
i | − |ω∗

i ∩ ω∗
h,i|

)

; (14)

2) Due to COnservative REmapper (CORE) library by M. Staley [17].
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here M is the total number of mixed cells, without loss of generality we can as-
sume that all mixed cells are enumerated from 1 to M .

This area, divided by the length of the original interface |∂ω∗|, gives the aver-
age distance between the reconstructed and original interfaces. To make this quantity
scale-independent, we normalize it by a characteristic size L̃ of the original shape
ω∗; the result is referred to as a normalized average deviation:

ε̃avg =
1

L̃

|ω∗4ω∗
h|

|∂ω∗|
.

Another important error characteristics we can get with {|ω∗
i ∩ ω∗

h,i|}
M
i=1 is the

maximum of the normalized average deviation per (mixed) cell:

ε̃max = max
i=1,M

1

L̃

|ω∗
i 4ω∗

h,i|

|Γ(ω∗
h,i)|

,

which indicates the worst local error attainable.
To figure out how these errors scale with mesh refinement we conducted a se-

ries of direct error measurements on a sequence of uniform rectangular grids (Ω =
]0, 1[×]0, 1[) with mesh spacing h varying from 1/2 to 1/210 (hk = 1/2k, k =
1, 10).

Each PLIC algorithm was tested against two shapes:
1) circle of radius L̃ = 0.25 centered at (0.5 + 1/17, 0.5 + 1/41);

2) 2L̃×2L̃ = 0.5×0.5 square centered at (0.5 + 1/17, 0.5 + 1/41) and rotated
counter-clockwise by π/16 radians;

Both shapes have the same characteristic scale L̃ = 0.25, the position and the ori-
entation were chosen to eliminate the influence of the symmetry factor on error
readings.

The results of these tests are put on graphs (Figure 10). Here error is related
to the normalized mesh spacing h̃ = h/L̃. Both horizontal and vertical axes have
logarithmic scale.

Let us first comment the circle test results. As one might have anticipated,
LVIRA, Swartz and MoF algorithms provide second order accurate approxima-
tion to the C2-smooth interface, while LSGQ is only first order accurate. Uniform
curvature of the interface explains similar behavior of both average and maxi-
mum errors, although average error is somewhat lower and less volatile due to
the aggregate nature of this indicator. MoF algorithm results in the lowest er-
ror. Average errors of LVIRA and Swartz algorithms are 50+% and 18+% higher
than respective MoF error. Even though LSGQ is asymptotically less accurate
than LVIRA and Swartz, the former algorithm exhibits significantly smaller er-
ror (just 6% above the MoF) on coarse and medium scales and starts to loose the
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Figure 10. Interface reconstruction error.

advantage only after the cell size decreases below 1/8 of the interface curvature
radius.

Original interface in the second test is not smooth, and that is why all four
methods demonstrate local error of order O(h). Asymptotic average error of
LSGQ is also O(h), while for all other three methods only O(h2). This behav-
ior has a clear explanation: all second order accurate methods are able to cap-
ture straight segments of the interface exactly and the error is accumulated only
around the vertices. With O(1) mixed cells contributing to the average error, ∆ω
is only O(h2) (see (3)), which results in ε̃avg = ∆ω/(8L̃2) = O(h2) average devia-
tion. Once again MoF algorithm demonstrates the highest accuracy. Since there
is only one mixed cell per vertex of polygonal interface that contributes to MoF
average error against three to four for competitors, MoF average error is at least
two times lower than of any other method. We would also like to emphasize the
superiority of MoF algorithm over the VoF-PLIC methods on a very coarse scale.
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In terms of performance the clear winner is LSGQ, which is about two times
faster than MoF and Swartz methods and six times faster than LVIRA. Common
software components shared between the implementations of different methods
allow us to claim a non-discriminative character of these benchmarks.

5 Dynamic tests
In presented dynamic tests interface is moving with prescribed solenoidal veloc-
ity field. Dynamic tests require development of algorithms for advancing in time
of volume fractions for VoF-PLIC methods, as well as centroids in case of MoF
method. These algorithms are presented in the beginning of Sections 5.1, 5.2.

Next we present numerical results for two test problems using our new MoF
method as well as other LSG, LVIRA and Swartz methods.

In all tests we assume that velocity field v(x, t) is solenoidal and given analyti-
cally. The algorithm for advancing in time imposes no constraint on the Courant
number CFL = v ∆t/h (∆t is the time step, h is the local mesh spacing, and v is
the local flow speed).

5.1 Time Advance of Volume Fractions
Given the location of mixed cell interfaces at tk−1 = ∆t (k − 1), one can evaluate
the content of cells at tk = tk−1 + ∆t as follows:

for each cell Ωi, i = 1, N do
track Ωi back in time to t = tk−1 to identify the Lagrangian prototype Ωi,k−1

of the cell;
find the volume m̃i,k−1 of the reference phase enclosed in Lagrangian

prototype Ωi,k−1;
put the volume mi,k of the reference component in Ωi equal to m̃i,k−1.

end do

The vertices of polygonal cell Ωi are tracked back along the streamlines by
means of the 4-th order Runge-Kutta scheme and then connected in proper order
by the straight segments. This results in a polygon that we consider to be a discrete
Lagrangian prototype Ωi,k−1 of cell Ωi (see Figure 11).

Using a polygon intersection routine 3), we find the intersections of Ωi,k−1

with all covered cell fractions at t = tk−1. By partitioning the bounding box
3) Due to COnservative REmapper (CORE) library by M. Staley [17].
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of the entire computational domain into 2D array of rectangular bins and pre-
sorting all the mesh cells among these bins based on their centroid location, one
can significantly accelerate the search of the cell fractions covered by the proto-
type. Whenever CFL 6 1, it is sufficient to intersect the prototype only with Ωi

and its direct neighbors. Moreover, if CFL 6 1 and Ωi along with all its neighbors
is empty at t = tk−1, then it is guaranteed to stay empty the next discrete moment
of time, and there is no need to perform any polygon intersections in this case at
all.

PSfrag replacements
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Figure 11. Discrete (a) and true (b) Lagrangian prototypes of the cell.

In linear velocity field, which is known to preserve straight lines, the true La-
grangian prototype of a polygonal cell is always a polygon, and the accuracy of
the remapping is limited only by the accuracy the integration scheme. For a p-th
order accurate scheme the area defect |Ωi,k−1| − |Ωi| is estimated as O(h∆tp+1).

In a nonlinear velocity field straight lines are not preserved, and the Lagrangian
prototype of a polygonal cell is not exactly a polygon. Therefore by ignoring the
curvature of the prototype edges we introduce additional O(h3∆t) area defect.

Even a small area defect can eventually cause the algorithm to halt. Indeed,
if the volume of the reference component m̃i,k−1 enclosed in the prototype Ωi,k−1

exceeds the capacity of the cell |Ωi|, we are in trouble. Another, less critical, sit-
uation occurs when the prototype, being filled with the reference component,
happens to have the area |Ωi,k−1| smaller than |Ωi|. In this case the cell becomes
mixed, even though its prototype contains only one component.

In order to fix these flaws we use a post-remapping repair procedure. For
every cell Ωi, i = 1, N we specify the lower mi,k and the upper mi,k bounds of
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the reference fraction volume mi,k allowed:

mi,k = mi,k = 0 if the prototype is empty,

mi,k = mi,k = |Ωi| if the prototype is full,
mi,k = 0, mi,k = |Ωi| otherwise,

(15)

and then force each volume mi,k, i = 1, N to fit into these bounds:
for each cell Ωi, i = 1, N do

if Ωi is overfilled (mi,k < mi,k) then
try to redistribute the excess between the non-overfilled neighbours
while there is still some excess remained do

redistribute them among the next layer of the surrounding cells
end do

else if Ωi is underfilled (mi,k < mi,k) then
try to compensate the shortfall by borrowing from the non-underfilled

neighbours
while there is still some shortage of material do

borrow it from the next layer of the surrounding cells
end do

end if
end do
Due to the local nature of the area defect, the redistribution usually involves

only direct neighbours of the cell. Therefore the complexity of the whole repair
step comes to the total of O(N).

5.2 Time Advance of Centroids
The technique above is easily extensible advancing centroid positions in time.
Whenever a non-empty intersection of discrete Lagrangian prototype Ωi,k−1 with
any cell fraction is detected, one has to calculate not only the area but also the first
moment of the intersection. After all the intersections are found, the centroid of
the reference fraction of Ωi,k−1 is calculated as the moment to volume ratio and
is tracked forth along the streamlines to determine the position of the reference
centroid in cell Ωi. There is no need to track the centroid if the prototype contains
only one component: with (15) bounds the repair step guarantees that the cell
will be pure as well.

Whenever the velocity field is linear in space, actual centroid velocity of any
volume of fluid coincide with the field velocity at the centroid location:

d

dt
xc(ω) = v(xc(ω)). (16)
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Figure 12. Two way to improve the reference centroid accuracy: (a) by advecting
the reference fraction in pieces; (b) by advecting the smaller comple-
mentary fraction.

Therefore, in this case, the trajectory of real centroid follows a streamline and the
reference centroid error is due only to approximate integration (O(∆tp+1) for a
p-th order scheme).

For a nonlinear velocity field the identity (16) is void. As long as v(x, t)
is twice differentiable in x, the following estimate, given by Taylor expansion,
holds:

d

dt
xc(ω) = v(xc(ω)) + O(d2). (17)

Here d = diam(ω) is the diameter of the volume advected. The cumulative refer-
ence centroid error in this case is O(d2∆t).

Since the reference centroid error is determined by the diameter of the ad-
vected volume, some accuracy improvement can be gained by advecting the fluid
in smaller pieces. The reference fraction of Lagrangian prototype is originally as-
sembled from elementary intersections of Ωi,k−1 with the reference fractions of
cells on the previous time step. Therefore, instead of advecting the aggregated
centroid, one may choose to advect centroids of these elementary parts separately
and only then proceed with their aggregation (Figure 12a).

Also, whenever the volume of the complementary phase in the prototype is
smaller than the volume of the reference component (|Ωi,k−1\ωi,k−1| < |ωi,k−1|),
one should advect the complementary centroid instead and then use the identity

xc(ωi) |ωi| + xc(Ωi\ωi) |Ωi\ωi| = xc(Ωi) |Ωi|
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to get the position of the reference centroid (Figure 12b).

5.3 Numerical Results
Example 1. - Solid Rotation of Letter A The first set of snapshots (Figure 13) is
due to the advection of the letter “A” glyph in the stationary rotation field:

v((x, y), t) =

[

−(y − y0)
+(x − x0)

]

, (x0, y0) = (0.5, 0.5).

Other parameters of the numerical experiment:

computational domain ]0, 1[×]0, 1[,

simulation time T = 2π,

computational grid 1024 polygonal cells,
number of time steps NT = 144.

The velocity field is linear so that the error introduced by interface reconstruc-
tion prevails over the advection error. All VoF-PLIC methods oversmooth the in-
terface, while MoF method demonstrates a good ability to preserve the shape of
the glyph.
Example 2 - Reversible vortex The second test case [16] is about modeling evo-
lution of the round “blot”

{ x ∈ R
2 | ||x − x0||2 6 R }, x0 = (0.5, 0.75), R = 0.15

in the vortex field:

v((x, y), t) =

[

+sin 2(πx) sin (2πy)
−sin 2(πy) sin (2πx)

]

cos (πt/T ).

The cosine multiplier gradually “decreases the power” of the vortex until the
complete stop (v(x, t) ≡ 0) at t = T/2, and then starts to “power up” the reversed
vortex. Since

v(x, t) = −v(x, T − t), 0 < t < T,

the exact integration of the fluid motion from t = 0 to t = T should result in zero
changes. Therefore by comparing the final configuration against the initial setup,
one can get the idea of the accuracy of numerical method. For easier judgment
we overlayed the snapshots (Figure 14) with the interface line obtained with
tracking technique [1].

Other parameters of the experiment:
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Figure 14. Reversible vortex test results.

28



computational domain ]0, 1[×]0, 1[,

simulation time T = 8,

computational grid uniform, 32 × 32 cells,
number of time steps NT = 256.

Although the final shape obtained with MoF method demonstrates better
overlap with the initial shape than the VoF-PLIC alternatives, the latter result in
much smoother interface. The reason for this is that VoF methods, due to the ag-
gregate nature of the interface normal estimate, have a tendency to oversmooth
the interface, which on the dynamic level can be interpreted as an artificial nu-
merical surface tension. This feature becomes determinative when a VoF method
is forced to work on the edge of the resolution limit: by the moment of maximum
stretch (t = T/2) the shape of the reference component becomes so thin that it
breaks into a series of separate blots. MoF method does not exhibit this kind of
behavior and gives much better approximation of real interface at t = T/2.
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7 Appendix
All VoF-PLIC algorithms introduced above rely on the list of adjacent cells that
involved in evaluation of the interface normal in a mixed cell. We consider two
cells to be adjacent if they share an edge or a vertex.

Implementations of LSGQ and LVIRA follow exactly the descriptions given
in [2] and [14] respectively. The minimum of LVIRA objective function is consid-
ered to be localized when the polar angle of the outward normal iterate stabilizes
within tolφ = 10−6 radians.

Our implementation of Swartz algorithm is somewhat different from the orig-
inal description given in [10]. This is actually the reason why we call it Swartz,
not Mosso-Swartz.

The idea of the method is based on the fact that for a pair of adjacent mixed
cell there exists a common linear interface that satisfies given volume fractions4).
This common linear interface can be found by means of the following iterative
procedure. Given initial VoF-PLIC approximation in both mixed cells, one has to:

1) connect the medians of interfaces with a straight segment;
2) use the normal of this segment as a new iterate for the normal of common

linear interface;
3) build a new linear interface in each cell using this normal;
4) repeat this cycle until the direction of the common interface normal estab-

lishes within some small tolerance (we used tolφ = 10−6).
The direction on the interface normal in a given mixed cell is defined as an aver-
age of common interface normals due to all possible mixed neighbours.

In addition to this procedure, Mosso-Swartz algorithm [10] specifies an exter-
nal iterative process that runs through the list of mixed cell and repeats the pro-
cedure above in Gauss-Seidel manner, updating the interface normal in a mixed
cell with the new averaged one as soon as the latter is evaluated. We came to
conclusion that such an external iterations result in excessive numerical surface
tension, oversmooth the interface and decrease the resolution of the algorithm.
Therefore in our implementation we do not use external iterations and also up-
date the interface normals in Jacobi manner, i.e. only after all the normals have
been evaluated from the original initial guess.

There are several important details about internal iterations that were not dis-
cussed in the original paper.

4) For essential prerequisites see [21].
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• A common interface for a given pair of adjacent cells and respective volume
fractions is not unique. The iterative process may converge to either of them,
depending on initial guess and implementation strategy.

• There are two choices of the outward normal on the segment that connects the
medians of adjacent interfaces. What would be a reasonable deterministic
rule for the choice?

• Are the common interfaces due to different neighbours averaged with equal
weights or not?

It is clear that different choices of initial guess and implementation strategy result
in different PLIC reconstructions for the same set of volume fractions. We resolve
the issues above as follows:

• Our implementation of Swartz algorithm is seeded with the interfaces given
by LSGQ method.

• We do not proceed with internal iterations for a pair of adjacent mixed cells
if the initial outward normals differ by more than 45 degrees. Between the
two opposite normals of the segment connecting the interface medians we
choose the one that has a positive projection on both initial outward nor-
mals. If neither of two possible normals satisfy this criterion, the iterations
are aborted with void result.
The rationale of this strategy comes clear if we start to look at Swartz iter-
ations as at a second order accurate “upgrade” of initial interface approxi-
mation: if two initial normals already differ significantly, then the common
linear interface is highly unlikely to give an adequate approximation to the
original one, and therefore should not contribute to the average. This way
the “upgrade” kicks in only for those pairs of adjacent cells that carry infor-
mation about the same smooth segment of original interface.

• All common normals are averaged with equal weights.
One may argue that our interpretation of Swartz algorithm is subjective and

the quality of interface reconstruction it provides is not superior to the original
Mosso-Swartz version. We may assure the reader that we tested a lot of variations
of the algorithm and found the one described above to be the most robust.
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