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Abstract

A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Insta-
bilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The result-
ing stabilizing term takes the form of a pressure correction. With respect to broadly accepted hourglass control approaches, the novelty
of the method resides in its residual-based character. The stabilizing residual has a definite physical significance, since it embeds a discrete
form of the Clausius–Duhem inequality. Effectively, the proposed stabilization samples the production of entropy to counter numerical
instabilities. The proposed technique is applied to materials with no shear strength (e.g., fluids), for which there exists a caloric equation
of state, and extensions to the case of materials with shear strength (e.g., solids) are also envisioned. The stabilization operator is incor-
porated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy.
Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In [25,24], the variational multi-scale approach was
applied in finite element computations of Lagrangian
shock hydrodynamics. In that case, a piecewise linear, con-
tinuous approximation in space was adopted for all the
solution variables.

Given the encouraging results in [25], extensions to the
case of Q1/P0 finite element are investigated in the present
work. The notation Q1/P0 refers to the piecewise linear,
continuous approximation of the kinematic variables (posi-
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tion/displacement, velocity, acceleration), and the piecewise
constant, discontinuous approximation of the thermody-
namic variables (density, pressure, internal energy).

Among the requirements in developing a consistent for-
mulation, conservation of mass, momentum and total
energy are considered essential. In addition, a straightfor-
ward definition of the total energy of the system is also con-
sidered very important. In fact, most of the finite element
implementations for shock hydrodynamics leverage a cen-
tral difference time integrator in which velocities are stag-
gered in time with respect to displacements/accelerations
(see, e.g., [7] for a review of the state of the practice).
Although very efficient in terms of storage and computa-
tional cost, such central difference implementations suffer
from a cumbersome definition of the kinetic energy, which
involves the product of algorithmic velocities at two differ-
ent time instants. This is seen as a problem by the authors,
since, by definition, the algorithmic kinetic energy is not
ensured to be positive [7].
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The present paper proposes an alternative approach, in
which a mid-point type integrator is implemented by means
of a conservative predictor/multi-corrector procedure.
Thanks to this approach, a straightforward definition of
the total energy is obtained. To the authors’ best knowl-
edge, the proposed algorithm is new in finite element
hydrocode implementations, although a similar approach
was originally proposed by Caramana et al. [8], in the con-
text of mimetic finite differences. The proposed approach
also shares significant similarities with the space-time inte-
grators discussed in [25].

At the core of the algorithm is a novel, multi-scale oper-
ator which controls hourglass type instabilities. Applying
the multi-scale analysis [17,18] to the base Galerkin formu-
lation shows how instabilities can be controlled. For mate-
rials with no shear strength (e.g., fluids) the stabilization
takes the form of a pressure enrichment, ultimately depen-
dent on the residual of a rate equation for the pressure.
The residual character of the stabilization preserves the
consistency of the method, and, at the same time, reveals
important connections between numerical instabilities
and physical aspects of the problem simulated. In fact,
the pressure equation residual can be interpreted as a state-
ment of the Clausius–Duhem entropy inequality [1,31,32].
Effectively, the pressure residual samples and counters the
production of entropy due to numerical instabilities. Previ-
ous work has gone in the direction of physical hourglass

control design [3,4,23]: the present work takes an even clo-
ser look at the interplay between physical consistency and
numerical instabilities of algorithms.

The proposed approach can be extended to solids with
shear strength in two and three dimensions, for which the
stabilizing pressure update residual is replaced by the resid-
ual of the full stress rate equation. In the present work,
however, only computations in two dimensions for com-
pressible fluids are considered. The extension to three-
dimensional fluids presents some additional issues, since
in that case, half of the space of hourglass modes is repre-
sented by pointwise divergence-free modes, which do not
produce any residual in the rate equation for the pressure.
This particular aspect poses an interesting dilemma: On the
one hand, because the fluid is inviscid, the physics of the
problem requires no shear damping, while on the other
hand, the numerical discretization requires some control
for divergence-free modes. In our opinion, this is not a
fault of the multi-scale approach, rather, a drawback of
the Q1/P0 formulation which needs to be addressed by
any hourglass control technique. In [26], a control over
the divergence-free part of the hourglass space was intro-
duced, using a viscosity operator constructed with the
fine-scale deviator of the velocity gradient, with encourag-
ing results. We hope to report soon on this subject with
extensive computations in three dimensions.

An integral part of the proposed approach is the shock-
capturing operator, in the form of an artificial stress tensor,
based on the symmetric part of the velocity gradient. This
choice, already explored in [25], yields an objective stress
tensor, which proves superior to standard artificial viscos-
ity operators, constructed with the velocity divergence.
Whenever spurious homogeneous shear modes are gener-
ated across the shock layer, the tensor viscosity delivers
much improved results, from both the accuracy and
robustness standpoints. In particular, improvements with
respect to [25] on the selection of the length scale in the arti-
ficial viscosity are discussed.

The rest of the exposition is organized as follows: the
basic equations of Lagrangian hydrodynamics are intro-
duced in Section 2. The variational formulation is estab-
lished in Section 3, and the time integration algorithm is
described in Section 4. Section 5 is devoted to the multi-
scale analysis and design of the multi-scale hourglass stabil-
ization. The shock-capturing operator is described in Sec-
tion 6. Section 7 contains additional comments on the
implementation of the algorithm, the integration quadra-
tures used, and the time step CFL constraints for the
method. Results of the numerical tests are analyzed in Sec-
tion 8. Conclusions and future research perspectives are
summarized in Section 9.
2. Equations of Lagrangian shock hydrodynamics

The equations of Lagrangian shock hydrodynamics gov-
ern the rate of change in position, momentum and total
energy of a compressible body of fluid, as it deforms. Let
X0 and X be open sets in Rnd (where nd is the number of
spatial dimensions). The deformation

u : X0 ! X ¼ uðX0Þ; ð1Þ
X 7!x ¼ uðX ; tÞ; 8X 2 X0; t P 0; ð2Þ

is a smooth, invertible map from the original to the current
configuration of the material. Here X is the material coor-
dinate, representing the initial position of an infinitesimal
material particle of the body, and x is the position of that
particle in the current configuration (see Fig. 1). X0 is the
domain occupied by the body in its initial configuration,
with boundary C0. u maps X0 to X, the domain occupied
by the body in its current configuration, with boundary
C. It is also useful to define the deformation gradient, and
the deformation Jacobian determinant:

F ¼ $Xu or F iA ¼
oui

oX A
¼ oxi

oX A
; ð3Þ

J ¼ detðFÞ: ð4Þ

On a domain X in the current configuration, the conser-
vative form of the equations of Lagrangian hydrodynam-
ics, consisting of mass, momentum and energy, can be
written as follows:

qJ ¼ q0; ð5Þ
q _v ¼ qg þ $x � r; ð6Þ
q _E ¼ qg � vþ qr þ $x � ðrTvþ qÞ; ð7Þ
_u ¼ v: ð8Þ



Fig. 1. Sketch of the Lagrangian map u.
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Here, $x and $xÆ are the current configuration gradient and
divergence operators, and _ð�Þ indicates the material, or
Lagrangian, time derivative. u = x � X is the displacement
vector, q0 is the reference (initial) density, q is the (current)
density, v is the velocity, g is the body force, r is the Cau-
chy stress (a symmetric tensor), E = � + v Æ v/2 is the total
energy, the sum of the internal energy � and the kinetic en-
ergy v Æ v/2, r is the energy source term, and q is the heat
flux. E, �, g, r are measured per unit mass.

Remarks

(1) Eqs. (6) and (7) are in Lagrangian conservative (or
divergence) form. In fact, the Lagrangian rate of
change of an intensive, scalar variable / is given byZ Z Z

d

dt X
q/dX ¼ d

dt X
q0/dX0 ¼

X
q0

_/dX0

¼
Z

X
q _/dX; ð9Þ

where (5) has been used, together with the identity
q0 dX0 ¼ qJ dX0 ¼ qdX: ð10Þ

(2) The kinetic energy equation, the inner product of (6)

and the velocity vector field, can be subtracted from
Eq. (7), yielding
q_� ¼ qr þ $xv : rþ $x � q; ð11Þ

where in index notation, rT : $xv ¼ rjioxi vj, and
$xv : r ¼ r : $xv ¼ rT : $xv, since r is symmetric.
Clearly (11) is not in conservative form. However, it
will be possible to use this equation in appropriate
variational formulations maintaining global conser-
vation properties (see Section 4).
The system of equations (5)–(8) has to be complemented
with appropriate boundary conditions. Assuming that the
boundary C = oX is partitioned as C ¼ Cg [ Ch, Cg \ Ch =
;, displacement boundary conditions are applied on Cg, the
Dirichlet boundary, and traction boundary conditions are
applied on Ch, the Neumann boundary. Namely,

ujCg ¼ ubcðx; tÞ; ð12Þ
rnjCh ¼ tðx; tÞ: ð13Þ

Eqs. (5)–(8) and boundary conditions (12) and (13) com-
pletely define the evolution of the system, once appropriate
initial conditions are specified.

2.1. Constitutive laws

The analysis presented in what follows is specific to
materials with no deformation strength. In this case, the
Cauchy stress r reduces to an isotropic tensor, dependent
only on the thermodynamic pressure:

r ¼ �pInd�nd
ð14Þ

or in index notation,

rij ¼ �pdij; ð15Þ

with dij the Kronecker tensor. An equation of state of the
type

p ¼ p̂ðq; �Þ; ð16Þ

is assumed. Equations of state of Mie-Grüneisen type are
compatible with (16), namely

p̂ðq; �Þ ¼ f1ðqÞ þ f2ðqÞ�; ð17Þ

and apply to materials such as compressible ideal gases, co-
volume gases, high explosives, and elastic–plastic solids
with no strength (a situation that can be achieved when
bulk stresses in the material are larger than shear stresses
by orders of magnitude). For example, ideal gases satisfy
(17), with f1 = 0 and f2 = (c � 1)q, to yield

p̂ðq; �Þ ¼ ðc� 1Þq�: ð18Þ
3. Variational formulation of Lagrangian hydrodynamics

Finite element approximations leverage a variational
statement of the equations of motion. The first step in
the development of a variational form for (5)–(7) (or
(11)), and (8), is to define the (variational) trial spaces for
the kinematic and thermodynamic variables, which charac-
terize the state of the system. In particular, Sj denotes the
space of admissible displacements, or more generally, the
space of admissible values for the kinematic variables (dis-
placements, velocities, accelerations). Analogously, Sc is
the space of admissible thermodynamic states. Specific dis-
crete definitions of Sj and Sc are given in the next section,
where the discrete form of the variational equations is pre-
sented. For now, it is important to observe that the space
Sj incorporates the set of essential boundary conditions
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(12), that is, boundary conditions of kinematic (Dirichlet)
type are imposed strongly. In addition, test spaces can be
defined: Vj is the space of variations – compatible with
(12) – for the kinematic variables, and Vc is the space of
variations for the thermodynamic variables. Using (9)
and (10), the variational problem associated with (5), (6),
(11) reads:

Find q 2Sc; v 2Sj, and � 2Sc, such that, 8wc 2Vc,
and 8wj 2Vj,

0 ¼
Z

X0

wcðq0 � qJÞdX0; ð19Þ

0 ¼
Z

X0

wj � ðq0 _vÞdX0 þ
Z

X
$s

xwj : rdX

�
Z

X
wj � ðqgÞdX�

Z
Ch

wj � t dC; ð20Þ

0 ¼
Z

X0

wcðq0 _�ÞdX0 �
Z

X
wcð$s

xv : rþ $x � qþ qrÞdX;

ð21Þ

where $s
x ¼ 1=2ð$T

x þ $xÞ is the symmetric part of the gra-
dient operator, and $xv : r ¼ $s

xv : r, since r is symmetric.
Notice that the traction (or natural) boundary conditions
are imposed in (20) through the weak form.
4. Time integration and discrete weak forms

The variational form of the Lagrangian hydrodynamics
equations and its conservation properties are related to the
choice of time integration algorithm. In the present work, a
mid-point type integration scheme is adopted, which, in
combination with an appropriate predictor/corrector solu-
tion strategy, yields an explicit iterative algorithm. The
proposed formulation conserves mass, momentum and
total energy, without resorting to any staggered approach
in time, with striking analogies to the space-time integra-
tion presented in [25]. A similar approach is usually
adopted in the context of mimetic or compatible discretiza-
tions [8,2].
4.1. Test and trial spaces

In terms of the spatial discretization, the proposed
approach is no different from standard Lagrangian hydro-
dynamic finite element methods [7,15]. Kinematic variables
are approximated by piecewise linear, continuous functions
(node-centered degrees-of-freedom), and all thermody-
namic variables are approximated by piecewise constant,
discontinuous functions (cell-centered degrees-of-freedom).
Consequently, the test-space for the momentum equation
consists of piecewise linear, continuous functions, while
the test-space for the mass and energy equations is given
by piecewise constant, discontinuous functions. The trial
function spaces Sh and test function spaces Vh are then
given by
Sh
j ¼ fw

h
j 2 ðC0ðXÞÞnd : wh

jjXe
2 ðP1ðXeÞÞnd ;

wh
j ¼ gbcðtÞ on Cgg; ð22Þ

Vh
j ¼ fw

h
j 2 ðC0ðXÞÞnd : wh

jjXe
2 ðP1ðXeÞÞnd ;

wh
j ¼ 0 on Cgg; ð23Þ

Sh
c ¼ fw

h
c 2 L2ðXÞ : wh

c jXe
2 P0ðXeÞg; ð24Þ

Vh
c ¼Sh

c ; ð25Þ

where gbc(t) indicates the essential (Dirichlet) boundary
conditions, possibly dependent on time.

4.2. Variational equations

The momentum and energy balances are considered
first. For the sake of simplicity, it is assumed that body
forces, heat fluxes and heat sources are absent. The time
step is indicated by Dt, and the mid-point value of a quan-
tity f is defined as

fnþ1=2 ¼
fn þ fnþ1

2
: ð26Þ
4.2.1. Momentum balance

Find v 2 Sh
j, such that, 8wh

j 2Vh,Z
X0

wh
j � q0ðvnþ1 � vnÞdX0 þ Dt

Z
Xnþ1=2

ð$xw
h
jÞnþ1=2 : ~rnþ1=2 dX

� Dt
Z

Ch
nþ1=2

wh
j � tnþ1=2 dC ¼ 0; ð27Þ

where $x is the current configuration gradient operator.
Notice the slight abuse of notation, since the superscript
‘‘h’’, indicating spatial discretization, should be applied to
all solution variables, discrete gradient operators, and the
domain geometry. This is avoided whenever possible, to fa-
vor a simpler presentation of algebraic expressions. Notice
that the physical traction t acts only on the Neumann
boundary (i.e., tjCg ¼ 0), and the notation ~r indicates an
algorithmic stress, whose general expression is

~r ¼ rþ rvms þ rart; ð28Þ

where rvms is the multi-scale, residual-based stress tensor,
designed to control hourglass instabilities, and rart is the
artificial viscosity stress tensor, designed to capture shock
layers.

It is usual practice in hydrodynamic computations to
lump the mass matrix in the momentum equation, to avoid
any matrix inversions in the solution procedure. The veloc-
ity field at time tn is interpolated as

vn ¼
Xnnp

B¼1

NBðXÞvn;B: ð29Þ

Here vn;B and NB(X) are the nd-dimensional vector of veloc-
ity degrees-of-freedom at tn and the shape function, both
associated with node B, and nnp is the number of nodes
in the computational mesh. The mass lumping is achieved
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applying the following approximation (no index sum is im-
plied unless expressly stated):Z

Xn

N AðXÞðqviÞn dX ¼
Z

X0

NAðXÞq0ðviÞn dX0

¼
Xnnp

B¼1

Z
X0

NAðXÞN BðXÞq0 dX0

� �
ðviÞn;B

�
Xnnp

B¼1

Z
X0

NAðXÞdABq0 dX0

� �
ðviÞn;B

¼MA
LðviÞn;A;

ð30Þ
where vi and vi are the ith components of v and v, respec-
tively, A = 1,2, . . . ,nnp, dAB is the Kronecker symbol, and

MA
L ¼

Z
X0

NAðXÞq0 dX0 ð31Þ

is the mass associated to node A in the global numbering.
Defining

½ML� ¼ ½diagffMA
L ;M

A
L ;M

A
Lg

Tg�; ð32Þ
Fnþ1=2 ¼ fFnþ1=2;Ag; ð33Þ

Fnþ1=2;A ¼
Z

Xnþ1=2

~rnþ1=2ð$xN AÞnþ1=2 dX

�
Z

Cnþ1=2

NA~tnþ1=2 dC; ð34Þ

where [ML] is a diagonal [(nd · nnp) · (nd · nnp)]-matrix and
Fn+1/2 is a (nd · nnp)-vector, Eq. (27) reduces to

½ML�ðvnþ1 � vnÞ þ DtFnþ1=2 ¼ 0: ð35Þ
4.2.2. Energy balance

Integrating in time (21), yields:
Find � 2 Sh

c , such that, 8wh
c 2Vh,Z

X0

wh
cq0ð�nþ1��nÞdX0�Dt

Z
Xnþ1=2

wh
cð$xvÞnþ1=2 : ~rnþ1=2 dX¼0:

ð36Þ
Recalling that wc, �, and q are constant over each ele-

ment, one can introduce the following definitions:

½Mel� ¼ ½diagfMelg�; ð37Þ
Mel ¼ fMeg; ð38Þ

Me ¼
Z

X0;e

q0 dX0: ð39Þ

Wnþ1=2 ¼ fWnþ1=2;eg; ð40Þ

Wnþ1=2;e ¼ �
Z

Xnþ1=2;e

ð$xvÞnþ1=2 : ~rnþ1=2 dX

( )
; ð41Þ

where Xn+1/2;e is the element domain at time tn+1/2, Mel and
Wn+1/2 are nel-dimensional vectors, and nel is the number of
elements in the computational list. Then, Eq. (36) reduces
to
½Mel�ð�nþ1 � �nÞ þ DtWnþ1=2 ¼ 0: ð42Þ

where �n and �n+1 are the vectors of cell-centered degrees-
of-freedom for the internal energy � at time tn and tn+1,
respectively.

4.2.3. Mass balance

The mass conservation equation (19) can be slightly
rearranged to yield:

Find q 2Sh
c , such that, 8wh

c 2Vh,Z
X0

wh
cq0 dX0 ¼

Z
X0

wh
cqJ dX0 ¼

Z
X

wh
cqdX: ð43Þ

Integrating the previous equation element-by-element at
time tn+1, yields

Mel ¼ ½Vnþ1�qnþ1; ð44Þ

where

qnþ1 ¼ fqnþ1;eg; ð45Þ
½Vnþ1� ¼ ½diagfVnþ1g�; ð46Þ
Vnþ1 ¼ fVnþ1;eg; ð47Þ

Vnþ1;e ¼
Z

X0;e

J nþ1 dX0 ¼ measðXnþ1;eÞ: ð48Þ
4.2.4. Displacement equations

In order to evaluate (44), the mesh geometry has to be
computed at time tn+1. This is possible by means of the
time-discretization of the rate equations for the position
field x, which yields a set of ordinary differential equations
for the vector of node locations, namely

xnþ1 � xn � Dtvnþ1=2 ¼ 0: ð49Þ
4.2.5. Equation of state

The equation of state can be applied at each time step to
obtain the pressure (or, in general, the stress field),

rnþ1 ¼ �pnþ1I ¼ �p̂ðqnþ1; �nþ1ÞI : ð50Þ

Expressing (50) in terms of the cell-centered degrees-of-
freedom, one obtains

pnþ1 ¼ p̂ðqnþ1; �nþ1Þ; ð51Þ

where

pnþ1 ¼ fpnþ1;eg; ð52Þ
p̂ðqnþ1; �nþ1Þ ¼ fp̂ðqnþ1;e; �nþ1;eÞg: ð53Þ
4.3. Global conservation properties

Eqs. (43) and (44) are statements of global and local
conservation of mass, respectively. It is also evident from
Eq. (27) or (35) that the proposed algorithm conserves
the total momentum of the system. Proving conservation
of total energy is somewhat less obvious, and, for this pur-
pose, Eqs. (27) and (36) are used. Conservation statements
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are usually proven in the case of homogenous Neumann
boundary conditions, for which the test and trial function
spaces for the velocities coincide (i.e., Sh

j ¼Vh
j). Evaluat-

ing the sum over all the nodes of (27), with wh
j ¼ vnþ1=2, the

kinetic energy balance for the system is obtained

1

2

Z
Xnþ1

qnþ1ðv � vÞnþ1dX� 1

2

Z
Xn

qnðv � vÞn dX

¼ �Dt
Z

Xnþ1=2

ð$xvÞnþ1=2 : ~rnþ1=2 dX; ð54Þ

The previous equation is derived using the following
identity:Z

X0

q0vnþ1=2 � ðvnþ1 � vnÞdX0

¼ 1

2

Z
X0

q0ððv � vÞnþ1 � ðv � vÞnÞdX0

¼ 1

2

Z
Xnþ1

qnþ1ðv � vÞnþ1 dX� 1

2

Z
Xn

qnðv � vÞn dX: ð55Þ

Testing (36) with a shape function equal to unity over
the entire domain (i.e., wh

c jX0
¼ 1) yieldsZ

Xnþ1

ðq�Þnþ1 dX�
Z

Xn

ðq�Þn dX ¼
Z

X0

q0ð�nþ1 � �nÞdX0

¼ Dt
Z

Xnþ1=2

ð$xvÞnþ1=2 : ~rnþ1=2 dX: ð56Þ

By summing (54) and (56), and noticing that their right
hand sides are equal and opposite, one can derive the fol-
lowing conservation statement for the total energy between
time steps n and n + 1:Z

Xnþ1

qnþ1

1

2
ðv � vÞnþ1 þ �nþ1

� �
dX

¼
Z

Xn

qn
1

2
ðv � vÞn þ �n

� �
dX: ð57Þ

The previous derivations can be repeated in the case
when mass lumping is applied. Using (35), an analogue
of (54) can be derived, namely,

1

2
vT

nþ1½ML�vnþ1 �
1

2
vT

n ½ML�vn ¼ �vT
nþ1=2Fnþ1=2: ð58Þ

Using the vector notation, (56) can be recast as (42) mul-
tiplied by 1, a nel-dimensional vector whose entries are all
unity, that is,

MT
elð�nþ1 � �nÞ ¼ �Dt1TWnþ1=2: ð59Þ

Finally, realizing that, by definition,

vT
nþ1=2Fnþ1=2 ¼ �1TWnþ1=2; ð60Þ

a statement of conservation of total energy analogous to
(57) can be expressed as

1

2
vT

nþ1½ML�vnþ1 þMT
el�nþ1 ¼

1

2
vT

n ½ML�vn þMT
el�n: ð61Þ
Remarks

(1) Under appropriate boundary conditions, total angu-
lar momentum is also conserved. This is a direct con-
sequence of the symmetry of the stress tensor and the
use of a mid-point time integrator [29].

(2) The total energy conservation statement (57) is a
direct consequence of the cancellation of the right
hand sides of (54) and (56), which are equal and
opposite. This fact is used to derive artificial viscosity
and variational multi-scale stabilization operators
which preserve total energy in the system. In fact,
to ensure conservation, it is sufficient that the discrete
expression for the overall ~r term remains the same in
the momentum and energy equations.
4.4. A predictor/multi-corrector approach

The algorithm developed so far requires the inversion of
a matrix, since the force and work terms are computed at
the mid-point in time, and necessitate knowledge of the
solution at time tn+1. However, a fully explicit algorithm
can be recovered by resorting to a predictor/multi-correc-
tor approach. This section is devoted to this purpose.

A number of preliminary definitions are needed. The
state of system at time t = tn is defined by means of the
vector Yn ¼ ½xT

n ; v
T
n ; q

T
n ; �

T
n ;p

T
n �

T. F
ðiÞ
nþ1=2 indicates the evalua-

tion of Fn+1/2 using the state Y at iterate (i). The definition
of the iterate of the work vector Wn+1/2 is somewhat
different

W
ði;jÞ
nþ1=2 ¼ fW

ði;jÞ
nþ1=2;eg; ð62Þ

W
ði;jÞ
nþ1=2;e ¼

Z
XðiÞ

nþ1=2;e

ðð$xÞðiÞnþ1=2v
ðjÞ
nþ1=2Þ : ~r

ðiÞ
nþ1=2 dX

( )
: ð63Þ

Here ð$xÞðiÞnþ1=2 and v
ðjÞ
nþ1=2 indicate the (current configura-

tion) gradient operator and the velocity field at t = tn+1/2

and iterate i and j, respectively. This notation is needed
to understand how conservation is enforced at each itera-

tion of the predictor/multi-corrector procedure.
As it can be appreciated in Table 1, the proposed

approach consists of a velocity update, followed, in the
order, by internal energy, position, volume, density and
pressure (or, more generally, stress) updates.

Remark (conservation of total energy). The proposed pre-
dictor/multi-corrector approach maintains all the conser-
vation properties of the base mid-point algorithm it is
derived from. The crucial step in the design of the
algorithm is to recognize that the work vector W

ði;iþ1Þ
nþ1=2 in

Table 1 has to be computed holding the geometry and all
the terms in the integral (63) at iterate (i), with the
exception of the velocity vn+1/2, which is evaluated using
the new iterate (i+1), available after the momentum
equation is integrated in time. Using arguments virtually
identical to the ones presented in Section 4.3, it is easy to



Table 1
Outline of the predictor–multi-corrector algorithm

Retrieve loop parameters: nstep, imax

Initialize all variables with initial conditions
Form [ML] and Mel

For n = 0, . . . ,nstep (Time-step loop begins)
Set Dt (respecting the CFL condition)
Predictor: Y

ð0Þ
nþ1 ¼ Yn

For i = 0, . . . ,imax � 1 (Multi-corrector loop begins)

Assembly: F
ðiÞ
nþ1=2

Velocity update: v
ðiþ1Þ
nþ1 ¼ vn � Dt½ML��1F

ðiÞ
nþ1=2

Assembly: W
ði;iþ1Þ
nþ1=2

Internal energy update: �ðiþ1Þ
nþ1 ¼ �n � Dt ½Mel��1W

ði;iþ1Þ
nþ1=2

Position update: x
ðiþ1Þ
nþ1 ¼ xn þ Dtvðiþ1Þ

nþ1=2

Volume update: V
ðiþ1Þ
nþ1 ¼ Vðxðiþ1Þ

nþ1 Þ
Density update: q

ðiþ1Þ
nþ1 ¼ ½V

ðiþ1Þ
nþ1 �

�1Mel

Equation of state update: p
ðiþ1Þ
nþ1 ¼ p̂ðqðiþ1Þ

nþ1 ; �
ðiþ1Þ
nþ1 Þ

End (Multi-corrector loop ends)
Time update: Ynþ1 ¼ Y

ðimaxÞ
nþ1

End (Time-step loop ends)

Exit

Notice that all matrices are diagonal, so that all inverse operations are just
vector divisions. Three iterations of the predictor/multi-corrector were
used in the computations. Recall also that Yn ¼ ½xT

n ; v
T
n ; q

T
n ; �

T
n ;p

T
n �

T.
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realize that, indeed, each iterate of the predictor/multi-
corrector conserves total energy, namely

1

2
ðvðiþ1Þ

nþ1 Þ
T½ML�vðiþ1Þ

nþ1 þMT
el�
ðiþ1Þ
nþ1 ¼

1

2
vT

n ½ML�vn þMT
el�n; ð64Þ

since the following cancellation takes place

ðvðiþ1Þ
nþ1=2Þ

TF
ðiÞ
nþ1=2 ¼ �1TW

ði;iþ1Þ
nþ1=2 : ð65Þ

The numerical evidence in Fig. 6a, in the context of
blast-type flows, show that the proposed method indeed
conserves total energy within machine precision.
5. A multi-scale, residual-based hourglass control

The present section develops an analysis of the Lagrang-
ian shock hydrodynamics equations, using an approach
similar to [17,18,20]. The final goal is to stabilize hourglass

instabilities while retaining the global conservation proper-

ties of the underlying discretization. A minimalistic

approach is pursued, in the sense that the simplest and
most efficient expression for the hourglass control term is
sought. In the case of materials with no shear strength,
the proposed strategy leads to a stabilization term in the
form of a pressure enrichment, very easy to incorporate in
state-of-the-practice hydrocodes.

5.1. Variational multi-scale analysis

Assume that the exact solution for the state
Y ¼ ½xT; vT; q; �; p�T 2 S of the system can be decomposed
as Y = Yh + Y 0. Yh 2 Sh is the mesh- or coarse-scale solu-
tion, represented by the discrete approximation space Sh

used to characterize the solution on the computational
grid. Y 0 2S0 is the subgrid- or fine-scale solution, the com-
ponent of the solution which cannot represented on the
computational mesh. Obviously, S ¼Sh �S0.

In (27)–(36), the explicit notations wh
j and wh

c were used
to indicate that the equations for the exact state of the sys-
tem are tested on the discrete test function space Vh. The
superscript ‘‘h’’ for the components of the solution Yh

was omitted in most of the derivations in Section 4, since
in that case there was no risk of confusion. In the discus-
sion that follows, however, it is important to precisely
account for the fine- and coarse-scale spaces. Hence

v ¼ vh þ v0; ð66Þ
q0 ¼ qh

0 þ q00; ð67Þ
q ¼ qh þ q0; ð68Þ
r ¼ rh þ r0; ð69Þ
� ¼ �h þ �0: ð70Þ

Using the previous decomposition, (20) and (21) reduce
toZ

X0

wh
j � ðqh

0 þ q00Þð _vh þ _v0ÞdX0 þ
Z

X
ð$s

xw
h
jÞ

: ðrh þ r0ÞdX ¼ 0; ð71ÞZ
X0

wh
cðqh

0 þ q00Þð _�h þ _�0ÞdX0

�
Z

X
wh

cð$s
xðvh þ v0ÞÞ : ðrh þ r0ÞdX ¼ 0; ð72Þ

where in order to simplify the analysis, homogenous
Dirichlet boundary conditions are imposed for the velocity.
No approximation has been made so far, and the initial
geometry of the computational grid, as well as the displace-
ment field are assumed to be known exactly. At this point,
it becomes useful to decompose the stress r as follows:

r ¼ �pI þ devr; ð73Þ

p ¼ � trr

3
¼ � 1

3

Xnd

k¼1

rkk; ð74Þ

devr ¼ r� trr

3
I ¼ rþ pI : ð75Þ

An analogous decomposition holds for rh and r 0, and
the generic symmetric gradient of a vector w:

$s
xw ¼ ð$s

x � wÞI þ devð$s
xwÞ: ð76Þ

Therefore, the stress integrals in (71) and (72) can be recast
in terms of the following expressions:Z

X
ð$s

xw
h
jÞ : r�dX ¼ �

Z
X
ð$x � wh

jÞ : p�dX

þ
Z

X
devð$s

x � w
h
jÞ : devr�dX; ð77Þ
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Z
X

wh
c$

s
xðv}Þ : r�dX ¼ �

Z
X

wh
cð$x � v}Þ : p�dX

þ
Z

X
wh

cdevð$s
xv}Þ : devr�dX; ð78Þ

where r• = rh or r 0, p• = ph or p 0, and v} ¼ vh or v 0. Some
additional assumptions are now needed to derive a simple
stabilization operator.

Assumptions I (coarse-scale equations).

(i) Fine-scale terms are considered small with respect to
coarse-scale terms. Therefore, products of fine-scale
terms are neglected, being higher-order corrections.

(ii) Fine-scale components of the node positions and
mesh geometry are considered negligible.

(iii) q00 is considered negligible, since q0 is a datum of the
problem.

(iv) Time derivatives of the fine-scales are neglected. This
quasi-static approximation is equivalent to assuming
that the fine scales adjust instantaneously to comple-
ment the coarse-scales. Some authors [11] have been
arguing in favor of tracking in time the subgrid-scale
component in the solution. However, this would
involve the additional computational cost of storing
and integrating in time the fine-scale component of
the state variables. In the current work, this addi-
tional cost is avoided.

(v) The following integral is neglected:Z Z� �

X

wh
cph$x � v0dX ¼

Xnel

e¼1

wh
c;ep

h
e

Xe

$x � v0dX ; ð79Þ

where the subscript e indicates the element values of
the piecewise constant, discontinuous interpolation
for wh

c and ph. There are two important reasons to ne-
glect this term. First of all, the typical velocity insta-
bilities arising in the base Galerkin formulation are
hourglass modes, whose divergence integrates to zero
over each element. If an hourglass mode has to be
counterbalanced, the corrective field v 0 must lie in
the space of hourglass modes, and its divergence must
integrate to zero over each element. Therefore,
assuming that (79) is negligible or vanishes is equiva-
lent to posing the correct constraint on the fine-scale
velocity space. Another important reason not to in-
clude (79) is that its discretization would yield a
non-conservative formulation. Because a number of
non-linear, higher-order terms have been removed
from the original equations, global conservation of
total energy is not ensured a priori, but has to be
checked and enforced a posteriori.
(vi) In order to obtain a conservative method, the term
Z
X

wh
cdevð$s

xv0Þ : devrhdX ð80Þ

is also neglected. In the case of a fluid, this assump-
tion is not needed, since devrh vanishes exactly.
With the previous assumptions, (71) and (72) reduce to:

0 ¼
Z

X0

wh
j � qh

0 _vh dX0 �
Z

X
ð$x � wjÞ

hph dX

þ
Z

X
devð$s

xwjÞ
h

: devrh dX�
Z

X
ð$x � wjÞ

hp0 dX

þ
Z

X
devð$s

xwjÞ
h

: devr0 dX; ð81Þ

0 ¼
Z

X0

wh
cq

h
0 _�h dX0 þ

Z
X

wh
cð$x � vÞhph dX

�
Z

X
wh

cdevð$s
xvÞh : devrh dXþ

Z
X

wh
cð$x � vÞhp0 dX

�
Z

X
wh

cdevð$s
xvÞh : devr0 dX: ð82Þ

. Mech. Engrg. 197 (2008) 1056–1079 1063
Assumptions II (fine-scale representation).

(vii) The constitutive law of the material is assumed to
have the form [14]
_r ¼ _̂rðr;$xvÞ; ð83Þ
where the structure of _̂r is such that objectivity of the
stress update procedure is ensured. Then, testing the
variational formulation on the fine-scale space V0,
and applying a typical multi-scale approximation to
the subgrid-scale Green’s function operator [25,24],
the subgrid-scale stress r can be expressed with the
ansatz:

r0 ¼ �sResh
r; ð84Þ

Resh
r ¼ ðLINðResrÞÞh; ð85Þ

Resr ¼ _r� _̂rðr;$xvÞ: ð86Þ

where LIN is a linearization operator and s is an
appropriate scaling term to be defined subsequently.
As in many error estimation techniques, it is assumed
that the error r 0 is dependent on the numerical resid-
ual of constitutive equation, Resh

r.
The multi-scale approach pursued so far is very general,
and may be exploited to derive stabilization techniques in
the case of materials with very general constitutive laws,
including solids. In the next section, materials with no
shear strength are considered.

5.2. The case of materials with no shear strength

In the case of materials which do not possess shear
strength, the terms devr, devrh, and devr 0 vanish, and
(81), (82) simplify toZ

X0

wh
j � qh

0 _vh dX0 �
Z

X
ð$x � wjÞ

hðph þ p0ÞdX ¼ 0; ð87ÞZ
X0

wh
cq

h
0 _�h dX0 þ

Z
X

wh
cð$x � vÞhðph þ p0ÞdX ¼ 0: ð88Þ
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Remarks

(1) The additional stabilization term is a pressure correc-
tion term.

(2) The proposed approach maintains global conserva-
tion properties. In fact, the conservation statements
(57), (61), and (64) hold with the substitution
~r ¼ �ðph þ p0ÞI .

It now remains to find an expression for the subgrid-
scale pressure p 0. Using the assumption of smallness of
the fine-scales, a Taylor expansion can be applied to the
equation of state (16), namely

p0 ¼ p � ph � LINðp � phÞ ¼ ðoqp̂Þhq0 þ ðo�p̂Þh�0: ð89Þ
The linearization in (89) and the structure of the residu-

als for the mass conservation and internal energy equations
can be exploited to yield

p0 ¼ �sððoqp̂ÞhResh
q þ ðo�p̂Þ

h
Resh

� Þ; ð90Þ

where

Resh
q ¼ ðResqÞh; ð91Þ

Resq ¼ _qþ q$x � v; ð92Þ

Resh
� ¼ ðRes�Þh; ð93Þ

Res� ¼ _�þ p
q

$x � v: ð94Þ

The residual Resq is actually the mass balance, written in
the current configuration, namely

0 ¼ J�1 _q0 ¼ J�1ðqJÞ� ¼ _qþ qðJ�1 _JÞ ¼ _qþ q$x � v; ð95Þ

and s is an appropriate scaling term to be defined subse-
quently. As previously pointed out, it is consistent with
many error estimation techniques to assume that the error
q 0 = q � qh in the density is a function of the mass conser-
vation residual Resh

q. A similar argument can be applied to
the fine-scale internal energy � 0. Thus, the subgrid-scale
pressure can be expressed as

p0 ¼ �s oqp̂Resq þ o�p̂Res�
� �h

¼ �s oqp̂ð _qþ q$x � vÞ þ o�p̂ _�þ p
q

$x � v
� �� �h

¼ �s _p þ q oqp̂ þ p
q2

o�p̂
� �

$x � v
� �h

: ð96Þ

To further simplify the previous expression, some ther-
modynamic identities are needed. The first and second
law of thermodynamics combined yield the Gibbs identity
[12],

Hdg ¼ d�� p
q2

dq; ð97Þ

with g the entropy per unit mass, and H the absolute tem-
perature. Hence
p
q2
¼ o�

oq

����
g

: ð98Þ

It is easy then to derive

p0 ¼ �s _p þ q oqp̂ þ o�p̂
o�

oq

����
g

 !
$x � v

 !h

¼ �s _p þ q
op
oq

����
g

$x � v
 !h

¼ �s _p þ qc2
s $x � v

� �h

¼ �s Resh
p; ð99Þ

where

Resp ¼ _p þ qc2
s $x � v; ð100Þ

and cs is the (isentropic) speed of sound in the medium.
Denoting with he the element characteristic length scale,
the value of s is defined as

s ¼ cs
Dt

2CFL
¼ cs

2

Dt

max
16e6nel

csDt
he

� � ¼ cs

2
min

16e6nel

he

cs

� �
; ð101Þ

where cs = 7.0 (values in the range [5.0,15.0] were found
appropriate). The definition in (101) is analogous to the
one in [25,24], and prevents the dramatic reduction of s
when the time step is small. The expression for the multi-
scale stabilization tensor is then

rvms ¼ �p0I ¼ sResh
pI : ð102Þ

In the case of the proposed mid-point algorithm for time
integration, (102) can be recast as

rvms ¼
s
Dt
ðph

nþ1 � ph
n þ Dtðqc2

s Þ
h
nþ1=2ð$h

x � vhÞnþ1=2ÞI : ð103Þ
Remarks

(1) For a general material, the final expression for rvms is
more complicated than (102), since it involves
also the deviator of the tensor r 0. Specific expres-
sions depend on the structure of the constitutive
laws.

(2) It is important to understand that in the case of flu-
ids, fully integrating the pressure stress terms in the
base Galerkin formulation does not prevent hour-
glass modes. This is a consequence of the fact that
the pressure is approximated with piecewise con-
stants, and factors out of the force integral. There-
fore, some additional stabilization mechanism must
be provided.

(3) In order to have a non-vanishing multi-scale stabil-
ization term, expression (103) cannot be integrated
with a single-point quadrature at the centroid of
quadrilateral or hexahedral elements, where the
divergence of the velocity vanishes even if spurious



G. Scovazzi et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1056–1079 1065
hourglass modes are present. In fact, (103) must be
evaluated with multi-point quadratures or equivalent
difference formulas. The result summarized in (102),
(103) applies to a very general class of materials, since
the only assumption made is the existence of the
equation of state (16).
5.2.1. A rational thermodynamic interpretation

The structure of the pressure residual Resp is related
to the Clausius–Duhem inequality for an adiabatic pro-
cess of a non-dissipative material. To prove this point,
the approach of rational thermodynamics [1,31,32] is
adopted. The energy balance equation can be arranged
as

qH _g ¼ �$x � qþ qr þDint; ð104Þ

where

Dint ¼
def

qH _g� q_�� p$x � v: ð105Þ

The Clausius–Duhem inequality [32] requires that
Dint P 0. Using mass conservation, $x � v ¼ � _q=q and

qDint ¼ p _qþ q2H _g� q2 _� P 0: ð106Þ

Assume there exists a caloric equation of state [12], that
is, a function ~�ðq; gÞ (convex with respect to q�1 and g) such
that � ¼ ~�ðq; gÞ. Substituting this into (106) yields

qDint ¼ ðp � q2oq~�Þ _qþ q2ðH� og~�Þ _g P 0; ð107Þ

which is required to hold for all admissible thermodynamic
processes. By the Coleman–Noll energy principle [1], this
implies that

p ¼ q2oq~�ðq; gÞ and H ¼ og~�ðq; gÞ: ð108Þ

Thus Dint ¼ 0, and (104) reduces to

qH _g ¼ �$x � qþ qr: ð109Þ

The only sources of entropy production are thermal dif-
fusion and external heat sources. This is a well known
result for non-dissipative materials [9,32]: A process is adia-

batic ð�$x � qþ qr ¼ 0Þ if and only if it is isentropic
ð _g ¼ 0Þ. The previous developments imply the existence
of a pressure function

p ¼def
~pðq; gÞ ¼ q2@q~�ðq; gÞ: ð110Þ

Define by

cs ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@q~pðq; gÞ

q
; ð111Þ

the isentropic speed of sound in the material. The time
derivative of the pressure function results in

_p ¼ c2
s _qþ @g~pðq; gÞ _g: ð112Þ

Again, using conservation of mass _q ¼ �q$x � v this may
be written as

_p þ qc2
s $x � v ¼ @g~pðq; gÞ _g: ð113Þ
Assuming an adiabatic process this reduces to

_p þ qc2
s $x � v ¼ Resp ¼ 0; ð114Þ

the pressure residual.

Remark.
(1) In practice Resh
p is a measure of the entropy production

due to the numerical discretization. In regions of
smooth flow, Resh

p should vanish, but because of
numerical instabilities, numerical entropy can be
generated.

(2) The previous analysis for perfect materials also shows
that the assumption of smallness of the fine-scales
implies the concept of isentropic flow.

(3) When shock waves are present in the material, the
analysis in the present section does not apply. From
a physical point of view, a shock wave is an infinitely
thin layer in which the flow does not behave as a per-
fect material, due to internal dissipation mechanisms.
From a numerical point of view, a shock-capturing
operator typically smears the discontinuity over a
few cells of the computational grid. Shock-capturing
operators usually have the form of an artificial dissi-
pation, and introduce in the material an irreversible
internal mechanism.
5.2.2. Multi-scale stabilization revisited as hourglass control

To understand that the proposed pressure enrichment
acts as an hourglass control, let us decompose the diver-
gence of a vector wh into its average value over an element
and the fluctuation with respect to the average. Namely

$h
x � wh ¼ $h

x � wh þ g$h
x � wh ; ð115Þ

$h
x � wh ¼ 1

measðXeÞ

Z
Xe

$h
x � wh dX

¼ 1

measðXeÞ

Z
Ce

wh � ndC: ð116Þ

By definition, $h
x � wh and g$h

x � wh are orthogonal in the
L2 sense. Consider the structure of the stabilization term
developed in the previous section. The expressions (87)
and (88) can be rearranged asZ

Xe

ð$h
x �w

h
jÞp0dX¼�

Z
Xe

ð$h
x �w

h
jÞsð _phþðqc2

s Þ
h$h

x � vhÞdX

¼�
Z

Xe

ð$h
x �w

h
jÞs _phþðqc2

s Þ
h$h

x � vhþ g$h
x � vh

� �
dX

¼�
Z

Xe

ð$h
x �w

h
jÞs _phþðqc2

s Þ
h$h

x � vh
� �

dX

� sðqc2
s Þ

h
Z

Xe

$h
x �w

h
j

� � g$h
x � vh

� �
dX

¼�s _phþqc2
s $

h
x � vh

� �
e

Z
Xe

$h
x �w

h
j

� �
dXþHG1;e;

ð117Þ
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Z
Xe

ð$h
x � vhÞp0dX ¼ �s _ph þ ðqc2

s Þ
h$h

x � vh
� �

e
$h

x � vhmeasðXeÞ

þ HG2;e; ð118Þ

with

HG1;e ¼ �s
Z

Xe

ðqc2
s Þ

h g$h
x � w

h
j

� � g$h
x � vh

� �
dX; ð119Þ

HG2;e ¼ �s
Z

Xe

ðqc2
s Þ

h g$h
x � vh

� �2

dX: ð120Þ

To provide an interpretation of (117), (118), it is impor-
tant to realize that, for the proposed second-order in time
algorithm,

_ph þ ðqc2
s Þ

h$h
x � vh

� �
e
¼ ð _ph � ðc2

s Þ
h _qhÞe

� Dtðph
nþ1 � ph

n

� ðc2
s Þ

h
nþ1=2ðqh

nþ1 � qh
nÞÞe

¼ OðDt2Þ: ð121Þ

When hourglass modes arise, the expression in (121)
tends to be much smaller than the terms HG1;e and HG2;e,
which represent the discretization of a divergence � diver-
gence dissipative operator acting on the hourglass modes.

Remarks

(1) In regions where a shock is present and the artificial
viscosity operator is active, (121) may not hold.

(2) Notice that HG1;e and HG2;e scale with the square of
the speed of sound and the density of the material,
similarly to many hourglass control viscosities [5].

(3) In order for the hourglass control to work, the HG1;e

and HG2;e terms must be evaluated at locations where
the discrete divergence operator is non-vanishing.
Therefore, the velocity divergence in (103) requires
either full integration or equivalent, less expensive,
finite difference formulas. Instead, the thermody-
namic variables require only one evaluation per
element.

(4) As already mentioned in the introduction, the exten-
sion to three dimensions is non-trivial, since, in that
case, half of the space of hourglass modes is repre-
sented by pointwise divergence-free modes, which
do not produce any residual in the rate equation for
the pressure. A possible solution to this problem is
presented in [26], in which an artificial viscosity based
on the fluctuation of the deviator of the velocity gra-
dient (75) is used to control divergence-free hourglass
modes. Encouraging (although preliminary) results
have been obtained with this approach.
The previous observations can also be used to define an
alternative class of hourglass operators. The basic idea is to
define a time interpolation for ðqc2

s Þ
h, so that, element-by-
element, ð _ph þ qhc2
s $

h
x � vhÞe vanishes exactly. This can be

done with a secant approximation of qc2
s , enforcing

explicitly

ðqc2
s Þ

h
nþ1=2 ¼

def ph
nþ1 � ph

n

Dt$h
x � vh

: ð122Þ

If this is the case, the stabilization term reduces to:Z
Xe

ð$h
x � w

h
jÞp0dX ¼ HG1;e; ð123ÞZ

Xe

ð$h
x � vhÞp0dX ¼ HG2;e: ð124Þ

This alternative class of stabilization operators is clearly
augmenting the original variational formulation by means
of a purely dissipative operator. A different choice of the
scaling for s is also possible in this case, namely,

~se ¼ ~sjXe
¼ s

he

csDt
; ð125Þ

where s is defined as in (101), and this time cs = 3.0 (values
in the range [1.0,7.0] were found appropriate). The nota-
tion he represents a characteristic element mesh length,
for which many possible definitions can be used. If
he ¼ ðmeasðXeÞÞ1=nd is chosen, then the stabilization term
introduced would scale like the viscous part of the Flana-
gan–Belytschko hourglass control [13,33,14,5].

6. Artificial viscosity and discontinuity capturing operator

The discontinuity capturing operator is implemented as
follows:

rart ¼
qmart$

s
xv; if $x � v < 0;

0nd�nd
; otherwise:



ð126Þ
Remarks.

(1) The use of the symmetric gradient in the definition of
rart ensures, at the continuum level, objectivity of the
artificial viscosity operator.

(2) The definition (126) is more effective in damping arti-
ficial pure shear motion, with respect to the more
common definition [7]
rart ¼ �ðqmartrx � vÞI : ð127Þ

Artificially produced homogeneous shear motion can
have disruptive consequences on shock hydrodynam-
ics computations of fluids, since it is not resisted by
hourglass controls (of any type), nor the discretized
physical stress.
Several choices of the artificial viscosity parameter mart

are possible. Among the most commonly used,
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mKur ¼ cKur2

c� 1

4
mVNR

�

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cKur2

c� 1

4
mVNR

� �2

þ c2
Kur1

c2
s

s 1Ahart; ð128Þ

with cKur1
¼ cKur2

¼ 1, c the isentropic constant in the gas,
and

mVNR ¼ j$x � vjhart: ð129Þ

Another possible choice is

mLþVNR ¼ c1cshart þ c2j$x � vjh2
art; ð130Þ

which was used in the computations of Section 8, with con-
stants c1 = 0.5 and c2 = 1.2. The expression for the so-
called Kuropatenko viscosity mKur [21] holds only for an
ideal gas, but can be generalized for any material. The
expression for mL+VNR is already general enough to include
all materials satisfying (15) and (16). The length-scale hart

needs to be defined according to one main requirement:
It should stably sample a mesh length along the normal
to the shock front. This means that, for a given mesh, hart

should not vary abruptly for small changes in the direction
of the shock normal. An effective definition was found to
be

hart ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nT
shðF�FT

�
Þ�1

nsh

q ; ð131Þ

F� ¼
ox

on
; ð132Þ

where nsh is a unit vector in the direction normal to the
shock front, and Fh the gradient of the mapping from
the parent domain to the element in the current configura-
tion. In practice, ðF�FT

�
Þ measures the stretch in the direc-

tion given by nsh. A plot of the envelope of hart as the shock
normal angle spans the interval [0,360]-degrees is presented
in Fig. 2, for various quadrilateral elements. This definition
Fig. 2. Sketch of the length-scale hart as a function of the direction of nsh.
The plots show the envelope of hart as the angle that nsh forms with the x1-
axis varies from 0� to 360�. Notice the smooth transition of the length-
scale near the corners of the elements.
is analogous to the one adopted in [19]. An effective
approximation to nsh is given by

nsh ¼
$xfb

k$xfbk
; ð133Þ

fb ¼
kvkl2

max
16e6nel

ðkvkl2Þ þ 10�3 q̂
max

16e6nel

ðq̂Þ ; ð134Þ

where kvkl2 ¼
ffiffiffiffiffiffiffiffi
v � v
p

is the velocity magnitude, and q̂ is the
nodal projection of the density, namely

q̂ ¼
Xnnp

A¼1

q̂AN AðXÞ; ð135Þ

q̂A ¼
Anel

e¼1

R
Xe

NAqdX

Anel
e¼1

R
Xe

N AdX
¼

Anel
e¼1 qe

R
Xe

N AdX
� �

Anel
e¼1

R
Xe

NAdX
; ð136Þ

with A the assembly operator [16,5].

Remarks

(1) The definitions (133) and (134) are meant to use pri-
marily the gradient of the velocity magnitude as a
measure of the shock normal. There are a number
of cases – such as implosions with radial or spherical
symmetry – in which the simple use of the gradient of
the velocity norm may produce noisy results in the
region preceding the shock location. This is why fb

rather then kvkl2 is introduced. The use of the gradi-
ent of the projected nodal density is reminiscent of
[30].

(2) The tensor rart just defined is evaluated at the mid-
point in time, together with the other terms contribut-
ing to the nodal forces. Collocation at the mid-point
in time ensures incremental objectivity of the tensor
rart [28].
7. General considerations on implementation

7.1. Numerical quadratures

First and foremost, as already noted, the divergence of
the velocity in the pressure residual Resh

p vanishes at the
centroid of quadrilateral or hexahedral elements. There-
fore, four/eight-point quadratures must be used to com-
pute the stabilization term. Notice that all other terms in
the pressure residual are constant over each of the ele-
ments, and do not need multi-point evaluation. The hour-
glass control for divergence-free shear modes in three
dimensions also requires multi-point quadratures.

Second, when the shock-capturing operator is active,
non-linear coupling effects may take place between the
artificial viscosity and the multi-scale stabilization opera-
tor, as already mentioned. The optimal choice is to inte-
grate both the artificial viscosity and the multi-scale
operator with the same quadrature rule. With this
approach, incidentally, the computational cost for the
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multi-scale operator is negligible with respect to the cost
of the artificial viscosity, since the divergence of the veloc-
ity is needed by both. Some examples of the effects of sin-
gle-point and multi-point integration for the viscosity are
presented in Section 8.3.

To understand why superior results are obtained when
the multi-scale and artificial viscosity operators share the
same quadrature rule, one needs to recall that where the
artificial dissipation is active, the multi-scale approach is
not strictly applicable. A single-point evaluation of the arti-
ficial viscosity is equivalent to enforcing that the value of
the artificial viscosity is constant over the entire element.
Especially in the case of rapid transients, this may be a
coarse approximation. Indeed, on a particular element of
Fig. 3. Acoustic pulse test on an hourglass-shaped mesh. Notice the fluctuation
the case of no hourglass control (c). These instabilities are absent when the V
the mesh, the artificial viscosity may be active only in just
a few of the quadrature points. Single-point integration
redistributes the effect of the artificial viscosity over the
entire element, generating a spurious pressure residual at
the quadrature points where there should be no artificial
dissipation. In the end, the multi-scale approach, which
leverages a local evaluation of the residual, may be affected
by the incorrect evaluation of the artificial dissipation.

In terms of quadrature rules, the details of the imple-
mentation can be then summarized as follows:

(1) The integral of the physical stress term r is evaluated
with a single-point quadrate at the centroid of the
element.
s in the velocity at the foot of the left- and right-moving acoustic waves, in
MS-I (d) or FB (e) stabilization is applied.
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(2) The multi-scale residual-based stabilization operator
is computed with multi-point quadratures.

(3) Unless otherwise specified, it should be implicitly
assumed that the artificial viscosity operator is inte-
grated with full quadrature.
7.2. Hourglass stabilization and artificial viscosity

parameters

Most of the numerical results are obtained using the
multi-scale operator as defined in (103). This method is
denoted by VMS-I, and the choice cs = 7 is made to evalu-
ate expression (101) (a range of recommended values could
be [5.0,15.0]). In addition, some computations using the
approach of (119) and (120) are performed. This method
is denoted by VMS-II, and the choice cs = 3 is made to eval-
uate expression (125) (a range of recommended values
could be [1.0,5.0]).

In order to compare the proposed multi-scale method
with existing approaches, a viscous-type hourglass control
à la Flanagan–Belytschko [5,13,14,33] is also used: This
method is referred to as FB. Unless otherwise specified,
Fig. 4. Saltzmann test: compari
the constant parameter is chosen to be cFB = 0.15. Typical
recommended values [14] span the interval [0.05, 0.15]. The
choice of making the hourglass control as dissipative as
possible within the recommended range has the purpose
of maximizing robustness. The hourglass control proposed
in [13] incorporates viscous and stiffness operators, while in
the simulations presented herein only the viscous part is
retained. It is the opinion of the authors that incorporating
artificial stiffness in the hourglass control is questionable in
the case of a fluid. In any case, the results for compressible
flow computations using a stiffness control in [6] are not
provably superior.

An artificial viscosity of type (130) is used in all compu-
tations, with c1 = 0.5 and c2 = 1.2.

7.3. CFL condition

The following constraint on the time step has been
adopted:

Dt ¼ CFL
h2

min

mtot þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

tot þ ðcshminÞ2
q ; ð137Þ
son between VMS-I and FB.
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where

mtot ¼ mart þmaxðcshe; mhgÞ; ð138Þ
and
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mhg ¼
sDtc2

s ; for VMS-I;

~sDtc2
s ; for VMS-II;

cFBhecs; for FB;

8<: ð139Þ

hmin ¼ min
16A6nnp

hA: ð140Þ
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Here, hmin is the minimum of the node distances. This def-
inition of the time-step constraint is similar to the one
adopted in the LS-DYNA algorithm [15].

8. Numerical computations in two dimensions

8.1. Acoustic pulse computations and hourglass control

A very interesting test to check the effect of the hourglass
control is to propagate an acoustic pulse on a mesh in which
the nodes are initially located according to an hourglass
pattern (see Fig. 3a). For this specific test, the shock-captur-
ing operator is not applied. The initial conditions are

v0 ¼ x; ð141Þ
q0 ¼ 1þ x; ð142Þ
p0 ¼ 1þ x; ð143Þ
Fig. 7. Two-dimensional Sedov test. Left column: No hourglass stabilization
When no stabilization is applied, it is clearly visible a pronounced hourglass p
xðX Þ ¼

0:1ð1� cosðð2p=kÞðX � X offÞÞ;
0 6 X � X off 6 k;

0;

otherwise;

8>>><>>>: ð144Þ
where k, the wavelength is taken equal to one fourth of the
length the domain X0, and Xoff = �k. As time progresses
three waves are generated (see Fig. 3b):

(1) A large amplitude acoustic wave moving from left to
right.

(2) A smaller amplitude acoustic wave moving from right
to left.

(3) A standing (i.e., motionless) entropy wave, character-
ized by a fluctuation in density and internal energy
(not visible in Fig. 3b).
. Right column: VMS-I with full integration of the shock-capturing term.
attern, which forces the computation to stop before completion.



Fig. 8. Two-dimensional Sedov test, comparison of the FB, VMS-I, and VMS-II stabilization approaches. Left column: Single-point integration for rart.
Right column: four-point integration for rart.
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Fig. 9. Two-dimensional Sedov test, zoomed view near the origin. Comparison of the VMS-I and FB stabilization approaches, for different value of the
constant parameter in the FB hourglass viscosity. For all four pictures, FB in red, VMS-I in blue. (For interpretation of the references in colour in this
figure legend, the reader is referred to the web version of this article.)
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It can be seen in Fig. 3c that, when no control is applied,
the hourglass modes manifest themselves as oscillations in
the velocity. Since the pressure is approximated by piecewise
functions which are constant over each element, it is well
known that hourglass modes would arise even if multiple-
point quadrature were used. This fact was confirmed in com-
putations, not reported here for the sake of brevity. As the
VMS-I stabilization is applied (Fig. 3d), the instabilities dis-
appear. For the purposed of comparison, Fig. 3e shows the
results for the FB hourglass control. The results of the VMS-I
and FB stabilizations are virtually identical.

8.2. Saltzmann test

The Saltzmann test evaluates the ability of a distorted
mesh to capture the features of a planar shock. A rectangu-
lar domain of gas (c = 5/3) is initially at rest.
As it can be seen from the results in Figs. 4b and 5), aside
from some over-/under-shoot near the boundaries, the
numerical and exact solution show fair agreement. A reason
for the over-/under-shoot near the boundaries may be the
inaccurate representation of homogeneous gradients on
general unstructured meshes for the piecewise constant
approximation of the pressure [10]. An analogous result is
obtained when the Flanagan–Belytschko hourglass control
is applied instead of the multi-scale control (Fig. 4c).

8.3. Sedov test

The Sedov test is a multi-dimensional blast test. An
exact solution with cylindrical symmetry is derived with
self-similarity arguments in [27].

The proposed version of the Sedov blast test is per-
formed on the [0,1.1] · [0,1.1] quadrant, subdivided into
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hourglass control are virtually identical.
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45 · 45 squares, and assesses the ability of the method to
respect the cylindrical symmetry. The initial mesh configu-
ration, for the sake of brevity, is not shown. The initial
density has a uniform unit distribution, c = 1.4, and the
energy is ‘‘zero’’ (actually, 10�14) everywhere, except the
first square zone on the bottom left corner of the quadrant,
near the origin, where it takes the value 409.7.

The boundary conditions for the Sedov test, which
require vanishing normal components of the velocities,
imply that the total energy must be conserved inside the
computational domain. Fig. 6a shows the time-history of
the total kinetic energy and the total internal energy, nor-
malized with respect to the initial total energy,
Etot

0 ¼ Etotðt0Þ. Fig. 6b shows that the relative error in the
total energy is on the order of 10�14, confirming that this
quantity is conserved throughout the simulation, within
the machine precision.

Fig. 7 shows a comparison of the results when no stabil-
ization and VMS-I stabilization are applied. The computa-
tion cannot be run to completion, without stabilization,
since an hourglass pattern develops (see Fig. 7a). As a con-
sequence, the distance between some of the nodes decreases
progressively during the simulation, forcing the same
behavior in the time step, due to the CFL constraint. On
the contrary, the VMS-I approach runs to completion and
with a very smooth mesh and density profiles (Fig. 7b
and d). The six pictures composing Fig. 8 show an interest-
ing comparison between the effect of the VMS-I, VMS-II,
and FB approaches in combination with different quadra-
ture rules for the artificial viscosity. The effects of non-lin-
ear coupling between the artificial viscosity and the VMS-I
stabilization term appear clear in Fig. 8c. The best result in
terms of smoothness of the final grid configuration and
absence of note-to-node oscillations is given by the VMS-I
method with full integration of the shock-capturing term
(Fig. 8d). If the VMS-I method is combined with single-
point integration quadrature, the mesh distortion increases
considerably near the origin (Fig. 8c). For single-point inte-
gration quadrature, the VMS-II method offers superior
results (Fig. 8e).

However, when VMS-II is combined with full-quadra-
ture, probably because of the incomplete definition of the
pressure residual, the results are less accurate than for the
VMS-I method. Fig. 8a and b shows the results for the
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FB hourglass control and a constant cFB = 0.15. The FB
yields the best results with single-point integration quadra-
ture integration, but it is somewhat inferior to the VMS-I
method when full integration is performed. To see more
clearly this last point, Fig. 9 shows a comparison of the
VMS-I and the FB approaches, as the constant in the FB
viscosity spans the interval [0.05,0.15].

For low values of cFB, an hourglass pattern, originating
in the large element in the lower left corner of the domain,
Fig. 11. Two-dimensional Noh test on a Cartesian mesh, VMS-I with fully
integrated artificial viscosity.
is clearly visible in Fig. 9a. As the constant cFB is increased
(see Fig. 9b–d), the hourglass pattern, although increas-
ingly more damped, persists.

Quantitative comparison between the VMS-I approach
and the exact solution to the Sedov problem are shown
in Fig. 10: when full integration is applied, the VMS-II
and FB yield very similar results. It is worthwhile to notice
the peak of the density value at approximately 5.5, against
the exact value of 6.0. This is a very accurate result, consid-
ering the coarseness of the initial mesh. In the proposed
test, perfect cylindrical symmetry is not expected, since,
due to the geometry of the mesh and initial/boundary con-
ditions, the geometrical axis of symmetry is the bi-secant of
the quadrant. Notice then the perfectly mirrored pattern in
the solution for the tangential component of the velocity.

8.4. Noh test

The Noh [22] test is an implosion test. The velocity has
an initial uniform radial distribution (the velocity field
points to the origin, and has unit magnitude, except at
the origin, where it is forced to zero). The initial energy
should be zero, but for practical purposes the value 10�14

is used. The constant c = 5/3 is applied to all computa-
tions. The exact solution for the density behind the shock
is 16.0 and decays as 1 + t/r in front of the shock, where
t is time and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
is the radius. The pressure past

the shock takes the value 16/3. The shock speed is 1/3, so
that at the final time of 0.6 in the computation, the discon-
tinuity is found at r = 0.2.

8.4.1. Noh test on a Cartesian quadrant

Similarly to the case of the Sedov test, a Cartesian quad-
rant [0,1] · [0,1] is initially subdivided into 50 · 50 squares.
Mesh deformation and density color plots are presented in
Fig. 11: The smoothness of the shocked grid is appreciable.
Comparison with the exact solution are presented in
Fig. 12. The results show smoothness in all variables, and
values of the plateaus for the density and pressure are in
good agreement with the exact solution, considering the
coarseness of the mesh (for extensive studies on this prob-
lem, see, e.g., [22]).

8.4.2. Noh test on a mesh with trisector symmetry

From this variant of the two-dimensional Noh test, very
important conclusions can be drawn on some aspects of the
artificial viscosity implementation. In particular, this is an
interesting test for comparing the performance of rart as
defined in (126) with respect to more classical definition
(127). Due to the initial node configuration (see
Fig. 13a), the shocked mesh tends to produce homogenous
shear modes along the secant lines at 0�, 120�, and 240�.
Shear-induced, ‘‘jet-like’’ patterns can be clearly seen in
Fig. 14. The hourglass control is no help in this case, since
pure shear motion is pointwise divergence-free, and two-
dimensional hourglass modes are not divergence-free. The
situation is much improved in the case when the artificial
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Fig. 12. Two-dimensional Noh test: Comparison with the exact solution. VMS-I with fully integrated artificial viscosity. On the left column, from the top
down: Pressure, density and internal energy. On the right column, from top down: Radial velocity vr, tangential velocity vt, and artificial viscosity mart. Each
variable is plotted as a function of the radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
. All solution points are rotated around the origin to align on a single radial plane.

Fig. 13. Two-dimensional Noh test on a radial trisector mesh. The initial mesh is given by an hexagonal pattern at the center, with a transition to a
radially symmetric pattern towards the outside boundary, as shown in (a). The mesh is composed of three identical sectors, rotated by 120� and 240� with
respect to one another. (b) presents a radially symmetric mesh, composed of 36 elements along the circumference, and 24 along the radius, which is used to
generate a reference solution.
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stress rart is defined according to (126). As can be seen in
Fig. 15, shear motion is appropriately damped in the shock
layer, and does not propagate to the rest of the flow. Con-
sequently, mesh smoothness, and the accuracy of the solu-
tion are much improved (see Fig. 16).
9. Summary

A new multi-scale method for Lagrangian shock hydro-
dynamics has been presented. The formulation of the pro-
posed method in the context of Q1/P0 finite elements



Fig. 14. Two-dimensional Noh test on the trisector mesh. FB with the
artificial stress tensor rart defined as in (127).

Fig. 15. Two-dimensional Noh test on the trisector mesh. VMS-I with the
artificial stress tensor rart is defined as in (126). Very similar results are
obtained with FB: (a) Mesh deformation and (b) density color plot.
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makes it widely applicable to state-of-the-practice hydro-
dynamic algorithms. The proposed method builds on a
mid-point time integrator implemented as a conservative
predictor/multi-corrector scheme.

The stabilization augments the original Galerkin formu-
lation without perturbing its global conservation proper-
ties. The multi-scale approach leads to a consistent
method, in which instabilities (typically, of hourglass type)
are controlled by the stabilizing effect of an appropriate
pressure residual. By rational thermodynamic arguments,
it has been shown that the pressure residual is tied to the
Clausius–Duhem inequality, and effectively, measures the
creation of entropy due to instabilities in the numerical dis-
cretization. These arguments imply the physical consis-
tency of the multi-scale stabilization. Connections with
previous work on physical hourglass stabilization have
been drawn. However, the proposed approach takes the



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
1
2
3
4
5
6

Pr
es

su
re

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

D
en

si
ty

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.2
0.4
0.6
0.8

1

In
te

rn
al

 E
ne

rg
y 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−1

−0.8

−0.6

−0.4

−0.2

0

v r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.05

0

0.05

v t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

Ar
t. 

Vi
sc

os
ity

 

r

Fig. 16. Two-dimensional Noh test: Comparison with the exact solution (continuous red curve) of the results of Fig. 14 (red dots) and Fig. 15 (blue dots).
The continuous black line represents the solution on the radially symmetric mesh of Fig. 13(b), using the tensor artificial viscosity (126). The components
of the solution are presented as in Fig. 12. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of
this article.)

1078 G. Scovazzi et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1056–1079
discussion to a new level, since, in past developments, many
aspects of the interplay between physics and numerics have
been overlooked.

Numerical results in two dimensions in the case of
compressible gas dynamics show that the method has com-
parable and in some cases superior performance to state-
of-the-practice techniques for hourglass control. In the case
of three-dimensional flows, divergence-free, hourglass
modes associated with non-homogeneous shear may be
present and need stabilization. This fact pinpoints a major
disadvantage in fluid computations of the Q1/P0 element,
which requires stabilization of fine-scale shear modes,
although inviscid fluids have no shear strength or shear
damping mechanisms. In particular, the pressure residual
cannot detect the divergence-free unstable hourglass
modes, and additional stabilization mechanisms acting on
the deviator of the velocity gradient are required [26]. In
this context, the multi-scale analysis provides a new per-
spective, and allows for a more flexible design of hourglass
viscosities aimed at damping such instabilities. In light of
the encouraging exploratory simulations in [26], more work
is needed to fully investigate the robustness and accuracy
properties of the proposed framework for three-dimen-
sional computations of inviscid fluids.

In the case of solids, instead, the ‘‘plain-vanilla’’ multi-
scale approach should incorporate all the necessary stabil-
ization mechanism for Q1/P0 formulations in two an three
space dimensions. This is due to the fact that, for materials
with shear strength, the stabilizing residual is given by the
stress update equation, which provides the necessary phys-
ical mechanisms for the control of the entire space of hour-
glass modes.

Of great importance are also the extensions of the pro-
posed multi-scale approach to more complex computa-
tions, involving multi-material, multi-physics applications.
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