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NUMERICAL MODELLING OF TWO-DIMENSIONAL GAS—DYNAMIC FLOWS ON A
VARIABLE-STRUCTURE MESH*

N.y. MIKHAILOVA, V.F. TISHKIN, N.M. TYURINA, A.P. FAVORSKII and M.YU. SHASHKOV

A method of computing complex two-dimensional gas-dynamic flows on
variable-structure meshes is proposed. The medium is represented as a
set of point particles and of domains surrounding the particles. These
domains are so—called Dirichiet domains. Discretization of the equations
is realized on a pattern formed from ‘Dirichiet neighbours’. To
construct the difference scheme, the method of support operators is
used; with this method, completely conservative schemes can be obtained.
Results are given of two—dimensional computations on modelling a
Rayleigh—Taylor instability in a closed rectangular vessel.

Introduction.
The need to study complex gas-dynamic flows leads constantly to the development of new

methods for performing computing experiments. At present, two main descriptions of the
medium are used when modelling flows numerically: the Lagrangian approach in the case of
relatively smooth flows /1-3/, and the Eulerian description /4/ for flows with strong

*Zh.vych.jsl.Mat.mat.Fiz.,26,9,1392_l406lg86
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defOrlTlations. At the same time, situations are often encountered in important practical
problems in which it is desirable to retain the advantages of both approaches. The use of
purely Lagrangian methods leads to strong distortion of the mesh cells, which creep into one
another and overlap, thus making it impossible to continue the computation. The main
drawback of the Eulerian approach is the difficulty of taking account of contact boundaries.
There are various methods of quasi—Lagrangian type, the basic idea of which is to use meshes
with Lagrangian nodes, whose connection is not fixed but can vary with time depending on the
mutual disposition of the meshes. Such methods are discussed e.g., in /5, 6, 7, Chapter 11,
12, and 8—11/.

The present paper gives a method of computing complex two-dimensional flows on meshes of
variable structure. The method has the following distinctive features. The medium is
represented as a set of point particles (mesh nodes) , which move along with the medium, and
domains which surround the particles. These domains are Dirichlet domains or cells (see e.g.,
/5, 12/). With each particle there is connected a mass which is assumed Lagranqian and fixed
in time. All the gas—dynamic quantities relate to particles. Given the configuration of the
particles, the Dirichlet cells are constructed afresh at each instant. As a result of the
construction of the Dirichiet cells, the “Dirichlet neighbours’ are uniquely defined, i.e.,
the particles which are closest to the given particle in the geometric sense. These particles
in fact form the pattern on which the equations of gas dynamics are discretized. The difference
scheme is constructed by using the method of supoort operators /l3_lS/,whichenableSCOtflpletelY
conservative schemes to be obtained. Matching of the properties of the difference analogues
of the operators div and grad is performed both directly, on the basis of integral identities,
and by using the variational approach /3/. When introducing the artificial viscosity needed
to compute flows with shock waves, and in order to ensure stability of the scheme, the
dissipative process is regarded as the consequence of inelastic collisions of particles. This
way of introducing viscosity for Lagrangian schemes was proposed in /16/, but it is more natural
when Dirichlet cells are used. A similar approach in the one—dimensional case was considered
in /11/.

Our algorithm has the following merits. First, the volume of Dirichlet cells depends
continuously on the particle coordinates, and remains unchanged, both at the instant when a
particle enters the neighbourhood of the given particle, and when another particle leaves.
The continuity of the volume determines the continuity of the density for the given particle.
Another important property of the Dirichlet volume is that its derivatives with respect to
the particle coordinates are likewise continuous. These derivatives appear in the difference
equations, ~ that the acceleration, velocity, internal energy, and pressure are continuous.
The pattern of the difference scheme adapts automatically to the solution, so thatareasonable
degree of accuracy can be expected. The algorithm can be used to compute complex flows,
without emergency situations arising.

The main drawback is t(~at the Dirichlet cells are not Lagrangian; this was pointed out
in /7, Chapter 11/. This implies the absence of local approximation for the equation of
continuity. It must be said, however, that a similar situation holds for the equations of
motion in the widely used Lagrangian schemes of /1, 17/. Also, it is well-known that, in
Spite of the absence of local approximation, convergence theorems /18/ have been proved for
a number of schemes for Laplace’s equation. We can •expect that a similar situation will hold
for the scheme used in our algorithm, though questions concerning accuracy require extra
Consideration. The next drawback is typical for schemes in which all the quantities are
referred to the nodes: in the case of regular rectangular meshes, the scheme is a ‘through
point” scheme, so that stability is reduced and the role of the chosen aritificial viscosity
is increased.

1. General description of the algorithm.
The method is designed to solve the equations of gas dynamics in Lagrangian variables:

p;(ivW=O, (1.1)

dW
p—~— —gradp=O, (1.2)

~d- —pdiv~V=O, (1.3)

~V—dr/d1. F(p.p. £)0. (1.4)

where p is the density, W the velocity vector, r the radius vector, p the pressure, and e
the specific internal energy.

The medium is modelled by a set of point particles and domains connected with them.
With each particle there are connected: the mass m~, the density p. , the components WX~. WY~
of the velocity vector, the specific internal energy €. ,the coordinates x,. y~ , the pressure

and the volume V of the corresponding domain. We assume that the particles move with the
medium and that their mass remains unchanged in the computational process.

The domains conne~ted with the particles are Dirichiet domains. For a given particle,
the Dirichlet domain is defined as the subdomain of the (z. y) plane, all the points of which
are closer to the given particle than are the remainder. The Dirichlet cells are convex
Polygons, which cover the Cr. y) plane without gaps or overlaps.

By dividing the domain into Dirichlet cells we can introduce the concept of a neighbour.
Given the particle, its neighbours are those whose Dirichiet cells have a common piece of
boundary with the cell of the civen particle. The neighbours form a pattern, on which Eqs.
(1.1 - 1.4) are approximated ~or the given particle.
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The method of support operators /13—15/ is used to construct the difference scheme
applied to system ~i.l)-(1.4), this amounts essentia1l~, to replacing the differential operat
by their difference analogues DIV and GRAD. The latter are constructed in such a way as to
satisfy difference analogues of certain inteoral identities which are satisfied by the initial
differential operatcrs. By thus choosing DIV and GRAD, we can obtain completely conservati~
differential_difference schemes, where time remains continuous. The methods described in
can be used to construct the completely discrete model when approximating in time.

To be able to compute flows with shock waves, artificial viscosity is introduced into
the difference equations. The dissipative process is regarded as a consequence of iflelas~j0
collisions of the given particle with its neighbours.

2. Djrjchlet cells: properties and method of construction.
1. Suppose we are given in the plane a set of points {PJ. i1, 2,....N. The Dirichlet

domain or cell for point P, is then the domain l~, any point of which is closer to PA than
are other points of the set {P}.

Note that the Dirjchlet cells may be unbounded for certain points. If the computational
domain D is bounded, we understand by the Dirichiet cells in it the intersections of the
domains Tk with D. Then, those Dirjchlet cells which were unbounded on the entire plane,
become bounded and part of their boundary consists of pieces of the boundary of D. It will
be assumed for simplicity throughout that D is a rectangle with sides parallel to the
coordinate axes. In Fig.5 of Sect.5 we show an example o~ a Dirichlet cell for an actual
problem. Given a point PA. its neighbours are by definition the points P for which i~flV~ø
where r~ and 1’, are the closures of the respective sets. In para.3 of the present section
we describe an efficient algorithm for constructing Dirichlet cells and the corresponding
lists of neighbours.

b
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Fig. 1

2. Let us consider some geometric properties of Dirichlet cells. First, these cells are
convex. Let us see how the coordinates of the vertices of the domain VA are expressible in
terms of the coordinates of the neighbours of the point PA. We order the neighbours
according to angle in the counter clockwise direction. Those neighbours are called consecutive,
which stand in such an ordered series. We denote each vertex of VA by the letter T with
the index of the neighbour standing ahead of it when point PA is circulated counter clockwise.
The vertices of T~ are the centres of circles described about the triangles whose vertices
are point PA and two of its Consecutive neighbours. In the situation of Fig.l,a, the vertex
TI is the centre of the circle through points PA. P,, P1. The coordinates of the vertex T1
are expressible as follows in terms of the coordinates of PA,PZ,PJ:

= 0.5 [A’ (yp~ — yp.) — A~ (yp1 — yp~)]/D, 2.la)
YT, 0.5 [.12 (.rp~ — Ip) — A’ (Zp1 — x~~)]/D, (2.1b~

where 4~ —Xp1 — -_ — v~k~ ~ — + y~, — y~,, D (xp1 —- (yp1 — yp.) — (Zp, — xp~)(yp, —

An important property of the volume (also denoted by 1k of a Dirichlet cell, is its
continuous dependence on the position of the point. A second important property of the
Dirichlet volume is that the derivatives öI,’c~x,,,, âV1/öyp, are continuous, where q runs over
all values from 1 to N.

Let us prove these properties. it must first be remarked that, from the formal stand
point, the volume V. is a function of several variables, namely, of the coordinates of all
points. We know that the differentiability, and hence continuity, of a function of several
variables follows from the existence and continuity of the derivatives with respect to the
individual arguments, so that it suffices to prove the continuity of the derivatives OFA/aZP,,

ÔV.,OyP,. The expressions for these derivatives are obtained by direct differentiation, in
the light of the fact that only part of the volume 1~. depends on the position of the point
P, (see Fig.l,b) First, the expressions for the derivatives were obtained manually, then
they were checked by using the REDUCE system of analytic transformations (see e.g., /19/).
Let us quote the expression for OV1/âx~e (the derivative with respect to y is computed in
the same way)

ZPq — (Zr, IT,,)?2
(UT,, — Yr,) ~ — (2.2)
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in the case XPQ~XPA. it follows directly from (2.2) that the derivative is continuous, if I-’,
is a neighbour and remains a neighbour when its coordinates vary with a small neighbourhood.
If P, is not a neighbour of P~. then ÔVA./öxp,=O, W, ay~~==O.

a b

Li °

Fig. 2

It remains to show that aiVos~~—O when the cells V~ and V~ are in contact with a common
vertex, or in other words, when the point P, lies in the circle passing through the points
P~. P, and P,. Since, in this case, the points Ti and Tq move to the same point T,’ (Fig.2,a)
then y,-~yr, and the required equation follows from (2.2). The case x~,=r,. is treated
similarly, on noting that, since PIP, and TqT1 are mutually perpendicular, we have (y~~—

YT1)/frP~3Pw) —(XT~— XT1)/(YPq — yp,.), and hence (2.2) can be reduced to the form

oV~ 3~,, — (zr1 -- XTq) 2
oXp5 ‘ YPq — YPk

Now consider how the derivative e3(,/äxp, behaves. Since the volume of the Dirichlet
cell remains unchanged when all points are given a parallel shift, we can write

VA. (.Op~ — t, Xp,~ ÷ t, Xp1 — t YPA’ Up9, yp ) COuSL,

So that

= = 0, (2.3)

where the pattern 11(k) consists of the point k itself and all its neighbours. A similar
relation holds for ÔI’~/t3yp,. From (2.3) we have

~ V ~ (24)
öXp~ 4-~ äXp

where the pattern n’(k) consists of neighbours of the point k. By (2.4) , the derivative
01 is continuous.

3. The algorithm for constructing the Dirichlet cells in pact reduces to finding the
neighbours for each point. When the neighbours are found, the coordinates of the vertices
of the Dirichiet cells are given by (2.1). The main ideas underlying our method are taken
from /12/.

Assume that the set of points considered is numbered from 1 to N in some way. We will
first consider separately the first P points on the assumption that neighhourhoods are
established between them while disregarding the other poiflts. Assume that the numbers of
the neighbours, for each point, are stored in a special list and are ordered according to
angle, counter-clockwise. The point with number P—1 is then brought into consideration,
and the set of first P+l points is considered. We then have to find the neighbours for
Point number P±I from among the first points and correct the list of neighbours for the
first p points. We shall describe this procedure in the case when the Dirichlet cells for
the P--i~ points do not contain, as pieces of boundary, pieces of the sides of the bordering
rectangle.

That one of the first P points which is closest to point P±I is first found; call it
K (see Fig.2,b). We then drop a perpendicular through the mid—point of the segment joining
Points K and P—i. and seek the intersection o~ this perpendicular with a side of the
Dirichiet cell for point K, as shown in Fig.2,b, i.e., on moving along the perpendicular to
the point of intersection, which we denote by .1 point I’—i remains on the right. The
side intersected by the perpendicular uniquely defines one of the neighbours of the point,
call it L. Point 1. is put first in the list of neighbours for the point P~I. We then
drop a perpendicular throucih the mid-point of the segment joinino points P~1 and L. This
perpendicular cuts two sides of the Dirichiet cell for point L,. One of the points of inter
section is the same as A,. since .1 is the centre cf the circle nassing through points L,. KT
and p-_i

op~
CL3

Pz

OK

oL1

The second point call it .I( defines the number of the next neiohhour of point P--I.
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call it I.~. In order to order ccunter-cicckwise, this number is placed first in the i~St of
neighbours of point P—I. while number I. is placed second. This Drccess is continued
the Dirichiet cell of point p i is closed. The list of neighbours of the new point P—~
is thus constructed.

New consider how the llsts of neighbours of other points must be corrected. First, we
change the list of neighbcurs of only those points which were in the neighbourhood of the
point P1. Say we have to correct th list of point L. We first see which of the two sides
are cut by the perpendicular dropped through the mid-point of segment L. P1 Let .V, , N..
be the numbers of the respective neijhbours. Then, from the old list of neighbours of point
L, we remove all the neighbours whose numbers lie in the list between N, and .~,, and in tJ~ejr
place we introduce the neighbour with number P—I. If there are no other numbers between N,
and N,, the list is increased as a result of introducing number P-~-1 between V and N,.
In the situation shown in Fig.2,b, from the list of neighbours of point L, we strike out L,.
and in its place put P~-1. etc.

Notice that the must laborious stage in the alqorjthm is that connected with choosing
the nearest point for the newly introduced point. We propose the following procedure for
realizing this stage. We choose one point (call it K,) among the first points, and compute
the distance from P±I to K, and all its neighbours. we compare these distances and at
the next approximation to the nearest point we take point K,. the distance to which is least
If K,~K,, the required point is found. Otherwise, the procedure is repeated, starting with
point A,. etc. It is easily shown that this process leads to the nearest point after a
finite number of steps. The number of operations per point is then 0(N), whereas 0(N)
operations are needed in the direct method. Obviously, the efficiency of the algorithm for
finding the nearest point depends on the choice of the initial point K,.

In the general algorithm, described in Sect.1, the procedure for constructing the
Dirichlet cells is used at the new (n+1)—th time layer. The lists of neighbours are then
known at the previous n—th time layer. It is natural to use this information to choose the
point K,; in fact, as K, we choose a neighbour of point P±1 at the n—th time layer. The
points are then numbered and run through in such a way that these neighbours are among the
first processed points. Examples of the construction of Oirichlet cells and some data about
the efficiency of the algorithm are given in Sect.5.

3. Construction of the difference scheme.
1. As applied to Eqs. (l.l)—(l.4) , the method of support operators /13—15/ is as follows.

Let a completely conservative difference scheme be required; then we first have to see what
properties of the differential operators imply the satisfaction of the laws of conservation
in the differential case.

We know (see e.g., /20/ that, for Eqs. (l.l)—(l.4), the laws of conservation follow from
the fact that operators div and grad have the divergence form

div Adv ~ (A, n) ds, (c. grad r)dt’ = i (e, n)ds,
r

and from the fact that the following identity holds:

çdivAth — (A, grad qjdv= ~ p(A, n)ds, (3.1)

where S is the surface bounding the volume V. n is the outward normal to S. p and A are
scalar and vector functions, and C is a constant vector function.

In the method of support operators, the difference analogues DIV and GRADof the operators
div and grad, are constructed in such a wa” that the difference analogue of (3.1) is satisfied,
i.e., one operator, say Dlv, is constructed directly, while GRADis found from the conditions
for satisfying the difference analogue of (3.1). It is natural to choose the divergence form
of DIV. The divergence of GRAD,needed for complete conservativeness, is ensured if DIV is
chosen so that it vanishes on a constant mesh vector function /20/.

2. Let us use the approach described to construct the difference scheme for Eqs.(l.l)
(1.4). Notice that DIV cannot be specified arbitraril” here. For, to approximate the
equation of continuity we use in the algorithm the relation

p=mJV,. (3.2)

On reducing (3.2) to a form similar to (1.1), we obtain the explicit form of DIV. We dif
ferentiate (3.2) with respect to time, while noting that dm/dt=O:

4~- _~[_~_ _]=o. (3.3)

comparing (3.3) and (1.1), we see that, in the difference case, ccrresnonding to div we have
the expression in brackets in (3.3), i.e.,

(3.4)

Since I is not explicitly dependent on time, while its vertices are determined by the
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position of the neighbours, we can write

(DIVW)~=4— ~ (~-wxk-~-~wYk). (3.5)
ka fl(~

Consider the properties of DIV. First, this operator has divergence form, which is a
direct consequence of (3.4) . Second, for a constant vector function, expression (3.5)
vanishes. This follows from (2.3) and (3.4) . As we have remarked, from this there follow
the equations

~ -~--L-=O, ~ -~!-L=0. (3.6)
kEfl(~) 17(’)

Thus DIV satisfies the requirements stated in Para.l of the present section.
3. In accordance with the ideas of the method of support operators, to construct GRAD

we use the difference analogue of identity (3.1). Assume for simplicity that the line
integral in (3.1) vanishes. We then use the following difference analogue of (3.1):

~q~1(DIVA),V1 — ~(AX~GX1 -~- AY,GY,)V1_0, (3.7)

where CX and GY correspond to the x- and y—components of vector GRADp and are subject
to definition. Regarding (3.7) as an identity in AX, and AY~, we obtain the following
expressions for the operator components:

GX~ = —4- ~ q’k, GY, = —* ~ -~- q’k.
kE fl(i) ~efl (‘)

If we define the scalar products in the spaces of mesh scalar and vector functions by the
equations

(Ire iPI)=E(c,1~1,T’,, (IA, BI)=~(AX,BX1 — AY1BYJV,, (3.8)

then we can write (3.7) as the operator equation

GRAD=—DIV, (3.9)

in the same way as in the differential case.
4. Using the above operators DIV and GRAD, the differential—difference equations

for (1.2) and (1.3) may be written as

pdWIdt=—GRADp, pd~/dt=~ pDIVW. (3.10)

The difference analogue of (1.1) can be written, in accordance with (3.2)—(3.5), as

dp!dt±pDIV W=0.

The properties of DIV and the construction of GRAD ensure that the scheme is completely
conservative /20/.

5. The use of the difference analogue of (3.1) implies the so-called direct method of
matching the properties of DIV and GI1.-\D. Let us consider what scheme is implied by the
variational method of matching /9, 20, 21,’.

In accordance with the Hamilton-Ostrogradskii variational principle, motion of the
medium occurs in such a way as to obtain the extrelnUm of the functional of action

S=\~(t)d1, (3.11)

where 2’ is the Lagrangian, defined as the difference between the potential and kinetic
energies Variation of (3.ll( must be made in the light of the law of conservation of mass,
the adiabaticity condition, and the kinematic relations.

In the case of a discrete medium, the Lagrangian 2’~ has the form

(~\‘ ~~•)
in ‘~ ‘ — ~. ) . ((.12)

The above relations ma” be written as

in =cnn~t.

11.

I’ (1t(IX .
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To construct the difference equations, the variation of the functional 3.11 must me eouated
to zero. The variations of all ]uant1t~es must then be expressed in terms ‘f variations oi
the coordinates x and y:

~S=\JVf((W, 6W~) —ó~ni dl— V m\V. S’V~), dl — \ Vm.& ~dt.

In view of (3.13b,c) , we obtain

~S=5[~(m~~’, doH ]dt S ~pdV, dl.

Next, we transform the first integral by usino integration 5y parts and condition (3.13a),
and to transform the second, we use (3.4) and (3.13c) in turn. The result is

= — ~ [~‘ (ji~-~ ór~) V~ ~‘ p (DIV ôr)V~] dl.

Using definition (3.8) of the scalar product, we obtain

dW \ 1
= — ~ ( p—a—, or ) — (I p, DIV Or D]dt. (3.14)

Using the concept of adjoint operator, we can write

(~p. DIVOrJ)=(~DIV~p, on).
From this and (3.14), since Or is arbitrary, it follows that the condition OS=~O is
equivalent to the equation

pdW/dt=DIVp, (3.15)

which approximates the equation of motion (1.2) . Recalling Eq. (3.9) , it can be seen that
Eq. (3.15) is the same as the first of Eqs.(3.lO). Moreover, it is obvious that we have the
same difference analogues of the equations of continuity and the equation for the internal
energy; for the variational method of matching, these equations are required as connections.

4. Artificial viscosity.
1. When introducing artificial viscosity into our discrete model, we start from the idea

of /16/, whereby the artificial dissipative process is regarded as a consequence of inelastic
collisions of particles modelling the discrete medium.

Let us explain this idea in the one-dimensional case. We will assume that a non-uniform
Lagrangian mesh, whose nodes have coordinates {x,) (Fig.3), is introduced into the compu
tational domain.

As in the two—dimensional case, the quantities m,, p. p,, U,. €, and V are connected with
each node. In the one—dimensional case the Dirichlet cell boundaries are located at the
mid-point between nodes; they are marked by asterisks in Fig.3. When introducing the
artificial dissipative process, we assume that the mass m, is distributed over all its
Dirichiet cell. Wenext consider the process of inelastic collision of particle numbered i
with its neighbours, i.e., particles i—St and 1+1. We assume that collision occurs at points
corresponding to the boundaries of the Dirichlet domain. Only part of the mass of the
corresponding cells participates in the collision. When particles i and i~~1 collide, part
of the mass of particle i, call it Om,., is introduced into the collision orocess, and part
Om. of particle (1+1). The first subscript refers to t he particle number, whose part is
cosidered, while the second indicates the collision with which the particle the mass partici
pates. As a result of inelastic collision of masses Om_, Orn, aoarticlewith mass

8m~,,, ,+-Om~~ ~.the velocity ü is formed. By the law of conservation of momentum,

(am, ,,--Om,. )ii=Om _iL+Om+, ,jI_, (4.1)

where 8 and 8, are the velocities of masses Om~, .~ and Om,.,~ respectively. If we assume
that 8=u 17,=u.,, we obtain from (4.1)

— ~ U -~ — Om ~u,
— —-

r~_2 ~

Fig. 3 Fig. 4
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We next assume that thepart of mass óm,,,÷ having velocity ~l, collides inelastically with
mass m—óm,, ,+i having velocity U,, while the part 6m,~,,, similarly collides with mass
m,.,—öm,+t,,. A similar process occurs with particlesi and i—I, in which parts of the masses,
öm,. ,-, and 8m,_,,,, participate in the collision.

As a result, a particle with mass m, is again formed, with new velocity ti, given by
the law of conservation of momentum:

ti = 4— — ôm,, ~ — ~m, i—I) a. -4-

8m1 ,.~ (ôm., 1+1u~ — ôm,1 •u,1)
8m, ,~ ± ãm~.1,,

6m1 i-I

óm,_1, (óm,_1, ,u,_i ± 6m~ ,_1u,)

It was shown in /16/ that, given a special choice of the quantities 6rn, we can obtain
with this approach, for Lagrangian schemes, several familiar types of artificial viscosity:
linear, quadratric, and composite /22/. In /16/. For the case of one- and two-dimensional
Lagrangian schemes, the properties of this dissipative process are treated in detail, and
notably, the question of the variation of the kinetic energy and of the corresponding change
in the equation for the internal energy.

2. Consider the two-dimensional case. We assume that the particle only participates in
inelastic collision with its neighbours. The collision with each particle occurs along their
c~nmon piece of Dirichlet cell boundary, while the actual collision with each neighbour is
similar to the one—dimensional case, i.e., as a result of the collision of particle k with
its neighbour q (Fig.4) , the projection of the velocity vector at the node on the direction
of the segment joining k and q, varies by the amount

ii rn1,5
— 8mw5) (u1,)5 +ôm + 8m51, x [ómwq (uw) ± 61fl51, (u5)5]

where (u,j, etc. are the velocity projections at the corresponding point. Similarly for
collisions with other neighbours. The resultant expression for the new velocity at node k is

cv~= ,~ {(i_ -~.~!) (ui),—
‘afl’(”)

m1, (öm~,± 8m,1,) [ómw~ (U~)i + ôm,,, (U1,)1,]} 8k,,

where e,,, is the unit vector along the segment ki.
The second important question is the choice of the ãm~. Since we assume that the

Collisions occur only with neighbours, it follows from arguments of continuity that ömkO
must be zero at the instant of departure of the point from the neighbourhood. Moreover, it
is natural to require that the dissipative process should be stronger as the points come
closer. This demand is satisfied by the choice

~

Here, S,,, is the length of the common boundary of cells VA and 1~,. ~t is the time step, and
C~ is a characteristic velocity. In the computations whose results are given in Sect.5 c~
was taken to be the velocity of sound at node k, which corresponds in the one—dimensional
case to linear viscosity. Notice that the process of introducing artificial viscosity gives
expressions similar to those for so-called contour viscosity’, which was used in /7, Chapter
8/ when describing the Lagrangian method.

5. Example of the Computation.
Consider the results of computing the development of Rayleigh—Taylor instability in a

Closed rectangular vessel in a gravitational field of force g=1. The problem is posed as
fcllo~5. In the closed rectanqle with rigid walls there are two fluids: a heavy fluid with
initial density p—IO at the top, and a liqhter fluid with density p.~l at the bottom. The
equatio0s of state for the fluids were taker, as p~O(p—lO) and p:=50(p—l)• The boundary
between the fluids at the initial instant is shown by the heavy line in Fig.5. Due to the
instability of this configuration, in the course of ~ime the heavy fluid must flow to the
bottom and displace the light fluid upwards.

In Fig.5 we show the initial configuration of Dirichlet cells; the asterisks denote the
fleavy fluid particles, and the points the light particles. In Fig.6 we consider the instant
for which purely Lagrangiafl methods usually give satisfactory results. The first critical
instant is connected with the impact of the heavy fluid on the bottom of the vessel (rig.7).
The next characteristic instant is linked with the impact of the fluid moving along the bottom
with the left—hand wall (Fig.3) . It can be seen in Fiq.9 how at a later instant the wave
reflected from tfle left-hand wall tips over, and the partIcles of heavy fluid drop from the
upper boundary, where they were compressed by the bubble of surfacing light fluid. In Fig.lO
we show the configuration when all the heavy fluid has gone to the bottom.

6. Discussion.
I. At the next stale, a theoretical and numerIcal study of the accuracy of our scheme is

USSR 26:5..p
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required. The stability of the scheme and the choice of step .\t are important topics. A
study of the stability for a similar scheme in /7/, Chapter 11 suggests that sten ~lt
not tend to zero as the points approach one another, but will depend on certain character~
istics of the Dirichiet cell, e.g., on its diameter.

‘1.1’ I’!. H

C~.E~LiTLLiZ

2. A second group of questions needing consideration concerns the realization of the
implicit scheme. As in /23/, it is proposed to realize the method of parallel chords with
iterations over the pressure.

3. From the stand-point of solving practical problems, the question of realizing boundary
conditions of the free boundary type is important. This can be done e.g., by immersing the
computational domain in the medium where the pressure depends only weakly on the density and
has a given space and time distribution.

4. When computing actual problems, certain physical effects such as heat conduction,
magnetic field diffusion, etc., must be taken into account. In this connection it becomes
necessary to construct schemes which utilize Dirichlet cells for the processes. The method
of support operators can prove an effective means here for constructing schemes.
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SHORT COMMUNICATIONS

NEW ALGORITHMS FOR CALCULATING DISCRETE FOURIER TRANSFORMS*

A.M. GRIGORYAN

Effective methods are proposed for calculating a multidimensional
discrete Fourier transform based on a new representation of it.

This paper describes a new general approach to the consideration of an arbitrary multi
dimensional discrete Fourier transform (MDFT) , the basic idea of which lies in the oossibilitv
of a single-valued representation of each component transform as a one-dimensional vector
that corresponds to it. Such an approach allows independent calculations of the M’3FT to be
carried out on each group on readouts that do not intersect with another group of readouts,
into which the whole domain of definition of the spectrum is divided in a defined way, that
allows effective algorithms to be constructed for calculating the MDFT by means of a minimum
number of one—dimensional DFTs.

The case of a two—dimensional OFT is described in detail and the new algorithms that
correspond to it are compared with the least algorithms worked out up to the present time for
calculating a two—dimensional DTF, based on the Kooley—Tukey method /1, 2/, on polynomial
transforms /3/, and also on the operation of two—dimensional “butterflies” /4/. The correspond
ing algorithm is considered as a special case and for a one-dimensional Fourier transform.

1. Vector representation of the spectrum by a MDFT.
Let us consider an arbitrary block (f,,.. ,.) for an s—dimensional discrete signal, whose

dimensions, for simplicity, will be considered equal i.e. lck,’CS. t=I, 2 s, for some integer
N. Each soectral component in the readout (p, p,) where p eZ~’=j 2,...,N, i=1, 2 ~, which
apart from a normalized multiplier, is equal to

F = ~ ‘k,,.., k~lV’’ •fl~fl (1)

where IV=IV,=exp(2517.V), can be represented as the V—dimensional vector

F,, ,,=(~,, ,, , I,,. ~. ~,. s) ‘—‘1

for which

F

For this, as follows from (1) , each component of the vector (2) must be calculated by
summation of the values of the initial signal at readouts of the corresponding sets:

a. 1={a1 ks); l~k1~.V,1 = I,_ s,~k1p~ =tmodN}, 3)

i.e.
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