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Abstract

A new approach to flux limiting for systems of conservation laws is presented. The
Galerkin finite element discretization / L2 projection is equipped with a failsafe
mechanism that prevents the birth and growth of spurious local extrema. Within the
framework of a synchronized flux-corrected transport (FCT) algorithm, the velocity
and pressure fields are constrained using node-by-node transformations from the
conservative to the primitive variables. An additional correction step is included to
ensure that all the quantities of interest (density, velocity, pressure) are bounded by
the physically admissible low-order values. The result is a conservative and bounded
scheme with low numerical diffusion. The new failsafe FCT limiter is integrated into
a high-resolution finite element scheme for the Euler equations of gas dynamics.
Also, bounded L2 projection operators for conservative interpolation/initialization
are designed. The performance of the proposed limiting strategy and the need for
a posteriori control of flux-corrected solutions are illustrated by numerical examples.
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1 Introduction

The development of the flux-corrected transport (FCT) algorithm [3,27] in
the 1970s was an important milestone for numerical simulation of fluid flows.
During the past decades, flux limiting has become a popular approach to
enforcing monotonicity constraints in high-resolution schemes for (systems of)
conservation laws [7,13–15,20,27]. The idea behind the classical FCT method is
remarkably simple. First, the difference between conservative approximations
of high and low order is decomposed into a sum of antidiffusive fluxes. Next,
each flux is multiplied by a solution-dependent correction factor, that was
determined by a flux limiter. The limited flux is added to the low-order solution
which is assumed to be nonoscillatory. The purpose of the flux limiter is to
ensure that no new maxima or minima can form, and existing extrema cannot
grow. That is, the limited antidiffusive correction must be local extremum
nonincreasing or, loosely speaking, local extremum diminishing (LED).

The LED criterion turns out to be a powerful and versatile tool when it
comes to the design of numerical advection schemes as well as constrained
data projection (initialization, interpolation, remapping) techniques. The first
use of FCT in the latter context dates back to the work of Smolarkiewicz
and Grell [21] who introduced a class of nonconservative monotone interpola-
tion schemes. Conservative FCT interpolations were developed by Váchal and
Liska [24], Löhner [15], and Liska et al. [14]. Another notable contribution to
the field is the recent paper by Farrell et al. [5] who present a bounded L2 pro-
jection operator for globally conservative interpolation between unstructured
meshes. In all of the above applications, the challenge is to enforce the local
discrete maximum principle (positivity, monotonicity, or the LED property)
in a conservative manner and minimize the amount of numerical diffusion.

A major bottleneck in the development of FCT limiters for systems of con-
servation laws, such as the Euler equations of gas dynamics, is the intricate
coupling between the quantities of interest. In conservative numerical schemes
for the Euler equations, the primary unknowns are the density, momentum,
and total energy. However, a limiter designed to control the local maxima and
minima of these quantities does not guarantee that the pressure or internal
energy will stay nonnegative. Likewise, the velocity is not directly constrained
and may exhibit spurious fluctuations. Since the rate of transport depends on
the spiky velocity and pressure fields, undershoots and overshoots eventually
carry over to the conservative variables. As a typical consequence, the speed
of sound becomes negative, indicating that the simulation is going to crash.

Limiters that constrain the primitive (density, velocity, pressure) or character-
istic variables are typically more reliable but the involved linearizations may
also cause them to fail, no matter how carefully they are designed. While it is
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impossible to rule out the formation of spurious maxima/minima a priori, they
can be easily detected and removed at a postprocessing step. This philosophy
was recently embraced by Zalesak [28] who used it to maintain the nonneg-
ativity of pressures and internal energies in a characteristic FCT method for
the compressible Euler equations. The failsafe corrector to be presented below
is a generalization of Zalesak’s idea. Instead of enforcing global constraints
(such as nonnegativity), it guarantees that the flux correction step is local ex-
tremum diminishing for a given set of control variables. Whenever the added
antidiffusive flux is found to create an undershoot or overshoot, the numerical
solution is ‘repaired’ by removing (a certain portion of) the offending flux.

In classical FCT algorithms for systems [15–17], the conversion between the
conservative and primitive variables is performed edge-by-edge using lineariza-
tions about an intermediate state associated with each pair of nodes. In our
experience, averaging across shocks and contact discontinuities may give rise
to unbounded solutions in particularly sensitive compressible flow problems.
Therefore, we propose a primitive variable FCT limiter featuring a node-based
linearization procedure. The advantages of this approach are twofold. First,
the transformation matrix is the same for all antidiffusive fluxes into a given
node. Second, the upper and lower bounds for FCT are the exact low-order
nodal values of the primitive variables. This makes the limiting procedure very
robust, so that the need for a failsafe repair of the final solution is rare. Last
but not least, a node-based transformation to the primitive variables requires
fewer arithmetic operations than an edge-based linearization procedure.

In this paper, we apply the failsafe FCT limiter to a finite element discretiza-
tion of the compressible Euler equations. Also, we develop an FCT-constrained
L2 projection scheme for conservative initialization/interpolation of data. The
presented numerical examples demonstrate that the proposed limiting strategy
is well suited for applications that involve simultaneous transport/projection
of mass, momentum, and energy in the presence of strong discontinuities.

2 Flux decomposition and limiting

In a typical system of conservation laws, the vector of unknowns is given by

U = [ρ, ρv, ρE]T ,

where ρ is the density, v is the velocity field, and E is the total energy. These
variables are related to the pressure p by an equation of state. In the case of
an ideal polytropic gas with a constant ratio of specific heats γ, we have

p = (γ − 1)ρ

(
E − |v|2

2

)
. (1)
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After the discretization in space, the numerical solution Uh is defined by a
finite number of time-dependent nodal values {Ui}. Depending on the method
of approximation (finite differences, finite volumes, finite elements), they may
represent the values of Uh at the vertices of the mesh, control volume averages,
or the coefficients of piecewise-polynomial basis functions denoted by {ϕi}.

In this paper, we are concerned with constraining the difference between a
low-order approximation UL

i and its high-order counterpart UH
i . The former

is assumed to be inaccurate but free of spurious local extrema. The latter is
usually well-resolved in regions of smoothness but may contain undershoots
or overshoots in proximity to shocks, contact discontinuities, and steep fronts.

Furthermore, the difference between the nodal values UH
i and UL

i must admit
a conservative decomposition into a sum of numerical fluxes. Suppose that

miU
H
i = miU

L
i +

∑
j 6=i

Fij, Fji = −Fij. (2)

In finite difference and finite volume schemes, the coefficient mi is defined as
the volume/area of the i-th cell in the dual mesh. In finite element methods,
mi is the i-th diagonal entry of the lumped mass matrix (see Section 6).

The flux Fij from node j into node i is antidiffusive in nature and has the
same size as U . That is,

Fij = [fρ
ij, f

ρv
ij , fρE

ij ]T . (3)

Since Fji has the same magnitude and opposite sign, all fluxes cancel upon
summation. Hence, the solutions UH and UL have the same total ‘mass’∑

i

miU
H
i =

∑
i

miU
L
i .

Moreover, it is possible to adjust the magnitude of each flux pair without
changing the mass balance. The simplest way to enforce monotonicity is to
multiply all components of Fij by a solution-dependent correction factor αij.
The result is a nonlinear blend of the high- and low-order approximations

miUi = miU
L
i +

∑
j 6=i

αijFij, αji = αij. (4)

The definition of αij ∈ [0, 1] must guarantee that not only the conservative
variables but also certain derived quantities (e.g., velocity, pressure, and inter-
nal energy) will stay bounded by the local maxima and minima of the nonoscil-
latory low-order solution. In what follows, we discuss some new ideas concern-
ing the computation of αij for systems of conservation laws. The methodology
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to be presented represents a generalization of the classical FCT algorithms
developed by Boris and Book [3], Zalesak [27,28], and Löhner et al. [15,17].

3 Transformation to primitive variables

The design of FCT algorithms for systems is more difficult than that for scalar
conservation laws. If the density, momentum, and energy increments are lim-
ited separately, the strong coupling may give rise to undershoots/overshoots
in all quantities of interest. The remedies to this problem include [13,16,28]

• synchronization of the correction factors for selected control variables;
• transformations to nonconservative variables (primitive, characteristic);
• a posteriori control and postprocessing of the flux-corrected solution.

In the context of FCT, “synchronization” means using the same value of αij for
all fields, as in (4). This strategy is to be recommended whenever the variables
to be limited are strongly coupled [13,17,16]. The transformation to local char-
acteristic variables decouples the antidiffusive fluxes and eliminates the need
for synchronization [28]. However, flux correction in terms of characteristic
variables is expensive and requires dimensional splitting in 2D/3D.

The objective of the present paper is to design a synchronized FCT limiter for
the primitive variables (density ρ, velocity v, and pressure p). Let

vi =
(ρv)i

ρi

, pi = (γ − 1)

[
(ρE)i −

|(ρv)i|2

2ρi

]
. (5)

The increments of the conservative and primitive variables are related by

δv =
δ(ρv)− vδρ

ρ
, δp = (γ − 1)

[
δ(ρE) +

|v|2

2
δρ− v · δ(ρv)

]
.

Hence, the computation of the synchronized correction factor αij for the contri-
bution Fij to the right-hand side of (4) involves the following transformations

fv
ij =

fρv
ij − vif

ρ
ij

ρi

, fp
ij = (γ − 1)

[
fρE

ij +
|vi|2

2
fρ

ij − vi · fρv
ij

]
. (6)

Note that the velocity and pressure ‘fluxes’ are generally not skew-symmetric

fv
ji 6= −fv

ij, fp
ji 6= −fp

ij.
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It is neither necessary nor desirable to preserve the skew-symmetry of antidiffu-
sive fluxes after the transformation to nonconservative variables. As explained
in the next section, the transformed ‘fluxes’ are only needed to determine the
value of the correction factor αij for the conservative solution update (4).

4 Synchronized FCT limiter

To begin with, we present a generalization of Zalesak’s multidimensional FCT
limiter [27,28] for a single control variable. Let uL

i be the low-order approxi-
mation to ρ, v, or p. The antidiffusive ‘flux’ from node j into node i is denoted
by fu

ij. The conversion to the primitive variables is based on (5) and (6).

In accordance with the original FCT philosophy, the choice of the correction
factors αu

ij must ensure that the limited antidiffusive correction of uL
i is local

extremum nonincreasing. Mathematically speaking, we require [12]

mi(u
min
i − uL

i ) ≤
∑
j 6=i

αu
ijf

u
ij ≤ mi(u

max
i − uL

i ), (7)

where umax
i and umin

i denote the local maxima and minima of uL. Of course,
the index set “j 6= i” contains the nearest neighbors of node i only.

The next step is the calculation of correction factors αu
ij satisfying (7) for the

given data. This task involves the following algorithmic steps (cf. [12,27]):

(1) Compute the sums of positive/negative antidiffusive increments to node i

P+
i =

∑
j 6=i

max{0, fu
ij}, P−

i =
∑
j 6=i

min{0, fu
ij}. (8)

(2) Compute the distance to a local extremum of the low-order predictor

Q+
i = umax

i − uL
i , Q−

i = umin
i − uL

i . (9)

(3) Compute the nodal correction factors for the net increment to node i

R+
i = min

{
1, miQ

+
i /P+

i

}
, R−

i = min
{
1, miQ

−
i /P−

i

}
. (10)

(4) Define αu
ij = αu

ji so as to satisfy the FCT constraints for nodes i and j

αu
ij = min{Rij, Rji}, Rij =

R+
i , if fu

ij ≥ 0,

R−
i , if fu

ij < 0.
(11)

(5) Apply αu
ij to all components of the raw antidiffusive flux given by (3).
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This generalization of Zalesak’s FCT limiter to the case of fu
ji 6= −fu

ij can be
used to control selected quantities (typically, the pressure and/or density) or
all primitive variables. In the latter case, the synchronized correction factor
αij for the constrained solution update (4) can be defined as [13,16,17]

αij = min{αρ
ij, α

v
ij, α

p
ij}. (12)

Alternatively, one can apply the pressure limiter to the density-limited fluxes
and pass the result to the velocity limiter. This sequential version yields

αij = αv
ijα

p
ijα

ρ
ij, (13)

where αρ
ij constrains Fij, αp

ij constrains αρ
ijFij, and αv

ij constrains αp
ijα

ρ
ijFij.

In contrast to (12), the final value of αij depends on the order in which the
single-field correction factors αu

ij are calculated. However, the raw antidiffusive
increments fu

ij already include the net effect of previous corrections. Thus, only
fluxes that still violate the FCT design criterion (7) need to be constrained.

In the multidimensional case, unnecessary velocity limiting may render the
synchronized FCT limiter overly restrictive. A possible remedy is to use

αv
ij =

3∑
d=1

 v
(d)
ij

|vij|

2

α
(d)
ij , (14)

where vij = 1
2
(vi + vj) is the average edge velocity and α

(d)
ij is the correction

factor for velocity component v
(d)
ij , d = 1, 2, 3. This kind of synchronization

corresponds to velocity limiting in the streamline direction only.

The numerical results to be presented in Section 7 were calculated with (13)
and (14) since synchronization of the form (12) is generally more diffusive.

5 Failsafe flux correction

Since the transformation of variables in (5) and (6) involves a linearization
about the low-order solution at node i, there is no guarantee that the flux-
corrected solution given by (4) will stay within the original bounds, especially
in the presence of large jumps. Therefore, our limiting strategy includes a
postprocessing step in which all undershoots and overshoots are detected and
removed. The first ‘failsafe’ flux limiter of this kind was proposed by Zalesak
(see [28], pp. 36 and 56). His recipe is very simple: “if, after flux limiting, either
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the density or the pressure in a cell is negative, all the fluxes into that cell are
set to their low order values, and the grid point values are recalculated.” It is
tacitly assumed that the low-order solution is free of nonphysical values.

In the present paper, we propose a similar approach to enforcing local FCT
constraints in a failsafe manner. Let ui denote the flux-corrected value of the
control variable u at node i. It is regarded as acceptable whenever

umin
i ≤ ui ≤ umax

i . (15)

As before, umax
i and umin

i are the local extrema of the low-order solution
uL. If any quantity of interest (density, velocity, pressure) has an under-
shoot/overshoot at node i, then a fixed percentage of the added antidiffusive
fluxes αijFij and αjiFji is removed until the offense is eliminated. In the N -step
version of our failsafe limiter, the difference between the unacceptable nodal
value Ui and the low-order predictor UL

i is gradually reduced as follows:

miU
(m)
i = miUi −

∑
j 6=i

β
(m)
ij (αijFij), m = 1, . . . , N. (16)

If the (selected) primitive variables satisfy (15), and a similar constraint holds

for node j, then we set β
(m)
ij = β

(m−1)
ij with β

(0)
ij = 0. Otherwise, the added an-

tidiffusion is reduced by the factor β
(m)
ij = m/N . If the undershoot/overshoot

still exists at the last correction cycle, the final result is U
(N)
i = UL

i .

The number of correction cycles N depends on the effort invested in the cal-
culation of αij. If the synchronized FCT limiter is applied to all primitive
variables, then undershoots and overshoots are an exception, so that N = 1
is optimal. On the other hand, 3-5 cycles may be appropriate if αij = αρ

ij or
αij = αp

ij. The choice of N affects only the amount of rejected antidiffusion.
The bounds of the low-order solution are guaranteed to be preserved even for
αij ≡ 1. Hence, the failsafe corrector can not only reinforce but also replace
the synchronized FCT limiter, as shown by the numerical examples below.

Remark. In practice, failsafe flux correction based on (15) may give rise to
unnecessary limiting, e.g., at contact discontinuities where the density has a
jump but the velocity and pressure are constant. To avoid this, we relax (15)
and require that umin

i −ε ≤ ui ≤ umax
i +ε for the prescribed tolerance ε = 10−6.
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6 Case study: the Euler equations

In this section, we define the raw antidiffusive fluxes Fij for a FEM-FCT
discretization of the Euler equations written in the generic divergence form in
which the dot product implies summation over all space dimensions

∂U

∂t
+∇ · F(U) = 0 in Ω. (17)

This is a nonlinear hyperbolic system with U = [ρ, ρv, ρE]T . Remarkably, the
relationship between the fluxes F and Jacobians A = ∂F

∂U
is quasi-linear

F(U) = {ρv, ρv ⊗ v + pI, (ρE + p)v} = A(U)U, (18)

where I is the identity tensor. The formula for A can be found, e.g., in [9,13].

Within the framework of the group finite formulation [6,13], the approximate
solution Uh ≈ U and the numerical flux function Fh ≈ F are interpolated
using the same set of piecewise-polynomial basis functions {ϕi}. That is,

Uh =
∑
j

Ujϕj, Fh =
∑
j

Fjϕj, (19)

where Fj = AjUj due to the homogeneity property (18) of the Euler equations.

Inserting approximations (19) into the Galerkin weak form of (17), one obtains

∑
j

(
mij

dUj

dt

)
= −

∑
j

cij · Fj = −
∑
j

(cij ·Aj)Uj. (20)

The coefficients of the consistent mass matrix MC = {mij} and those of the
discrete gradient/divergence operator C = {cij} are given by [12,13]

mij =
∫
Ω

ϕiϕj dx, cij =
∫
Ω

ϕi∇ϕj dx. (21)

The nonoscillatory low-order discretization associated with (20) is constructed
by adding a suitably designed artificial viscosity operator. Furthermore, the
consistent mass matrix MC is replaced by its lumped counterpart

ML = diag{mi}, mi =
∫
Ω

ϕi dx =
∑
j

mij. (22)
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After these manipulations, the semi-discrete equation for node i becomes

mi
dUi

dt
= −

∑
j

(cij ·Aj)Uj +
∑
j 6=i

Dij(Uj − Ui). (23)

In our multidimensional generalization [11,13] of Roe’s approximate Riemann
solver [19], the blocks Dij of the artificial diffusion operator are designed using
a characteristic factorization of the cumulative Roe matrix Aij satisfying

Aij(Uj − Ui) =
cji − cij

2
· (Fj − Fi).

The analytical derivation of Aij involves the evaluation of the Jacobian A(U)
for a special average of Ui and Uj [19]. The artificial viscosity operator can
also be approximated by linearizing about the arithmetic mean edge state

Aij =
cji − cij

2
·A

(
Uj + Ui

2

)
.

Banks et al. [2] present a numerical study of methods that use this lineariza-
tion. In particular, the expected order of accuracy is verified numerically.

In any event, the hyperbolicity of the Euler equations implies that

Aij = RijΛijR
−1
ij ,

where Λij is the diagonal matrix of eigenvalues and Rij is the matrix of right
eigenvectors. To eliminate all negative eigenvalues of Aij, we define [11,13]

Dij = Rij|Λij|R−1
ij . (24)

In particularly sensitive applications, the so-defined minimum artificial viscos-
ity may fail to suppress spurious oscillations. This is unacceptable since the
flux limiting machinery relies on the assumption that the local extrema of the
low-order solution constitute physically legitimate upper and lower bounds.

A more diffusive low-order scheme can be constructed using Rusanov-like
scalar dissipation proportional to the maximum characteristic speed [2,28].
The following simple formula is likely to work when everything else fails

Dij = max{dij, dji}I, dij = |cij · vj|+ |cij|cj, (25)

where ci =
√

γpi/ρi is the local speed of sound, and I is the identity matrix
with dimensions equal to those of Aij. In implicit FEM-FCT schemes, this sort
of scalar dissipation can be used for preconditioning purposes even if Roe’s
tensorial artificial viscosity (24) is preferred for accuracy reasons.
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The difference between (20) and (23) admits the following flux decomposition

Ḟij = mij

(
dUi

dt
− dUj

dt

)
+ Dij(Ui − Uj). (26)

The raw antidiffusive fluxes for the FCT solution update (2) are given by
Fij = ∆tḞij, where ∆t is the time step and Ḟij is a suitable approximation to
(26). In the predictor-corrector FCT algorithm proposed by Kuzmin [10], the
so-defined fluxes Fij are evaluated using the final low-order solution UL. In
particular, the time derivatives at nodes i and j are approximated with (23).

Both explicit and implicit time discretizations of the low-order problem are
feasible. In either case, the numerical solution process involves three steps:

• computation of the low-order predictor UL and assembly of Fij;
• synchronized flux limiting in terms of selected primitive variables;
• failsafe postprocessing if undershoots or overshoots are detected.

Many practical aspects (matrix assembly, defect correction, weak imposition
of characterictic boundary conditions) of developing an unstructured mesh
finite element code for systems of conservation laws are addressed in [8,13].

7 Numerical examples: the Euler equations

In this section, we solve the equations of gas dynamics with the new failsafe
FCT algorithm making use of primitive variables. The difference between the
reference solution u and a numerical approximation uh is measured by

E1 =
∑

i

mi|u(xi, yi)− ui| ≈
∫
Ω

|u− uh| dx = ||u− uh||1. (27)

As before, mi denotes the i-th diagonal entry of the lumped mass matrix ML.

7.1 Shock tube problem

Sod’s shock tube problem [23] is a standard benchmark for the one-dimensional
Euler equations. It models the flow of an inviscid gas in a tube initially sep-
arated by a membrane into two sections. Reflective boundary conditions are
prescribed at the endpoints of the domain Ω = (0, 1). The initial condition for
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the nonlinear Riemann problem is given in terms of the primitive variables


ρL

vL

pL

 =


1.0

0.0

1.0

 ,


ρR

vR

pR

 =


0.125

0.0

0.15

 , (28)

where the subscripts refer to the subdomains ΩL = (0, 0.5) and ΩR = (0.5.1).

The numerical solutions displayed in Fig. 1 were calculated with an explicit
FEM-FCT algorithm on a uniform mesh of 50 linear finite elements. In this
example, we use tensorial artificial viscosity (24) and N = 4 failsafe correction
cycles in which the nodal values of the velocity and pressure are controlled.
All simulations are performed with the time step ∆t = 10−3 until the final
time T = 0.231. The maximum CFL number based on the fastest wave speed
v + c is νmax ≈ 0.1. The error norms for each solution are listed in Table 1.
The letters in the first column refer to the corresponding diagrams in Fig. 1.

The objective of this numerical study is to evaluate the performance of the
(‘unsafe’) primitive variable FCT limiter and of the new failsafe feature for
several definitions of the synchronized correction factors αij. The low-order
solution (αij = 0) is shown in Fig. 1(a). As expected, it is the most diffu-
sive one. All FCT schemes under consideration produce smaller L1 errors (see
Table 1). The snapshot in Fig. 1(b) was calculated with the failsafe correc-
tor applied to the unconstrained antidiffusive fluxes (αij = 1). In all other
diagrams, the synchronized FCT limiter was applied to the control variables
listed in parenthesis. It can readily be seen that the simultaneous control of all
primitive variables is required to suppress undershoots and overshoots in the
unsafe mode. This option is labeled with αij(ρ, p, v). Failsafe postprocessing
makes it possible to obtain essentially the same results with αij(ρ, p) or αij(ρ).
This can readily be seen from the L1 errors in the last three lines of Table 1.

Table 1
Shock tube problem: h = 1/50, ∆t = 10−3, T = 0.231.

Method E1(ρ) E1(v) E1(p)
(a) Low order, αij = 0 3.50e-2 7.48e-2 3.48e-2
(b) Failsafe FCT, αij = 1 1.57e-2 2.63e-2 1.23e-2
(c) Unsafe FCT, αij(ρ) 2.91e-2 6.39e-2 2.71e-2
(d) Failsafe FCT, αij(ρ) 1.58e-2 2.62e-2 1.22e-2
(e) Unsafe FCT, αij(ρ, p) 2.32e-2 4.28e-2 1.91e-2
(f) Failsafe FCT, αij(ρ, p) 1.58e-2 2.62e-2 1.23e-2
(g) Unsafe FCT, αij(ρ, p, v) 1.55e-2 2.62e-2 1.23e-2
(h) Failsafe FCT, αij(ρ, p, v) 1.55e-2 2.62e-2 1.23e-2
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(a) Low order, αij = 0
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(c) Unsafe FCT, αij(ρ)
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(e) Unsafe FCT, αij(ρ, p)
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(g) Unsafe FCT, αij(ρ, p, v)
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(b) Failsafe FCT, αij = 1
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(d) Failsafe FCT, αij(ρ)
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(f) Failsafe FCT, αij(ρ, p)
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(h) Failsafe FCT, αij(ρ, p, v)
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Fig. 1. Shock tube problem: h = 1/50, ∆t = 10−3. Snapshots of the density (blue),
velocity (green), and pressure (red) distribution at the final time T = 0.231.
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Even the complete deactivation of the main limiter did not cause a major
loss of accuracy in this particular test. However, this practice is not generally
recommended since it might trigger aggressive limiting at the postprocessing
step. In our experience, limiting the pressure and/or density is optimal in the
context of synchronous FCT algorithms equipped with the failsafe feature.

7.2 Double Mach reflection

Another challenging test problem was devised by Woodward and Colella [26]
for the two-dimensional Euler equations. The flow pattern involves a Mach 10
shock in air (γ = 1.4) which initially makes a 60◦ angle with a reflecting wall.

The computational domain for the double Mach reflection problem is the
rectangle Ω = (0, 4)× (0, 1). The following pre-shock and post-shock values of
the flow variables are used to define the initial and boundary conditions [1]


ρL

uL

vL

pL

 =


8.0

8.25 cos(30◦)

−8.25 sin(30◦)

116.5

 ,


ρR

uR

vR

pR

 =


1.4

0.0

0.0

1.0

 . (29)

Initially, the post-shock values (subscript L) are prescribed in the subdomain
ΩL = {(x, y) | x < 1/6 + y/

√
3} and the pre-shock values (subscript R) in

ΩR = Ω\ΩL. The reflecting wall corresponds to 1/6 ≤ x ≤ 4 and y = 0. No
boundary conditions are required along the line x = 4. On the rest of the
boundary, the post-shock conditions are assigned for x < 1/6 + (1 + 20t)/

√
3

and the pre-shock conditions elsewhere [1]. The so-defined values along the
top boundary describe the exact motion of the initial Mach 10 shock.

For better visualization of small-scale effects, we present the numerical Schlieren
diagrams that represent gray-scale images of the scalar quantity [2]

σ = exp

{
−β

(
|∇ρ| −min |∇ρ|

max |∇ρ| −min |∇ρ|

)}
,

where the smallest and largest magnitude of the density gradient are computed
over the entire domain, and the exposure value is β = 15. The Schlieren
images depicted in Figs. 2–3 were computed with the 2D version of the FCT
algorithms from the previous example. Bilinear finite elements were employed
on two structured meshes with equidistant grid spacings h = 1/64 and 1/128.
Integration in time was performed until T = 0.2 by the Crank-Nicolson time
stepping scheme with the time step ∆t = 64h · 10−4. The close-up diagram
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in Fig. 4 indicates that the complex wave pattern in the vicinity of the triple
points is resolved with high precision. This numerical solution was computed
on a very fine mesh with h = 1/256 and ∆t = 2.5 · 10−5.

In all tests, tensorial artificial viscosity was used to calculate the low-order
solution which is displayed in Figs. 2–3 (a). Due to strong numerical diffusion,
the complex interplay of incident, reflected, and Mach stem shock waves is
resolved rather poorly, and so is the slipstream at the triple point. Remarkably,
all FCT schemes under investigation succeed in capturing the weak Mach
shock that emanates from the second triple point and dies as soon as it reaches
the slipstream. In preliminary computations by the FCT algorithm in which
the x- and y-velocities were constrained individually, the curled slipstream was
found to catch up with the leading Mach stem, giving rise to an unphysical
kink. For this reason, using the weighted average (14) of velocity correction
factors is essential if the velocity belongs to the set of control variables.

The snapshots in Figs. 2–4 (d) were calculated with the failsafe corrector
applied to the unconstrained antidiffusive fluxes (αij = 1). The local bounds
for all primitive variables – density, pressure and velocity – were controlled
in this case. The numerical results in Figs. 2–3 (e) were obtained with the
algorithm in which Zalesak’s limiter is applied to the density field, whereas
the velocity and pressure bounds are enforced via failsafe postprocessing. For
this particular problem, a posteriori control of the velocity and pressure is
a must if v and p are not constrained by the FCT limiter. The simulation
crashes immediately if the αij(ρ) version is used without the failsafe feature.

8 Case study: constrained interpolation

Another task that calls for the use of failsafe flux limiting is the projection
(initialization, interpolation, postprocessing) of data in conservative numer-
ical algorithms for the equations of fluid dynamics. If the initial data are
prescribed analytically, it is essential to guarantee that the numerical solution
has the same total mass, momentum, and energy when the simulation begins.
Moreover, undershoots and overshoots are to be avoided. In a similar vein, the
interpolation of data after adaptive remeshing or mesh coarsening should be
conservative and bounded. Shashkov et al. [14,18,22] developed such interpo-
lation techniques for a class of Arbitrary Lagrangian Eulerian (ALE) methods
that require rezoning and remapping. One of the most recent advances in this
area is the synchronized Flux-Corrected Remapping (FCR) algorithm [14] in
which the density and velocity fields are constrained in a coupled manner.

Löhner ([15], pp. 257–260) presents a conservative and monotonic interpolation
technique in which the FCT limiter is applied to the difference between the
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(a) Low-order, αij = 0

(b) Unsafe FCT, αij(ρ, p)

(c) Unsafe FCT, αij(ρ, p,v)

(d) Failsafe FCT, αij = 1

(e) Failsafe FCT, αij(ρ)

Fig. 2. Double Mach reflection: 16,384 Q1 elements, T = 0.2.
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(a) Low-order, αij = 0

(b) Unsafe FCT, αij(ρ, p)

(c) Unsafe FCT, αij(ρ, p,v)

(d) Failsafe FCT, αij = 1

(e) Failsafe FCT, αij(ρ)

Fig. 3. Double Mach reflection: 65,536 Q1 elements, T = 0.2.
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Unsafe FCT, αij(ρ, p)

Fig. 4. Double Mach reflection: 262,144 Q1 elements, T = 0.2.

consistent and lumped-mass L2 projections. The latter serves as the low-order
method that satisfies the maximum principle for linear finite elements [5].
Again, the purpose of flux correction is to guarantee that the projected solution
is bounded by the local maxima and minima of the low-order predictor.

The present paper focuses on synchronized FCT remapping for systems of
conserved variables. Let U denote the initial data or numerical solution from
a different finite element space. The standard L2 projection is defined by∫

Ω

WhU
H
h dx =

∫
Ω

WhU dx, ∀Wh, (30)

where UH
h is the consistent Galerkin approximation and Wh ∈ {ϕi} is a test

function defined on the current mesh. The lumped-mass approximation∫
Ω

UL
h dx =

∫
Ω

WhU dx, ∀Wh (31)

yields a low-order predictor UL
h which has the same ‘mass’ as UH

h but is free
of undershoots/overshoots, at least in the case of linear finite elements [5].

Note that the right-hand sides of (30) and (31) are the same. If the functions
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Wh and U are defined on different meshes, numerical integration can be per-
formed using a supermesh that represents the union of the two meshes [5]. The
computation of UH involves solving a linear system of the form

MCUH = R,

where MC = {mij} is the consistent mass matrix and R is the load vector
with components Ri =

∫
Ω ϕiU dx. The low-order solution is given by

MLUL = R,

where ML is the diagonal counterpart of MC . As before, the entries of the
two mass matrices are related by (22). The high-order system can be solved
efficiently using the Richardson iteration method preconditioned by ML

MLU (m+1) = R + (ML −MC)U (m), m = 0, 1, . . . . (32)

Since the matrix MC is diagonally dominant and well-conditioned, 3–5 itera-
tions are enough. A usable initial guess is the low-order solution U (0) = UL.

By construction, the difference between the nodal values of the functions UH
h

and UL
h admits a conservative flux decomposition of the form (2) with

Fij = mij(U
H
i − UH

j ). (33)

The process of flux limiting involves the same algorithmic steps as the above
FEM-FCT scheme for the Euler equations. The nodal values of the projected
solution are given by (4), where the synchronized correction factors αij are
calculated with Zalesak’s limiter. The use of the failsafe feature is optional.

9 Numerical examples: constrained interpolation

The initialization process is an important ingredient of numerical methods for
fluid flows. The simple pointwise definition of nodal values

U0
i = U0(xi) (34)

is generally nonconservative. This may result in significant errors if the compu-
tational mesh is too coarse in regions where the function U0 is discontinuous.

The Galerkin L2 projection (30) with U = U0 is conservative but not monotone.
On the other hand, the lumped-mass version (31) is less accurate for smooth
data. This is the rationale for the use of the proposed FCT limiter.
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The data to be projected may also represent a numerical solution calculated
on a different mesh or using another set of basis functions. The transfer of
information from one space to another is an integral part of adaptive finite
element methods. The need for conservative and bounded interpolation arises
whenever mesh coarsening, remeshing, or rezoning are performed.

In this section, we present a numerical study of the synchronized FCT limiter
as a tool for constraining the Galerkin L2 projection of discontinuous data. In
the examples that follow, there was no need for the failsafe corrector because
no undershoots/overshoots were found in the velocity and pressure fields.

To assess the accuracy of our FEM-FCT projection scheme in the context of
constrained interpolation, we triangulate the square domain Ω = (0, 1)2 as
shown in Fig. 5 (a) and prescribe the following solution values

ρi =

 1.0 if 0.3 ≤ ri,

0.01 otherwise,
vi =

 0.0

0.0

 , pi = 1

where ri =
√

(0.5− xi)2 + (0.5− yi)2 measures the distance from the center

(x0, y0) = (0.5, 0.5). The background mesh is constructed in such a way that
a number of grid points lie on the circle of radius r = 0.3 where the density ρ
is discontinuous, see Fig. 6 (a).

The consistent, lumped, and constrained L2 projection schemes are employed
to transfer the above solution onto the generalized tensor product mesh shown
in Fig. 5 (b). This mesh is constructed by regular refinement of a quadrilateral
3 × 3 grid whose inner points are displaced in a nonsymmetric fashion. The
interpolated solution profiles are depicted in Fig. 6 (b–d). The consistent L2

projection produces overshoots and undershoots of about 8.5%. In contrast,
the nodal values obtained with the lumped-mass L2 projection and FEM-
FCT vary between 0.01 and 1.0, as desired. The high accuracy of constrained
interpolation is clearly visible from the error norms presented in Table 2. The
last row shows the results for the approximate FCT projection scheme in which
the raw antidiffusive fluxes Fij are evaluated using UL instead of UH .

In this test, the smallest L2 error is obtained with the lumped-mass version but
this does not imply that the FCT correction is useless. On a given coarse mesh,
a high-order solution is not guaranteed to be more accurate than a low-order
one. However, the errors decrease faster when the mesh becomes sufficiently
fine. Thus, a direct comparison of errors measured in a global norms can be
misleading. What really matters is the asymptotic rate of convergence.
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(a) (b)

Fig. 5. Constrained interpolation: original (a) and target (b) meshes.

(a) initial solution

(c) lumped L2 projection, αij = 0

(b) consistent L2 projection, αij = 1

(d) constrained L2 projection, αij(ρ)

Fig. 6. Constrained interpolation: initial and interpolated solutions.

10 Conclusions

This paper sheds some light on the aspects of flux correction for systems of
conservation laws. A new approach to constraining the primitive variables in
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Table 2
Constrained interpolation: mass conservation and error norms.

ρ∫
Ω ρh dx ‖ρ− ρh‖1 ‖ρ− ρh‖2 min(ρh) max(ρh)

(a) 3.25e-1 2.60e-2 1.17e-1 0.10e-1 1.00
(b) 3.25e-1 3.81e-2 1.51e-1 -0.70e-1 1.08
(c) 3.25e-1 4.03e-2 1.44e-1 0.10e-1 1.00
(d) 3.25e-1 3.71e-2 1.50e-1 0.10e-1 1.00
(*) 3.25e-1 3.75e-2 1.48e-1 0.10e-1 1.00

synchronized FCT algorithms is proposed. It differs from other flux limiters
for systems in that the transformation of variables is performed node-by-node
rather than edge-by-edge. Furthermore, the robustness of the generalized Za-
lesak limiter is reinforced by means of a simple failsafe corrector designed to
preserve the bounds of the low-order solution. A numerical study is performed
to illustrate the practical utility of the proposed methodology in the context
of finite element flow solvers and conservative data projections. The results
indicate that the cost of flux limiting can be significantly reduced, e.g., using
FCT to constrain the pressure and/or density only. In this case, the failsafe
feature provides an inexpensive way to fix the final solution whenever under-
shoots/overshoots are detected. In conclusion, the design of FCT algorithms
for the equations of fluid dynamics requires (i) a careful choice of the variables
to be controlled, (ii) a suitable synchronization of the correction factors, and
(iii) a mechanism that makes it possible to ‘undo’ the antidiffusive correction
whenever it turns out to be harmful. We believe that all of these ingredients
are important when it comes to solving compressible flow problems using FCT.
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