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Abstract

A novel constrained interpolation algorithm for remapping of solenoidal face finite element vector fields is presented.

The algorithm is based on explicit recovery, postprocessing and interpolation of a potential for the original vector field

and a subsequent application of a curl operator to obtain the desired divergence-free finite element field on the new

mesh.

The use of interpolation instead of advection in the remap process offers valuable computational advantages. Old

and new meshes are neither required to have the same connectivity, nor to be close to each other. Slope limiting

and upwinding, which can be sensitive to grid structure, are avoided and replaced by local optimization to control

energy of the remapped field.

The new method is validated using a suite of cyclic remap problems on random and tensor product mesh sequences.

A comparison with a local remapper based on a constrained transport advection algorithm is also included.
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1. Introduction

Transfer of data between different grids, subject to constraints, is fundamental to many numerical algo-

rithms. Prolongation and restriction operators in multilevel and adaptive methods, methods on non-match-

ing grids, and computer simulations of problems with multiple physics and/or scales are just few examples
that require this capability; see, for example, [2,8,10,15,19,22], and the references cited therein.

Another important example, that served to motivate a large part of this work, is arbitrary Lagrangian–

Eulerian (ALE) methods [11]. These methods combine a Lagrangian update of the solution and the

computational grid with rezoning and remapping phases wherein the grid distortion accrued during the

Lagrangian motion is reduced, and the approximate solution is transferred to the improved mesh. A com-

putational strategy that can combine the best properties of Eulerian and Lagrangian methods is to execute

rezoning and remapping at every time cycle. The accuracy of the resulting continuous rezone ALE methods

strongly depends on quality of the last, remapping phase and the availability of efficient and accurate
remappers. A good remapper must also be robust and prevent pollution of solutions by unphysical features.

For instance, remapping of concentrations or density fields must preserve positivity and total mass [19],

while a magnetic flux B must remain divergence-free so as to avoid the spurious magnetic monopoles;

see [3,23] for a discussion of the importance of this constraint in MHD.

In a continuous rezone ALE method individual grid movements can be limited to small perturbations of

the initial mesh. To take advantage of this fact, remappers are often defined by adapting explicit advection

algorithms 3 which use information only from the neighboring cells. However, connection between the

advection equation and remapping of face element vector fields does not appear to be well-understood,
in particular, the discretization errors engendered by advection remappers are not easily identified.

At the same time, it is clear that remapping represents an interpolation procedure that may be addition-

ally constrained to provide physically meaningful solutions [19]. Association of remap with interpolation

rather than with transport is more flexible because it allows formulation of algorithms on arbitrary pairs

of grids, including grids with different topologies and grids that are not close to each other. If, on the other

hand, the grids happen to be close and/or have the same connectivity, then constrained interpolation can be

designed to take advantage from these features, making it potentially as efficient as an explicit transport

based remapper. In addition to generality, constrained interpolation also allows to circumvent the often
delicate and difficult issue of high order upwind interpolation and slope limiting for face element discreti-

zations and unstructured grids [1,4], which are required in accurate transport algorithms.

In this paper we employ the constrained interpolation (CI) paradigm to develop a new remap algorithm

for divergence-free finite element fields in two space dimensions without reference to advection. To avoid

the costly solution of indefinite linear systems engendered by the use of Lagrange multipliers to enforce the

constraint, our algorithm starts with an explicit recovery of a ‘‘vector’’ potential from the fluxes of a sol-

enoidal field B. This process is a key component of the remapper and requires a discrete exactness property

[6] to ensure the existence of discrete finite element potentials. The accuracy of the recovered potential is
increased by an application of a postprocessing technique. A simple algorithm based on extension of the

interpolation stencil along the cell faces is applied to provide more accurate values at face midpoints which

are then used to compute an eight node serendipity representation of the potential. Then, local optimization

is used to determine a convex combination of high and low order potentials that minimizes the energy mis-

match between the original and the remapped fields. This optimized combination is interpolated to the tar-

get mesh, where application of the curl operator gives the desired divergence-free face element field. When

the old and the new meshes have different connectivities and are not close to each other, interpolation re-

quires global searches to locate the appropriate cells on the old mesh. However, in a continuous rezone
3 This process can be reversed in the sense that a remap algorithm can be used to define an transport scheme; see [5].
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ALE setting, only local searches will be necessary. In this case efficiency of a CI remapper is comparable to

that of a transport based one.

The modular design of the CI remapper makes it very flexible and easy to specialize for different discret-

izations. The key, recovery, phase of the algorithm can be extended to any setting that provides an exact

sequence of finite dimensional spaces, including mimetic finite differences [12–14], co-volume methods, or
finite elements. The postprocessing phase can be implemented using interpolation techniques [16,17], pol-

ynomial preserving recovery [25,26], or reconstruction procedures from, e.g., finite volumes [18].

There are several important and novel aspects of our method that set it apart from the algorithms doc-

umented in the literature. Existing solutions that preserve exact divergence-free property are, as a rule, de-

fined on Cartesian grids, and operate directly on the fluxes of the divergence-free field in a dimension by

dimension basis; see e.g., [2,15,22]. One exception is [20] where a local remapper is defined by an application

of a transport algorithm to a vector potential. Many of the existing algorithms also impose additional

restrictions, such as grid hierarchy, or factor-of-two refinement. Interpolation on unstructured grids is con-
sidered in [8,10]. However, these papers adopt the technique of Lagrange multipliers to enforce the relevant

constraint. This leads to a global saddle-point optimization problem for the remapped field that is not al-

ways easy to solve. In contrast, our approach eliminates the need for Lagrange multipliers by using poten-

tials so that divergence-free condition is automatically satisfied by virtue of the definition of the remapped

field as a curl. Reluctance to use potentials is perhaps due to the widely held opinion that their computation

cannot be done in an effective explicit manner. However, as we demonstrate in this paper, such concerns are

unfounded because potentials can be determined very efficiently.

To save time and space, in this paper we formulate and present the CI remapper for finite element spaces
defined on logically rectangular grids. We validate the new method using a suite of two-dimensional cyclic

remap example problems and compare it with a local remapper [21] derived from a finite element extension

of the constrained transport (CT) algorithm of Evans and Hawley [9]. Numerical examples are selected to

test critical aspects of the remap process such as handling of discontinuities and energy dissipation.

The paper is organized as follows. Section 2 introduces the relevant finite element spaces and reviews the

exactness property that is fundamental to the explicit potential recovery. The remap problem is stated and

solved in Section 3. Section 4 provides a brief description of a CT remapper. The paper concludes with a

series of numerical experiments collected in Section 5 that demonstrate the performance of the new
algorithm.
2. Finite element spaces

We define the finite element spaces used in this paper by a restriction of an exact sequence of finite ele-

ments defined with respect to an unstructured hexahedral mesh. For more details about the hexahedral ele-

ments and their construction we refer to [6,24].

2.1. Logically rectangular oriented meshes

Let X 2 R2 be an open bounded domain with polygonal boundary oX, equipped with physical coordi-

nates (x1,x2) � x. In what follows we restrict attention to domains that can be covered exactly by quadri-

lateral elements K arranged in a logically rectangular mesh Th with nodes xi,j, i = 1, . . . ,n; j = 1, . . . ,m. The

horizontal faces Fiþ1=2;j, of Th connect adjacent nodes (xi,j,xi+1, j) that differ in their first index. The vertical

faces Fi;jþ1=2 connect adjacent nodes (xi,j,xi,j+1) that differ in their second index. For i = 1, . . . ,n � 1;
j = 1, . . . ,m � 1 each quadrilateral Kiþ1=2;jþ1=2 in the mesh is associated with the four nodes xi,j, xi+1,j,

xi,j+1, xi+1,j+1, and the four faces Fiþ1=2;j; Fiþ1=2;jþ1; Fi;jþ1=2; Fiþ1;jþ1=2; see Fig. 1. On a given element

Kiþ1=2;jþ1=2 we will also use the local indexing



Fig. 1. Numbering and orientation choices for a logically rectangular grid.
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FS ¼ Fiþ1=2;j; FN ¼ Fiþ1=2;jþ1; FW ¼ Fi;jþ1=2; FE ¼ Fiþ1;jþ1=2;

xSW ¼ xi;j; xSE ¼ xiþ1;j; xNW ¼ xi;jþ1; xNE ¼ xiþ1;jþ1:
The sets of all nodes, faces and quadrilaterals in Th, are denoted by NðThÞ;FðThÞ and KðThÞ,
respectively. Let (n1,n2) � n denote a reference frame in R2. We assume that all quadrilaterals in KðTh)

are strictly convex. Then; see [7], for every Kiþ1=2;jþ1=2 2 KðThÞ there exists a unique bilinear map

F iþ1=2;jþ1=2 : cK 7! Kiþ1=2;jþ1=2;Fiþ1=2;jþ1=2 ¼ ðF 1
iþ1=2;jþ1=2; F

2
iþ1=2;jþ1=2) where

cK ¼ ½�1; 1�2 is the reference ele-

ment. The inverse map Giþ1=2;jþ1=2 : Kiþ1=2;jþ1=2 7! cK;Giþ1=2;jþ1=2 ¼ ðG1
iþ1=2;jþ1=2;G

2
iþ1=2;jþ1=2Þ is not polyno-

mial unless Kiþ1=2;jþ1=2 is a rectangle or a parallelepiped. For simplicity, if there�s no chance for

confusion, we will omit the indices and simply write F and G. For every n 2 bK and x 2 K, the Jacobians

JF (n) and jG (x) are invertible. The ith column of JF will be denoted by vi, that is JF = (v1,v2).

The quadrilaterals and the faces in Th are endowed with orientation as follows. Every

Kiþ1=2;jþ1=2 2 KðThÞ is oriented as a source, i.e., on its faces we choose the outward normal. The faces

in FðThÞ are oriented by selecting one of the two possible normal directions. This is done according to
the kind of the face. For horizontal faces we choose the normal that runs along the down-up direction

and for the vertical faces, the normal that runs along the left–right direction; see Fig. 1. Oriented faces

are denoted by (FU ; nU ) where nU stands for the normal direction on face FU . The set of all oriented quad-

rilaterals forms a 2-chain and the boundary of each Kiþ1=2;jþ1=2 is the 1-chain
oK ¼ �FS þFE þFN �FW ¼
X

U2fE;N ;W ;Sg
rUFU : ð1Þ
The symbol �FU denotes the oriented face (FU ; nU ). The multiplicities rU of the faces in the boundary

chain take on the values ±1 and reflect their orientations relative to the orientation of the quadrilateral K.

Orientation of quadrilaterals and faces in a mesh is not unique and can be defined in many different ways.

The orientation choice used here is convenient for logically rectangular grids and aids in streamlining def-

initions of finite element functions and spaces.

2.2. Edge and face elements

To aid the discussion of finite element spaces and their properties it is convenient to view each quadri-

lateral Kiþ1=2;jþ1=2 as planar projection of a hexahedral with unit height that was obtained by extruding

Kiþ1=2;jþ1=2 along the vector k = (0,0,1). The vertical edges of these hexahedrals are given by the segments
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(�0.5,0.5) and their midpoints coincide with the nodes xi,j. The set of all such virtual edges is denoted by

EðThÞ.
We first define the local element basis functions for a quadrilateralK. There are four element basis func-

tions associated with the four virtual edges:
W SW ðxÞ ¼ 1
4
ð1� G1ðxÞÞð1� G2ðxÞÞk; W SEðxÞ ¼ 1

4
ð1þ G1ðxÞÞð1þ G2ðxÞÞk;

W NW ðxÞ ¼ 1
4
ð1� G1ðxÞÞð1þ G2ðxÞÞk; W NEðxÞ ¼ 1

4
ð1þ G1ðxÞÞð1þ G2ðxÞÞk:

ð2Þ
The element basis functions for the four faces of K, are, see [6],
W EðxÞ ¼ 1
4
ð1þ G1ðxÞÞð$G2ðxÞ � KÞ; W W ðxÞ ¼ 1

4
ð1� G1ðxÞÞð$G2ðxÞ � KÞ;

W NðxÞ ¼ 1
4
ð1þ G2ðxÞÞðk� $G1ðxÞÞ; W SðxÞ ¼ 1

4
ð1� G2ðxÞÞðk� $G1ðxÞÞ:

ð3Þ
The global basis functions for the virtual edges EðThÞ and the faces EðThÞ are defined in the usual man-

ner by combining element basis functions from elements that share a virtual edge and a face, respectively.

We will use the symbols W or Wj to denote the basis functions associated with an edge E 2 EðThÞ, and W E

for the basis functions associated with a face F 2 FðThÞ. These functions have the property that
Z 0:5

�0:5

W i;jðxk;lÞdz ¼ dij
kl and

Z
FU

W T � nUdS ¼ dU
T :
The edge and face finite element spaces are defined as follows:
W 1ðThÞ ¼ spanfW E;E 2 EðThÞg and W 2ðThÞ ¼ spanfW F;F 2 EðThÞg:

The functions in these spaces are piecewise polynomials only when all elements in Th are rectangles or

parallelepipeds.

2.3. Discrete exactness property

Given a planar vector field B, its interpolant Bh 2 W 2ðThÞ is defined by
Bh ¼
X

F2FðThÞ
UFW FðxÞ;UF ¼

Z
F

B � nFdS: ð4Þ
Using the Divergence Theorem and (1) it is easy to see that
Z
K

$ � Bh dx ¼
Z
oK

Bh � ndS ¼ �US þ UE þ UN � UW ¼
X

U2fS;E;N ;W g
rUUU ;
where rU are the face multiplicities from the formula (1) for oK. A function Bh 2 W 2ðThÞ, is said to be
discretely divergence-free if
X

U2fS;E;N ;W g
rUUU ¼ 0 8K 2 KðThÞ:
This definition is applicable to a wide range of discrete vector fields, including those arising in mimetic

finite differences for which point values are not defined everywhere.

Let K 2 KðThÞ has local nodes xSW, xSE, xNW and xNE. Taking the curl of the functions in (2) and

comparing the resulting expressions with the element face basis functions in (3) reveals that
$ � W SW ¼ W S � W W ; $ � W SE ¼ �W S � W E

$ � W NW ¼ W N þ W W ; $ � W NE ¼ �W N þ W E
ð5Þ



Fig. 2. The remap problem. Thin arrows represent the known fluxes on To
h . Thick arrows are the unknown fluxes on Tn

h .
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that is, curls of element virtual edge basis functions are linear combinations of the element face basis func-

tions. This relationship also extends to the sets of global basis functions so that we have the inclusion
4 W

can co
$ � W 1ðThÞ � W 2ðThÞ: ð6Þ
3. Constrained interpolation (remap)

We consider a pair To
h and Tn

h of logically rectangular grids on X, that stand for the old and new par-

titions of X into quadrilateral elements. Except for the fact that both partitions are logically rectangular 4,

no other relationship between them is assumed, e.g., they can have different numbers of elements. The prob-

lem of divergence-free remap from the old mesh To
h into the new mesh Tn

h is as follows (see Fig. 2).

Statement of the remap problem. Assume that Bo
h 2 W 2ðTo

hÞ is a discretely divergence-free field on the old
mesh. Find a discretely divergence-free approximation Bn

h 2 W 2ðTn
hÞ of this field on the new mesh, such

that
 Z
X
jBn

h j
2
dx ¼

Z
X
jBo

h j
2
dx: ð7Þ
The role of (7) is not to provide for a higher accuracy (very different fields can have identical energies),
but to improve the quality of the remap step, assuming that Bn

h is already a close approximation to Bo
h . In

practice (7) may be very costly to enforce and in our algorithm we will opt for an inexact energy

conservation.

3.1. Algorithm description

The main idea of the finite element remap algorithm is to recover, postprocess and interpolate a ‘‘vector’’

potential for Bo
h , and then take its curl on the new mesh to obtain a field Bn

h on Tn
h . This will guarantee that

$ � Bn
h ¼ 0, without using Lagrange multipliers.
e recall that this assumption is made solely to simplify and shorten presentation of the method. The new and the old partitions

nsist of different types of cells, e.g., triangles vs. quadrilaterals.
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A key part in our strategy is played by the exactness (6) of the discrete spaces W 1ðThÞ and

W 2ðThÞ, respectively. This property ensures that every solenoidal field Bo
h 2 W 2ðTo

hÞ has a discrete

potential Ao
h ¼ ð0; 0;/o

hÞ 2 W 1ðTo
hÞ, such that Bo

h ¼ $ � Ao
h . Moreover, we will show that this potential

can be recovered without solving a linear system of equations. This makes our method as efficient as an

advection based remapper because the cost of recovery does not exceed the cost of an explicit advection
step.

Two other important components of the algorithm are the postprocessing and the interpolation

operators, denoted by P and I, respectively. However, definition of these operators is very flexible and

they can be borrowed from other settings. Assuming that P and I are defined for the potential spaces

W 1ðTo
hÞ and W 1ðTn

hÞ, respectively, the constrained interpolation algorithm consists of the following main

steps:

(1) Recovery. Given a solenoidal field Bo
h 2 W 2ðTo

hÞ find Ao
h 2 W 1ðTo

hÞ, such that
Bo
h ¼ $ � Ao

h :
(2) Postprocessing. Define
AhðkðxÞÞ ¼ kðxÞAo
h þ ð1� kðxÞÞðPAo

h;Þ;
where k (x):X # [0, 1] is a real valued function.
(3) Optimization. Solve the optimization problem
koptðxÞ ¼ argminJð$ � Ao
h ;$ �IAhðkðxÞÞÞ;
where J is some measure of the energy mismatch of its arguments.

(4) Remap. Set
Bn
h ¼ $ � ðIAhðkoptðxÞÞÞ 2 W 2ðTn

hÞ:
This remap algorithm may be readily extended to any discrete setting that has a discrete exactness prop-

erty. IfW2 is a finite dimensional space used to represent the vector field Bh, discrete exactness implies exist-

ence of spaces W1,W3 and operators C :W1 # W2; D :W2 # W3, such that
W 3 ¼ DðW 2Þ and Bh ¼ CAh
for some Ah 2W1, whenever DBh = 0. Consequently, the key assumption of our algorithm, i.e., existence of
discrete vector potentials for discrete solenoidal fields, is satisfied. Definition of the remaining two compo-

nents of the remapper can be adjusted to the choice of discrete spaces. For instance, the finite element

algorithm that we are about to discuss, can be trivially extended to mimetic finite difference spaces,

where the operators C, and D are provided by the natural discretizations of the curl and the divergence;

see [12–14].
3.2. Explicit recovery of the potential

In this section we present an algorithm that finds a potential for an arbitrary discretely divergence-free

field Bh 2 W 2ðThÞ without solving a linear system of equations. We seek Ah ¼ ð0; 0;/hÞ 2 W 1ðThÞ such

that $ · Ah = Bh.

Let K 2 KðThÞ be an arbitrary element. On this element the fluxes of Bh and the coefficients of Ah are

related by $ � AhjK ¼ BhjK. Using (5)
ð$ � AhÞjK ¼ ð/SW � /SEÞW S þ ð/NW � /SEÞW E þ ð/NW � /NEÞW N þ ð/NW � /SW ÞW W :



Fig. 3. Explicit recovery of a potential.
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Comparing $ · Ah and Bh on K gives four equations for the potential coefficients:
US ¼ /SW � /SE; UE ¼ /NE � /SE;

UN ¼ /NW � /NE; UW ¼ /NW � /SW :
ð8Þ
These equations can be used to determine recursively the value of /h at any mesh point Q � xi,j, provided
an initial value (a gauge) is specified at some other arbitrary point P � xi0,j0. Consider first the case when P

and Q are endpoints of a face FU 2 FðThÞ. On logically rectangular grids P and Q can be in one of the

following four configurations (see Fig. 3)
ðP ;QÞ ¼

ðxi;j; xi;jþ1Þ case ðIÞ;
ðxi;j; xi;j�1Þ case ðIIÞ;
ðxi;j; xiþ1;jÞ case ðIIIÞ;
ðxi;j; xi�1;jÞ case ðIVÞ:

8>>><>>>:

We will define the face index lU of FU depending on the configuration of P and Q
lU ¼
1 for configurations ðIÞ and ðIVÞ;
�1 for configurations ðIIÞ and ðIIIÞ:

	
ð9Þ
Using the face index, solution of (8) for /h (Q) can be expressed as
/hðQÞ ¼ /hðP Þ þ lUUU : ð10Þ

Consider now the general case where P and Q are arbitrary mesh points and /h (P) is given. Let

fFUig; i ¼ 1; . . . ; n denote a subset of FðThÞ that forms a path from P to Q and let fQig
n

i¼0 be the vertices

along this path; see Fig. 3. For each face FUi we choose its index lUi
according to (9), and define the chain
C ¼
Xn
i¼1

lUi
FUi :
A recursive application of (10) gives that
/hðQÞ ¼ /hðP Þ þ
Xn
i¼1

lUi
UUi : ð11Þ
Formula (11) defines the values of /h at all intermediate points Qi on C, and so it can be used to recover

the potential by following a path that passes through all points in the mesh. Next lemma shows that these

values do not depend on the choice of this path.



Fig. 4. Path independence of the recovered potential.
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Lemma 1. Assume that Bh 2 W 2ðThÞ is discretely divergence-free. Let P denote an arbitrary but fixed point

in Th and let Q be some other grid point. Then, the value of /h (Q), computed according to (11) depends only

on the value /h (P), but not on the path that connects the two points.

Proof. Consider two different paths from P to Q and let
C1 ¼
Xn1
i¼1

lUi
FUi and C2 ¼

Xn2
i¼1

lUi
FUi ;
be the associated chains, where lUi
are determined according to (9). Let /h (QC1

) and /h (QC2
) denote the

potential values at Q computed by application of (11) along the paths C1 and C2, respectively. Then,
/hðQC1
Þ ¼

Z
C1

Bh � ndS and /hðQC2
Þ ¼

Z
C2

Bh � ndS:
Without loss of generality we may assume that C1 and C2 are as shown in Fig. 4. Let XC be the region

enclosed by C. It is not hard to see that the effect of the face indices lUi
is to change the orientation of the

normal on selected faces so that all face normals along C1 point inwards the enclosed region, while all face

normals along C2 point outwards XC. As a result, the boundary oXC is given by the chain
C ¼ C2 � C1:
Because Bh is discretely divergence free
0 ¼
Z

XC

$ � Bh dx ¼
Z
C
Bh � ndS ¼

Z
C2�C1

Bh � ndS ¼
Z
C2

Bh � ndS �
Z
C1

Bh � ndS
and so we conclude that /h (QC1
) = /h (QC2

). h

To define the explicit potential recovery algorithm consider a path Csp that forms a spanning tree for the

graph built from the mesh faces. Let P denote the first node on this path. It is clear that by traversing Csp

once, the value of Ah will be determined at all mesh nodes xi,j up to an arbitrary constant representing the

value of /h (P). It is also clear that, without loss of generality, we can set /h (P) = 0. Therefore, given a dis-
crete solenoidal field Bh 2 W 2ðThÞ the following algorithm finds its potential Ah 2 W 1ðThÞ:



Fig. 5. Spanning tree for a logically rectangular mesh.
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(1) Find a spanning tree for the faces FðThÞ of Th and form the chain
Csp ¼
Xn
i¼1

lUi
FUi ;

where lUi
are defined according to (9).
(2) Set potential values according to
/hðQ0Þ ¼ 0 and whðQsÞ ¼ /hðQs�1Þ þ lUs
UUs ; s ¼ 1; 2; . . . ; k;

where Qs are the terminating points of the subchains

Cs
sp ¼

Xs
l¼1

lUl
FUl ;

and UUs
are the fluxes of Bh on the faces FSs ¼ Cs

sp=C
s�1
sp .
Upon completion, this algorithm generates a vector potential Ah 2 W 1ðThÞ with the property that

$ · Ah = Bh. For logically rectangular grids a convenient spanning tree is shown in Fig. 5.

3.3. Postprocessing and interpolation

Consider the two partitions To
h and Tn

h of the computational domain and let Ao
h ¼ ð0; 0;/o

hÞ be the

potential recovered from Bo
h. A

0
h can be readily used to find An

h ¼ ð0; 0;/n
hÞ on Tn

h , by computing the values

of /o
h at the new nodes NðTn

hÞ and setting
/n
i;j ¼ /o

hðxn
i;jÞ:
Evaluation of the right-hand side above requires us to find the element Ko
kþ1=2;lþ1=2 from the old mesh that

contains xn
i;j. If T

n
h and To

h are close to each other and have the same connectivity, this search will only

require to check the elements that share the old node with the same index. For the grids considered in this

paper there are at most 4 such elements.

However, differentiation of An
h gives a solenoidal field Bn

h that is only first-order accurate. To improve the

accuracy of the remapper the finite element potential can be postprocessed. For examples of different finite



Fig. 6. Patch recovery procedure for the potential.
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element postprocessing techniques we refer to [16,17], [25,26], among others. Here we devise a simple patch

recovery scheme that is local and can be easily extended to other settings and element shapes.

For simplicity, let us consider a cell Ko
iþ1=2;jþ1=2 from KðTo

hÞ that does not have a face on the boundary

of the computational domain; see Fig. 6. The recovered potential Ao
h is defined by its four values at the cell

vertices. In addition to these values we will compute four new values at the face midpoints. Consider for
example the face FS with endpoints xSW, xSE and a midpoint xWSE. To define a value for xWSE we proceed

as follows. First, the face is extended in each direction by a fixed proportion of its length, say 1/4. Let xSW�
and xSE+ denote the endpoints of the extended face, so that with respect to the natural parametrization of

the face by length
x�SW < xSW < xWSE < xSE < xSEþ:
The values of /o
h are given at xSW and xSE, we proceed to compute the values of /o

h at x�SW and xSE+ by
locating the cells that contain these endpoints and evaluating the local finite element expressions for Ao

h . The

set of four values along the extended face is interpolated by a cubic Lagrange interpolant. Finally, this

polynomial is evaluated at the midpoint xWSE. This process is repeated for the remaining three faces to pro-

vide the desired midpoint values. If the cell Ko
iþ1=2;jþ1=2 has one or two boundary faces, face extension is

performed only in one direction. In this case, instead of a cubic, we use quadratic Lagrange interpolation

to define the midpoint values.

Upon completion of the patch recovery process, on each element K, there are eight values of the poten-

tial. These values are used to determine an 8-node serendipity interpolant of the potential on K. Thus, the
patch recovery operatorP is defined by the process of Lagrange interpolation along element faces, followed

by serendipity interpolation of vertex and midpoint values.

3.4. Optimization of the potential

To set up the optimization problem consider a function k (x) :X # [0,1] and a convex combination
AhðkðxÞÞ ¼ kðxÞAo
h þ 1ð1� kðxÞÞPAo

h ; ð12Þ
of the reconstructed and postprocessed potentials. The idea is to determine k (x) so that the compound

potential in (12) minimizes the energy mismatch functional
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JðBo
h ;BhðkðxÞÞÞ ¼

X
K2KðTn

hÞ
kBo

hk
2

K � kBhðkðxÞÞk2K



 


2;
where
BhðkðxÞÞ ¼ $ � ðIAhðkðxÞÞÞ

is the candidate solenoidal field on the new mesh. Let
koptðxÞ ¼ argminJðBo
h ;B

n
hðkðxÞÞÞ ð13Þ
be the optimal solution. The remapped field is defined by interpolating the optimized convex combination

of potentials to the new mesh and then taking its curl:
Bn
h ¼ $ � ðIAhðkoptðxÞÞÞ: ð14Þ
In regions where Bo
h does not have discontinuities or other sharp features, its energy will not experience

rapid changes and the higher order component of Bn
hðkðxÞÞ will tend to provide better approximation of the

energy on the new mesh. As a result, in such regions kopt (x) will tend to 0 and the high order component

PAo
h and its curl will dominate in (12) and in (14), respectively.

In contrast, in regions where Bo
h experiences sharp transitions and/or discontinuities, the presence ofPAo

h

will tend to increase the energy of Bn
hðkðxÞÞ. As a result, in such regions minimization of the energy mis-

match will tend to produce values of k (x) that are close to 1 and Bn
h will be dominated by the curl of

the low order component Ao
h . While kopt (x) is not a limiter in the sense that it does not guarantee mono-

tonicity, its action resembles that of a limiter by increasing or decreasing the order of the approximation
depending on the solution features.

To solve (13) efficiently we approximate k (x) by a piecewise constant function kðKÞ. This choice of

approximation effectively uncouples the global optimization problem into a set of local optimization

problems
koptðKÞ ¼ argmin kBo
hk

2

K � kBhðkðKÞÞk2K



 


2 8K 2 KðTn

hÞ ð15Þ
for the element values koptðKÞ, that can be solved independently. For each problem we approximate the

optimal value by using a fixed number of discrete bisection steps. After all element problems are solved,

we obtain a discontinuous, piecewise constant approximation koptðKÞ of kopt (x). Let N (xi,j) denote the

number of elements that share xi,j as a node. The piecewise constant function kðKÞ is further averaged

to the nodes
kðxi;jÞ ¼
X
K3xi;j

kðKÞ
 !,

Nðxi;jÞ ð16Þ
to define a nodal approximation of kopt (x). The final remapped field on the new mesh is obtained by using
k (xi,j) in (14). Implementation of this optimization strategy requires computation of the energy of the old

field Bo
h on the cells of the new mesh. One possibility is to compute kBo

hk0;K using quadrature. Another pos-

sibility is to treat energy as another quantity that needs to be remapped and use the sign-preserving con-

servative interpolation method from [19]. This will guarantee that the total energy of Bo
h on the new

mesh equals its total energy on the old mesh.

It is possible to simplify the optimization problem (15) even further by approximating kopt (x) by a global
constant function k (X). In this case, (13) reduces to an optimization problem
koptðXÞ ¼ argmin kBo
hk

2

X � kBhðkðXÞÞk2X



 


2 ð17Þ
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for the single value of kopt(X). In what follows we will refer to the strategy used in (15) as the multiple

parameter optimization, while solution computed according to (17) will be referred to as the single

parameter optimization.

Another possibility is to control energy mismatch by a feedback loop. In the simplest case we can use a

single parameter kn determined according to
kn ¼
maxð0; ko þ eÞ e < 0;

minð0; ko þ eÞ e > 0;
e ¼ 1� kBo

hkX

kBn
hkX

� �
:

	
ð18Þ
4. Advection based remap

In this section we briefly review the advection based remapper of [21] that will be used in the comparison

tests. This remapper is based on finite element extension of the CT method [9] to logically rectangular grids.

For extensions of CT type algorithms to simplicial triangulations using residual redistribution [1] ideas, see

[4].

Throughout this section we assume that To
h and Tn

h have the same connectivity. Let urel denote the dis-

placement field that takes the nodes of To
h into the nodes of Tn

h . Given the old discretely divergence-free

field Bo
h 2 W 2ðTo

hÞ, the new field Bn
h 2 W 2ðTn

hÞ is approximated by marching the solution of the advection
equation
oB

ot
¼ �$ � ðurel � BÞ and Bð0;xÞ ¼ Bo

h ð19Þ
forward in time by one unit time step. To apply this procedure, urel must be small enough to prevent a node

inTo
h from crossing more than one cell. To ensure that a CFL condition is satisfied we must restrictTn

h to a

small perturbation of To
h . The finite difference equation for the new field is
Bn
h ¼ Bo

h � $ � ðurel � Bo
hÞ: ð20Þ
The ‘‘electromotive force’’ urel � Bo
h effected by the mesh displacement is approximated by
Eo
h ¼

X
E2FðTo

hÞ
Eo
EW

o
E 2 W 1ðTo

hÞ:
Using (5) it is easy to see that on each element K
ð$ � Eo
hÞjK ¼ ðEo

SW � Eo
SEÞW o

S þ ðEo
NE � Eo

SEÞW o
E þ ðEo

NW � Eo
NEÞW o

N þ ðEo
NW � Eo

SW ÞW o
W :
As a result, on K, the flux update (20) for the finite element field Bo
h reduces to
Un
S ¼ Uo

SðEo
SW � Eo

SEÞ; Un
E ¼ Uo

E þ ðEo
NE � Eo

SEÞ
Un

N ¼ Uo
N ðEo

NW � Eo
NEÞ; Un

W ¼ Uo
W þ ðEo

NW � Eo
SW Þ:

ð21Þ
The updated fluxes serve to define the vector field
Bn
h ¼

X
F2FðTn

hÞ
Un

FW
n
F 2 W 2ðTn

hÞ
relative to the new mesh ðTn
hÞ.

The flux update formulas (21) are the same as in the CT algorithm [9], except that they are defined for

arbitrary unstructured quadrilateral cells. If $ � Bo
h ¼ 0, (21) guarantees that Bn

h is also divergence-free,

regardless of the manner in which the coefficients of Eo
h were computed. These coefficients are associated

with the virtual edges where the finite element field Bo
h is discontinuous, and must be reconstructed in order



524 P. Bochev, M. Shashkov / Comput. Methods Appl. Mech. Engrg. 194 (2005) 511–530
to evaluate Eo
i;j. Because (19) is pure advection problem, reconstruction of Bo

h at the nodes must use some

form of upwinding. For logically rectangular grids a simple solution is to use the dimension by dimension

upwind interpolant developed in [9]. For details of this procedure we refer to [9,21].

It is instructive to compare the CT remapper with the constrained interpolation algorithm. The recov-

ered potential Ao
h and its postprocessed version PAo

h are analogues of low and high order reconstructions,
respectively, in the CT remapper. The analogue of limiting in CI is provided by the optimization problem

(13) that minimizes the energy mismatch between Bo
h and its remapped version on the new mesh.

Even though the CT remapper was defined by an application of a transport scheme to an advection

equation, in reality it is equivalent to a Taylor series approximation of the divergence-free field on the

new mesh. To see this, consider a smooth solenoidal field B (x), a fixed point x0 and a small increment

Dx = (Dx,Dy). Then
B1ðx0 þ DxÞ ¼ B1ðx0Þ þ
oB1ðx0Þ

ox
Dxþ oB1ðx0Þ

oy
Dy þOðjDxj2Þ

B2ðx0 þ DxÞ ¼ B2ðx0Þ þ
oB2ðx0Þ

ox
Dxþ oB2ðx0Þ

oy
Dy þOðjDxj2Þ
Adding and subtracting oB2ðx0Þ
oy to the first equation, and oB1ðx0Þ

ox to the second equation and using that
oB1ðx0Þ
ox

þ oB2ðx0Þ
oy

¼ 0
shows that the first terms in the Taylor series of B are
Bðx0 þ DxÞ ¼ Bðx0Þ � $ � ðDx� Bðx0ÞÞ þOðjDxj2Þ: ð22Þ

Similarity between this formula and the advection equation (20) is obvious. As a result, the CT remapper

can be viewed as based on a local interpolation formula for the divergence-free field. The connection

between (20) and the Taylor expansion (22) also indicates that the advection remapper will be second order

accurate only when reconstruction of Bo
h at the nodes leads to a first-order approximation of the derivatives.
5. Numerical examples

We test our algorithm using a cyclic remapping approach. This testing method was proposed in [19] and

consists of remapping the function of interest on a sequence of grids parametrized by a ‘‘fictitious’’ time

parameter t 2 [0,1]. Therefore, we consider a sequence of grids fTn
hg

N
n¼0 where T0

h ¼ TN
h , and the index

n can be conveniently thought of as representing the fictitious time tn. We begin with an initial solenoidal

field B0
h, defined on T0

h, and then proceed to remap this field from Tn
h to Tnþ1

h for n = 0, . . . ,N � 1. Because

the first and the last grids coincide, cyclic remap allows to inspect the cumulative effect of many remappings

by comparing the initial and the final fields.

We use two different mesh sequences for the cyclic remap. The first sequence contains a set of 100 grids
obtained by consecutive random perturbations, starting from a uniform initial grid To

h . The displacement

field between Tn
h and Tnþ1

h is defined so that every grid in the sequence is guaranteed to be a valid quad-

rilateral partition of the unit square.

The second grid sequence is generated by using a displacement field given by
xi;jðtÞ ¼ ð1� aðtÞÞxi;jð0Þ þ aðtÞx3i;jð0Þ;
yi;jðtÞ ¼ ð1� aðtÞÞyi;jð0Þ þ aðtÞy2i;jð0Þ;

ð23Þ



Fig. 7. Typical random mesh (left) and two snapshots of the tensor product mesh sequence.
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where a ¼ sinð4ptÞ=2 and xi,j (0) = (xi,j (0),yi,j (0)) are the node coordinates in the initial uniform grid To
h

The grids Tn
h in this sequence are defined by xi,j (t

n) = (xi,j (t
n), yi,j (t

n)); tn = n/N. One can prove that for

any 0 6 t 6 1 formulas (23) give a valid grid; see [19]. In contrast to the first sequence, these formulas pro-

duce a smooth displacement field, and a tensor product grid. Fig. 7 shows snapshots of the two mesh

sequences.

The example solenoidal fields are defined by taking a curl of a potential function. This guarantees

that they are divergence-free to machine precision. The first potential is A = (0,0, sin (2px) sin (2py)) so
that
B ¼ ð2p sinð2pxÞ cosð2pyÞ;�2p cosð2pxÞ sinð2pyÞÞT: ð24Þ

The second potential is a function that has a see-saw shape in x and is constant in y
/hðxÞ ¼
4x if 0 6 x < 1=4;

�4ðx� 0:5Þ if 1=4 6 x 6 3=4;

4ðx� 1Þ if 3=4 < x 6 0:

8><>:

The curl of this potential gives a vector field
B1 ¼ 0;B2 ¼
�4 if 0 6 x < 1=4;

4 if 1=4 6 x 6 3=4;

�4 if 3=4 < x 6 0

8><>: ð25Þ
with a discontinuous second component.

Our first experiment compares and contrasts different strategies in the computation of the parameter k.
We remap (24) and (25) using single and multiple parameter optimization, a feedback loop, and the fixed

values k = 0 and k = 1. In the last two cases the remapper uses either the postprocessed, high-order poten-

tial (k = 0), or the reconstructed, low-order one (k = 1).
Fig. 8 shows energy levels of the remapped smooth field (24) on the two mesh sequences for different

choices of k. For k = 0 and k = 1 we see the typical growth and dissipation of energy associated with high

and low order schemes, respectively. These figures also show little difference in the energy levels maintained

by single parameter optimization (denoted by k (X) in the plots) on one hand, and feedback loop control, on

the other hand. The multiple parameter optimization (denoted by kðKÞ in the plots) tends to be a bit more

dissipative for the random mesh sequence.

Fig. 9 shows profiles of the discontinuous field (25) on the last grid from the tensor product sequence,

remapped by using multiple and single parameter optimization. While in both cases the remapper provides
crisp profiles of the discontinuity, the use of a single parameter k (X) leads to pronounced under and over-

shoots in the vicinity of the discontinuity. This is caused by the inability of a single parameter to account for

the local behavior of the remapped field. In contrast, because the multiple parameter optimization can



Fig. 8. Energy of the remapped field for different choices of k and tensor product mesh sequence.

Fig. 9. Solution profiles on T100
h for the tensor product mesh sequence using multiple (top) and single (bottom) parameter

optimization for k.
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adjust contributions from low and high order potentials locally, it maintains an almost monotone profile of

the discontinuous component of B.

From these experiments we can draw a conclusion that a single parameter strategy is appropriate for the

remapping of smooth vector fields, while multiple parameter optimization should be used for discontinuous

or rapidly changing fields.

Our next experiment compares CI and CT algorithms for the smooth field (24) and the two mesh se-

quences. The low order versions of each remapper are applied first. The energy plots of the Donor cell

CT remapper; see [9] and the low order CI (with k = 1) are shown in Fig. 10. On the random sequence
the two remappers are virtually indistinguishable. For the tensor product sequence the low order CI is

slightly more dissipative. Fig. 11 shows a further comparison of the remappers on the tensor product mesh

sequence. In addition to the low order cases now we include data for the CT remapper with the monotone

and Van Leer limiters, see [9,21], and data for the CI algorithm with a feedback loop control. We see that

(18) provides for an almost constant energy level in the CI field. In contrast, the high order accuracy of the

CT remapper is lost during the ‘‘compression’’ phases when the mesh rapidly moves from left to right and

the cells near the right wall experience rapid change in their aspect ratios.



Fig. 10. Energy of the remapped solution under low order CI and CT remappers.

Fig. 11. Energy of the remapped solution. CI with feedback control and k = 1. CT with donor cell, Van Leer and Monotone limiters.

Fig. 12. Energy of (25). CI with multiple parameter optimization vs. CT with van Leer limiting.
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The last experiment compares CI and CT remappers for the discontinuous field (25). In this case CI re-

map is applied with multiple parameter optimization for A. In the CT remapper, the Van Leer limiter is

used. The associated energy plots of the remapped fields for the tensor product sequence are shown at

the top in Fig. 12. The step-like energy profile under the CT remap continues to persists for this mesh se-

quence. The multiple parameter optimization strategy in CI is able to maintain the energy at about the same

level. Fig. 13 shows the profiles of the solution at the final mesh. The energy loss under the CT remapper is

clearly visible in the second component of (25) where discontinuity is completely smeared. In contrast, CI

algorithm is able to maintain the crisp profile of the second component.
Energy plots for the random mesh sequence are shown in Fig. 12. In this case, the energy plot of the CT

remapper with Van Leer limiting is indistinguishable from the one obtained with the simple Donor cell

upwinding. This behavior is caused by the inability of the dimension by dimension reconstruction to pro-

vide a true high order interpolation when mesh faces are not approximately aligned with the coordinate

axes. The CI method also tends to be more dissipative on the random mesh sequence. However, as



Fig. 13. Final profile of (25). CI with multiple parameter optimization vs. CT with van Leer limiting for tensor mesh sequence.

Fig. 14. Final profile of (25). CI with multiple parameter optimization vs. CT with van Leer limiting for random sequence.
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Fig. 12 shows, its performance is substantially better than that of the CT remapper. This conclusion can be

also confirmed by inspecting plots of solution profiles on the last mesh in the sequence, shown in Fig. 14.

The discontinuity smearing under CT is clearly visible, while CI is capable of providing relatively sharp pro-

files of the second component in (25).
6. Conclusions

We have formulated a constrained interpolation (remap) algorithm for divergence-free vector fields in

two dimensions. The use of interpolation instead of advection makes the new algorithm applicable to a
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much broader range of settings than traditional advection based remappers. The CI algorithm can also be

easily adapted to different discretizations, including finite difference and finite volume methods, provided a

discrete exact sequence of spaces is available. Implementation of the algorithm is facilitated by its modular

design that allows for an efficient incorporation of various postprocessing techniques for the vector poten-

tial. Numerical experiments demonstrate excellent performance of the new remapper, in particular, ability
to maintain almost constant energy levels throughout the remap cycle and ability to maintain good reso-

lution of sharp features. Extensions to three dimensions will be reported in a forthcoming paper.
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