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Abstract

A procedure is presented to improve the quality of surface meshes while maintain-
ing the essential characteristics of the discrete surface. The surface characteristics
are preserved by repositioning mesh vertices in a series of element-based local para-
metric spaces such that the vertices remain on the original discrete surface. The
movement of the mesh vertices is driven by a non-linear numerical optimization
process. Two optimization approaches are described, one which improves the qual-
ity of elements as much as possible and the other which improves element quality
but also keeps the new mesh as close as possible to the original mesh.
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1 Introduction

Improvement of mesh quality is a very important problem for mesh generation
and numerical simulation. The quality of a surface mesh heavily influences the
ability of mesh generation algorithms to generate good quality solid meshes.
Since surface meshes define external and internal boundaries of computational
domains where boundary conditions are imposed, they also influence the ac-
curacy of numerical simulations.
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Many researchers have investigated the issue of improving the quality (element
shape and mesh gradation) of triangular, quadrilateral and mixed meshes in
the plane [1–6]. However, optimization of surface meshes must address addi-
tional issues such as preserving the similarity of the mesh to the surface it
represents. Considerable research has been conducted in the structured mesh
community on using elliptic grid generation methods to smooth surface meshes
generated by algebraic methods [7–9]. On the other hand, unstructured sur-
face mesh improvement methods typically require the use of tools such as
mesh modification and vertex (node) repositioning [10,11]. Mesh modification
methods include edge swapping, vertex insertion (edge splitting, face split-
ting), vertex deletion (edge collapse) and local mesh retriangulation. Mesh
modification methods change the topology of the mesh and therefore, may be
more difficult to use in simulations requiring solution transfer from the original
mesh to the improved mesh. Also, many mesh modification methods are only
usable for simplicial (triangular and tetrahedral) meshes. Therefore, this paper
only focuses on vertex repositioning for surface mesh quality improvement.

An important consideration during the improvement of surface mesh quality is
to minimize changes in the discrete surface characteristics like discrete normals
and curvature. Preservation of such characteristics is important for preventing
drastic changes in the volume enclosed by the surfaces and in forces like sur-
face tension that depend on surface properties. When improving surface mesh
quality by vertex repositioning, changes in the surface properties can usually
kept small by keeping the vertex movements small and by constraining the
vertices to a smooth surface underlying the mesh or to the discrete surface de-
scribed by the faces of the original mesh. The smooth surface may be defined
in a geometric modeler or a locally smooth geometric support may be defined
for each patch of elements in the form of a Bezier or polynomial patch [10].

An approach commonly used to constrain nodes to the underlying smooth
surface is to reposition each vertex in a locally derived tangent plane and
then pull the vertex back to the smooth surface [11,10]. Another approach
to constrain the vertices to the smooth or discrete surface is to reposition
them in a 2D parametrization of the surface. When the vertices are mapped
back from the 2D parametric space to the real space, they are guaranteed to
remain on the original surface. If the mesh has an underlying smooth surface,
the parametric space of the surface is usually available from the geometric
modeler in which the surface is defined or from the analytical definition of the
surface. However, if such a smooth surface is not available, then the mesh itself
must be used as a discrete surface from which to derive a parametric space.
Several researchers have developed techniques to build a global parametric
space from a given triangular mesh [12–16]. However, all these methods involve
substantial computational cost since they often require solution of a system of
nonlinear equations. Also, they cannot be used directly to parametrize closed
surfaces. Instead, the closed surfaces must be cut into one or more pieces
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which are then parametrized separately. Finally, since the methods operate
only on triangular meshes, surface meshes with other element types must be
preprocessed before the methods can be applied to them.

In this paper, an optimization-based vertex repositioning procedure is de-
scribed to improve the quality of a surface mesh without an underlying smooth
surface such that the essential mesh and surface characteristics of the original
mesh are preserved. The method constrains the vertices to the discrete sur-
face defined by the original mesh by repositioning them in a series of local
parametric spaces derived from individual mesh elements (faces, edges). The
repositioning procedure keeps track of the original mesh element that each
vertex is moving in and if a vertex moves out of the parametric space of the
element, the vertex is considered to have moved into the parametric space
of an adjacent element. The optimization is then resumed after deriving the
parametric coordinates of the vertex from the local parametric space of the
adjacent element. When the repositioned vertices are mapped back to the real
space, each vertex lies on the mesh element whose local parametric space it is
in. The method imposes no restrictions on the nature of the discrete surface or
how far vertices may move from their original positions on this discrete surface.
The procedure has been implemented for surface meshes containing triangles
and quadrilaterals. Using a recent publication on the barycentric mapping of
general polygons, it is expected that the procedure can be extended to handle
general mesh elements easily [17]. The repositioning of the vertices is driven by
numerical optimization of some objective function that seeks to (a) improve
the quality of mesh elements as much as possible or (b) improve the quality
of all elements in the mesh while keeping the vertices as close as possible to
their original locations.

The rest of the paper is organized as follows. Section 2 lists some of the no-
tation used in this paper. Section 3 describes the method of optimizing an
objective function with respect to local parametric coordinates. The section
discusses the element based local parametrization, line search with respect to
local parametric coordinates and moving vertices from one parametric space to
another. Section 4 describes two methods for improving the quality of surface
mesh faces using optimization with respect to local parametric coordinates.
Section 5 presents several examples of optimization of triangular and quadri-
lateral meshes to demonstrate the features of both optimization methods.
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2 Notation

Fi i’th face in mesh

Ei i’th edge in mesh

Vi i’th vertex (node) in mesh

V Set of all vertices (nodes) in a mesh

A(B) Set of all entities of type A connected to or contained in entity B

e.g., F(Vi) is the set of faces connected to vertex Vi, and

V(Fi) is the set of vertices of face Fi

V R
i Reference position of vertex i

(ek)i Edge vector corresponding to edge Ek originating at Vi

(eR
k )i Reference edge vector corresponding to edge Ek originating at V R

i

J Jacobian matrix of the mapping of an element to a parent element

Jji Jacobian matrix of element Fj at vertex Vi

|J|F Frobenius norm of J defined by trace(JTJ)

κ Condition number of Jacobian, κ(J) = |J−1|F |J|F
xi 3D coordinates of vertex i

si Local parametric coordinates of vertex i

3 Optimization with respect to Parametric Coordinates

Consider an objective function, Ψ(x), defined in terms of the real coordinates,
x, of all the vertices of a surface mesh such that minimization of this function
drives the mesh vertices to locations that improve the quality of the mesh with
respect to some quality measure.

If this objective function is minimized directly with respect to the real coor-
dinates of the vertices, the search direction for the minimization may indicate
vertex movement off the original surface mesh. Therefore, the optimization
must be performed with respect to the coordinates of the vertices in a 2D
parametric space derived from the discrete surface mesh. The optimization
repositions vertices in the parametric space and when the vertices are mapped
back to 3D space, they are guaranteed to lie on the original discrete surface.
In this work, the repositioning of vertices is done in a series of local parametric
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spaces derived from elements of the original mesh instead of a global paramet-
ric space derived at a much greater expense from the complete surface mesh.
The optimization process moves each vertex in its appropriate local paramet-
ric space, which may change during the vertex movement. When mapped back
to real space, the vertex lies on the original mesh element corresponding to
the current local parametric space it is moving in. If the optimization process
drives the vertex out of bounds of the parametric space of one element, the
vertex is considered to have moved into the parametric space of an adjacent
element. The optimization is then resumed after deriving the parametric coor-
dinates of the vertex from the local parametric space of the adjacent element.

In the following sections, the process of optimizing any objective function with
respect to local parametric coordinates is described in more detail including
ideas of element based local parametrization, line search in local paramet-
ric spaces and parameter updating for repositioning vertices. The numerical
method chosen for optimization is the well known non-linear conjugate gra-
dient method [18,19]. The objective functions used to drive the optimization
are described later in Section 4.

3.1 Element based Local Parametrization

The local parametric spaces used in the optimization and vertex repositioning
procedure are derived from mappings of edges, and faces (triangles, quadri-
laterals) to parent or canonical elements in 2D space commonly used in finite
element methods.

Vertices on the boundary of the surface mesh (i.e., on a model edge) use
the parametric spaces of boundary mesh edges of the original surface mesh.
The parametric space of each boundary edge is derived by mapping it to
a unit line segment along the X axis giving rise to parametric coordinate
0 ≤ s0 ≤ 1. Vertices in the interior of the surface mesh (i.e., on a model
face) use the parametric spaces of the faces of the original mesh. The local
parametric space for a mesh triangle is derived using a barycentric mapping
[20], resulting in parametric coordinates 0 ≤ (s1, s2) ≤ 1 as shown in Figure 1a.
A local parametric space for a quadrilateral is derived using isoparametric
mapping [20], giving rise to parametric coordinates 0 ≤ (s1, s2) ≤ 1, shown in
Figure 1b. Meyer et. al. [17] have proposed a new barycentric mapping method
which can be used to extend this procedure for parameterizing general straight
sided polygonal faces.

Any procedure repositioning vertices using the element based local parametriza-
tions must keep track of which mesh element of the original mesh each vertex is
moving in (referred to as the base element) and the coordinates of the vertex
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in the parametric space of the base element. During the optimization pro-
cess, all objective function evaluations are done after mapping the parametric
coordinates of the vertex in the base element to real coordinates.
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Fig. 1. (a) Barycentric mapping for triangle, (b) Isoparametric mapping for quadri-
lateral.

3.2 Line Search

In the optimization procedure, the gradient of the objective function with re-
spect to the parametric coordinates is computed by numerical differentiation.
This gradient is used to compute a line search direction in the local parametric
space. The line search is used to find a distance α along the parametric search
direction d such that the objective function is minimized or the constraints
of the line search are encountered. For surface optimization with local param-
eterization, the line search is subject to two constraints, parametric bounds
and mesh validity, as discussed next.

During a line search, a vertex that travels out of the parametric space of a
base mesh face, moves out of the face and off the original surface mesh. In
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Fig. 2. Line search constraints: (a) Parameter bounds, (b) Validity constraint.

such a case, computing quantities such as the gradient of the objective func-
tion with respect to the current parametric coordinates of the vertex becomes
meaningless. Therefore, if a vertex tries to move out of bounds of the local
parametric space, the line search is stopped at the boundary of the base face.
For example, in Figure 2a, the line search tries to proceed from point 2 to point
3’, which is outside the triangle and off the surface triangulation. However, it
encounters the parametric bounds of the triangle at point 3 (which is on an
edge of the triangle) and therefore, the line search is stopped at that point.

Also, it is possible that one of the elements connected to the vertex becomes
invalid (inverted) due to movement of the vertex along the search direction in
which case the line search must be stopped. This is shown in Figure 2b where
the line search must be stopped at point 2 because further movement toward
point 2’ renders the shaded triangle invalid.

The line search procedure is implemented as an incremental stepping algorithm
with step size control. The line search starts with a very small step size and
checks if the function has decreased, the parameters are within bounds and if
the mesh is valid. If so, the step size is increased and the process is repeated; if
not, the step size is cut in half (up to a minimum) and the checks are repeated.
The algorithm has additional refinements for zeroing in on the minimum with
better accuracy.

3.3 Parameter Update and Parametrization Change

Once the line search along a direction has terminated, the step size, α, ob-
tained from it is used to update the parametric coordinates of the vertex as
snew = sold + αd. If the line search terminates normally at a minimum or
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because further movement in the search direction would have made the mesh
invalid, a new optimization iteration is started with a new gradient calcula-
tion. However, if the line search terminates because the parametric bounds
were reached, then it is assumed that the vertex is trying to move out of the
current mesh face. In such a case, the optimization iteration is terminated and
the vertex is considered to have moved into the parametric space of an adja-
cent mesh face. Since the vertex is moved into a different parametric space,
the optimization procedure is restarted from the parametric location of the
vertex in the new face, discarding the previous search direction and any saved
gradient information (in a conjugate gradient method).

At the start of the optimization, the base mesh face for initial movement of
a vertex is chosen arbitrarily from the set of faces connected to the vertex.
Therefore, it is possible that the objective function does not decrease along
any direction in the chosen face and that a line search in the face will terminate
without any movement from the current location. In such a case, an adjacent
face connected to the vertex is chosen as the base face and the optimization
iteration is performed in that face. The process is repeated until a viable base
face is found for moving the vertex. If the vertex cannot be moved in any base
face connected to the vertex without increasing the objective function value
or encountering an optimization constraint, the vertex is taken to be at its
optimal location.

During the search, if a vertex is at a common edge of two base mesh faces
of the original mesh, it is possible that the gradient with respect to one face
points into the adjacent face and vice versa, leading to the search switching
infinitely between the two faces. This condition is recognized in the algorithm
and resolved by moving the vertex along the edge. The line search direction
along the edge is taken to be the one closer to the negative of the gradient
direction.

Figure 3 illustrates the movement of vertices during an optimization with
respect to parametric coordinates for a planar triangulation. The mesh was
improved by minimizing an objective function based on the condition number
quality measure (See Sec. 4.2) over the entire mesh. Note the vertex movements
across several elements of the original mesh as well as movements along edges.

3.4 Global Optimization by Local Iterations

Consider the minimization of a global objective function, i.e., an objective
function that involves the coordinates of all the vertices of the mesh. It would
be most efficient if a global procedure could be used to minimize this objective
function so that all the mesh vertices could be moved toward their optimal
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(a) (b)

(c)

Fig. 3. (a) Original (light lines) and final (dark lines) mesh, (b) Paths taken by
vertices from their original positions (shown as ♦) to their final positions (shown
as •), (c) Zoom-in of one of the paths.

position simultaneously. However, the use of local parameterization for vertex
movement imposes strong constraints on a global optimization process. The
line search necessary in the global optimization seeks a single step size for
the parametric coordinates of all the mesh vertices. However, if a parametric
coordinate for even a single vertex goes out of bounds, the line search must end
for all the parameters in the problem and the optimization restarted, making
the optimization very inefficient.

To increase the efficiency of the optimization, the approach used here is to
minimize the global objective function by iteratively minimizing a local com-
ponent of the global function at each mesh vertex. The local component of
the global function at a given vertex is constructed so that every term in the
global function involving the vertex is accounted for in the local function. The
optimization loops over all the mesh vertices several times until the optimiza-
tion converges to a solution. The criteria for convergence is that the movement
of all the vertices is negligible for several iterations.
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4 Optimization of Surface Mesh Quality

4.1 Condition Number Shape Measure for Mesh Faces

Of the many measures for evaluating the shape (or quality) of triangular and
quadrilateral elements, the Condition Number Shape Measure [11] is one with
a strong mathematical foundation. This measure is derived from the Jacobian
matrix of an element mapping as described below.

Consider a vertex Vi, connected to a set of of edges, E(Vi), and faces, F(Vi)
as shown in Figure 4. Assume that one of the faces Fj ∈ F(Vi) has edges
Ep ∈ E(Vi) and Eq ∈ E(Vi) connected to vertex Vi. The triangle formed by
edges Ep and Eq can always be mapped to a right triangle in 2D space with Vi

mapped to the origin, a unit vector representing Ep along the x-axis and a unit
vector representing Eq along the y-axis. Then, the Jacobian matrix, Jji, of the
mapping of the triangle to the right triangle in 2D space, evaluated at vertex
Vi, is given by Jji = [ep eq] where, ep and eq are edge vectors representing
edges Ep and Eq, of lengths lp and lq respectively. The condition number of
the Jacobian matrix is defined as κ(Jji) = |J−1

ji |F |Jji|F where | · |F is the
Frobenius norm of its matrix operand.
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Fig. 4. Definition of edge vectors, ep, eq for calculating the Jacobian of an element
Fj at vertex Vi.

Since Jji is a 3x2 matrix for a triangle in 3D, its condition number has to be
calculated by singular value decomposition methods. On the other hand, the
Jacobian matrix of a triangle in 2D space is a 2x2 matrix whose condition
number can be calculated more easily as
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κ(Jji) =
(l2p + l2q)

2Aj

(1)

where Aj is the area of the triangle formed by Ep and Eq [21,11]. This condition
number is only a function of triangle lengths 1 ; therefore, it is invariant with
rotation of the triangle in the plane. Since there always exists a coordinate
system in which an arbitrarily oriented triangle lies on one of its coordinate
planes, it suggests that the condition number is also useful for measuring the
quality of arbitrarily oriented triangles in space.

The condition number shape measure as described above can be used for
measuring the deviation of an element corner from a right angle corner formed
by unit edge vectors. In a given mesh, the quality of any element can then be
measured by a suitable combination of the Jacobian condition numbers at the
element corners. Also, the quality of the mesh at any vertex may be measured
by a suitable combination of the Jacobian condition numbers of the element
corners incident upon that vertex.

4.2 Condition Number Based Optimization

Consider the minimization of a function defined as the sum of condition num-
bers of the face corners incident at a given vertex, Vi, as given below:

ψc
i (xi) =

∑
j

κ(Jji(xi)) =
∑
j

l2p(xi) + l2q(xi)

Aj(xi)
, j ∈ {j | Fj ∈ F(Vi)} (2)

where lp and lq are the lengths of the respective edges Ep and Eq of face Fj

connected to vertex Vi and xi is the coordinate vector of Vi. Note the presence
of area Aj in the denominator as a barrier function which discourages vertex
movements that tend to make the triangle formed by Ep and Eq degenerate.
Note, however, that it is still important to check explicitly for degeneracy or
invalidity of elements in the line search process described in Section 3.2 since
it is possible for some line search techniques to jump to the other side of the
degeneracy barrier.

The minimization of ψc
i attempts to smooth the distribution of face angles

and edge lengths around a vertex since all the edge vector pairs are trying to
reach equal length and form a right angle. Based on this property, a strategy

1 Aj is a function of the lengths of the triangle sides
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can be formed for improving the quality of a mesh by minimizing a global
condition number based objective function, Ψc, defined as:

Ψc =
∑

i

ψc
i , i ∈ {i | Vi ∈ V} (3)

where V is the set of all mesh vertices.

As discussed in Section 3.4, the global function Ψc is minimized by minimizing
a local function, ψ̃c

i , at each vertex. ψ̃c
i at a vertex Vi is composed of all terms

of Ψc that involve the coordinates of Vi. Therefore, ψ̃c
i is formed by visiting

each element Fj connected to vertex Vi and adding the Jacobian condition
number of the element at Vi and the Jacobian condition numbers at both its
edge connected neighbors in that element (See Figure 5). Mathematically, this
is written as

ψ̃c
i =

∑
j

∑
k

κ(Jjk),

j ∈ {j | Fj ∈ F(Vi)}, k ∈ {k | Vk ∈ V(Fj) ∩ V(E(Vi)) } (4)

���

Fig. 5. Vertices involved in the local objective function expression, ψ̃c
i , for Vi. The

shaded circles along with the black circle (Vi) represent the vertices at the Jacobian
is computed for use in ψ̃c

i . The white circles represent vertices whose real locations
contribute to the Jacobians at the vertices with shaded circles.

The optimization procedure visits each vertex of the mesh in turn and opti-
mizes the position of the vertex using the local objective function, ψ̃c

i . The local
optimization can be done by any optimization method such as the non-linear
conjugate gradient method. For surface meshes, the optimization is conducted
with respect to local parametric coordinates as described in Section 3. Several
optimization iterations are made over all the vertices of the mesh leading to a
minimization of the global function, Ψc. The iterations are stopped when the
movement of all vertices becomes negligible.
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4.3 Reference Jacobian based Optimization Method

4.3.1 Motivation

The global condition number minimization procedure allows mesh vertices to
move along the surface as much as necessary to minimize the objective func-
tion, Ψc. However, in certain situations such as Arbitrary Lagrange-Eulerian
(ALE) simulations [22–24], it is of interest to keep the vertices of the original
mesh as close as possible to their original locations while improving the shape
of the mesh elements. In ALE methods, the Lagrangian step dictates a certain
movement for the vertices based on the physics of the problem. This can cause
the mesh to be distorted enough that the simulation cannot proceed unless
the quality of the elements is improved. After the mesh is improved, the solu-
tion from the distorted mesh must be transferred to the improved mesh before
continuing the simulation. Since the accuracy of the solution transfer strongly
depends on the similarity of the two meshes, it is important to devise a pro-
cedure that improves mesh quality but also limits the extent that vertices can
move from their original locations. Such an optimization procedure, referred
to here as Reference Jacobian Matrix (RJM) based Optimization, has been
described earlier by Shashkov et. al. [21,24] for planar meshes. In the current
work, the RJM optimization procedure has been combined with optimization
with respect to local parametrizations, resulting in a strategy for improving
surface mesh quality while keeping the vertices of the mesh on the faces of the
original mesh and close to their original positions.

The RJM mesh improvement is a two stage procedure, consisting of a series
of local condition number based optimizations and a global RJM optimization
as described next.

4.3.2 Local Condition Number based Optimization (Step I)

This is the first stage of the RJM optimization strategy. In this step, the locally
optimal position of each mesh vertex is computed with respect to the fixed
position of its neighbors. The objective function for optimization is the local
condition number function, ψ̃c

i , described in Eq. 4, Section 4.2. However, in
this step, the vertex is not moved to its locally optimal position. Rather, the
optimal position of each vertex, described by a base face and the parametric
coordinates of the vertex in the base face, is stored as a virtual position for
use in the second stage of the mesh improvement procedure.
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4.3.3 Reference Positions, Reference Edges and the Reference Jacobian Ma-
trix

The locally optimal position computed and stored for each vertex in the first
stage of the procedure is known as the reference position for the vertex. After
reference positions are calculated for all mesh vertices, two reference edge
vectors are calculated for each edge in the mesh; each reference edge vector
goes from the reference position of one vertex of the edge to the original
position of the other. The idea of reference edges is illustrated in Figure 6,
where Em is an edge with vertices Va and Vb. The reference positions of Va

and Vb are V R
a and V R

b respectively. The two reference edge vectors for Em are
(eR

m)a and (eR
m)b, where the outer subscript indicates which of the vertices is

at its reference position.

Fig. 6. Reference positions and reference edge vectors.

Using the concept of reference edge vectors, it is now possible to define Ref-
erence Jacobian Matrices (RJMs) just as Jacobian matrices were defined for
a mesh without reference positions. Therefore, if the edges of Fj connected to
vertex Vi are Ep and Eq, their reference edges are ER

p and ER
q , and their refer-

ence edge vectors are (eR
p )i and eR

q )i respectively, then the reference Jacobian

of Fj at Vi is defined as JR
ji =

[
(eR

p )i (eR
q )i

]
.

4.3.4 Global Optimization based on Reference Jacobian Matrix (Step II)

The second stage of the mesh improvement procedure is a global optimization
based on the definition of reference Jacobian matrices. The goal of this step
is to find a valid mesh configuration such that each edge is in a compromise
configuration between its pair of reference edges. It is expected that such a
configuration for the edges will improve mesh quality, since the reference edge
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vectors were formed by locally improving mesh quality at each mesh vertex.
It is also expected that the optimized mesh will not deviate drastically from
the base mesh, since each reference edge vector has one of its vertices at its
original position and the other at the locally optimal position.

The objective function for the global optimization quantifies the difference
between the Jacobian matrices of the current mesh configuration and the
reference Jacobian matrices as shown below:

ΨR =
∑

i

∑
j

∣∣∣Jji − JR
ji

∣∣∣2
F

Aj/AR
ji

, i ∈ {i | Vi ∈ V}, j ∈ {j | Fj ∈ F(Vi)} (5)

where, V is the set of all mesh vertices, AR
ji is the area of the triangle formed

by edge vectors, (eR
p )i and (eR

q )i. Note that, similar to the objective function
for local optimization, the objective function includes a barrier term Aj in the
denominator in the form of the triangle area to prevent mesh invalidity. Since
the Jacobian matrix and the reference Jacobian matrix are formed from the
mesh edges and the reference edges respectively, optimization of ΨR makes
the edges of the final mesh as close as possible to their respective reference
edge vectors.

As discussed in Section 3.4, the global objective function, ΨR is minimized by
iteratively minimizing a local component of the global function at each mesh
vertex. The local component of the global objective function that involves the
real and reference positions of Vi is given as:

ψ̃R
i =

∑
j

∑
k

‖Jjk − JR
jk‖2

Aj/AR
jk

,

j ∈ {j | Fj ∈ F(Vi)}, k ∈ {k | Vk ∈ V(Fj) ∩ V(E(Vi) }

In the expression, the outer sum is over all faces connected to the vertex
and the inner sum is over all vertices of a face that include Vi itself or are
edge-connected to Vi.

Thus, the second stage of optimization visits each mesh vertex, Vi, and con-

ducts a minimization of the local function, ψ̃R
i by repositioning Vi. Minimiza-

tion of the local function results in a reduction of the global function, ΨR. The
procedure loops over all the mesh vertices several times until the optimization
converges to a solution. The criteria for convergence is that the movement
of all the vertices is negligible for several iterations. It can be seen that the
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first and second stage optimizations are similar except for the use of different
objective functions.

5 Results

Figure 7 shows a simple example to illustrate the effects of a condition number
optimization (CN Opt. or CNO) and reference Jacobian based optimization
(RJ Opt. or RJO) on a non-planar surface mesh. Figure 7a shows the original
pyramid shaped mesh on which the two optimization techniques are applied.
Figure 7b shows the effect of optimizing the CN objective function and Fig-
ure 7c shows the effect of optimizing the RJ objective function. In both cases,
the apex vertex lies on the left lateral surface of the original pyramid. It can
be seen that the CN optimization improves the shapes of the triangles more
than the RJ optimization. On the other hand, the RJ optimization results in
lesser movement of the apex vertex from its original position.

(a) (b) (c)

Fig. 7. (a) Original Mesh, (b) Mesh optimized with condition number objective
function, (c) Optimized with reference Jacobian objective function. Note that in
both cases, the apex vertex is on the lateral surface of the original pyramid.

Figure 8a shows the triangular mesh of a pig, and Figures 8b and 8c show the
results of the CN optimization and RJ optimization on the mesh respectively.
It is again clear from the example that the CN optimization improves the shape
of mesh elements more than the RJ optimization, but it also causes much
more movement of the vertices. In particular, note that the CN optimization
destroys much of the anisotropy in the midsection of the pig and smooths
away the local refinement around the pig’s mouth while the RJ optimization
preserves these characteristics of the mesh.

The mesh optimization procedure has been implemented and tested for mixed
triangular and quadrilateral meshes as shown in Figure 9. Figure 9a shows a
mixed mesh of the pig, and Figures 9b and 9c show the CN optimized mesh
and RJ optimized mesh respectively.
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(a)

(b) (c)

Fig. 8. (a) Mesh of pig with anisotropy and local refinement, (b) Mesh optimized
with global condition number function, (c) Mesh optimized with reference Jacobian
function.

The differences between the results of CN optimization and the RJ optimiza-
tion of the triangular and mixed meshes of the pig can be quantitatively
demonstrated by the mesh data presented in the following tables (Table 1 and
Table 2).

Table 1 shows the improvement in the distribution of normalized average con-
dition number, K̄, of elements in the triangular and mixed meshes with the
two types of optimization. The normalized average condition number for an
element is defined as the mean of the condition numbers at the vertices of an
element, normalized so that an equilateral triangle or square quadrilateral will
produce a value of 1.

Table 2 shows various quantities computed to measure the change in the
meshes and the discrete surfaces using the two methods of optimization. In the
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(a)

(b) (c)

Fig. 9. (a) Mixed mesh (triangular and quadrilateral elements) of pig with anisotropy
and local refinement, (b) Mesh optimized with global condition number function,
(c) Mesh optimized with reference Jacobian function.

table, the normalized Hausdorff distance is computed by finding the minimum
distance from each vertex of the original mesh to the new mesh, taking the
maximum of these distances [25,26] and normalizing it by the problem size.
The problem size is defined as the maximum length of the domain along the
three coordinate directions. The maximum vertex movement is the maximum
distance traveled by any vertex from its original position and the average ver-
tex movement is the mean of the distance traveled by all vertices from their
original positions; these are also normalized by the problem size.

Finally, a complex mesh of a sculpture is presented in Figure 10 to illus-
trate the effectiveness of this procedure on large surface meshes. The original
mesh for this model was obtained from the Cyberware, Inc. 2 which was then
coarsened and converted into a mixed mesh using software from the Scientific
Computation Research Center at Rensselaer Polytechnic Institute. The coars-
ened mesh (Figure 10a) was used to obtain the optimized meshes shown in
the example. A CN optimization resulted in the mesh shown in Figure 10b
and a RJ optimization yielded the mesh shown in Figure 10c.

The condition number histograms for the three meshes are presented in Table 3
and the measures for change in surface characteristics are presented in Table 4.

2 http://www.cyberware.com/samples
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Triangle Mesh Mixed Mesh

K̄ Original CN Opt. RJ Opt. Original CN Opt. RJ Opt.

1.0 – 1.5 3921 6830 5124 2540 3745 2971

1.5 – 2.0 1734 156 1257 736 71 586

2.0 – 3.0 917 48 525 349 9 232

3.0 – 4.0 247 3 100 94 0 31

4.0 – 5.0 102 0 22 45 2 4

5.0 – 7.5 93 2 7 46 0 1

7.5 – 10.0 11 1 1 6 0 2

10.0 – 15.0 12 0 4 9 0 0

15.0 – 3 0 0 2 0 0
Table 1
Histograms of Normalized Average Condition Number of elements in Original and
Optimized Meshes for triangular and mixed meshes of a pig (Figure 8).

Triangle Mesh Mixed Mesh

Measure (% of problem size) CN Opt. RJ Opt. CN Opt. RJ Opt.

Hausdorff Distance 2.7% 0.6% 2.38% 0.8%

Max. Vertex Movement 11.1% 3.1% 8.0% 1.3%

Ave. Vertex Movement 1.7% 0.3% 1.4% 0.2%
Table 2
Quantitative measures of the change in the mesh and discrete surface characteristics
for CN optimization and RJ optimization for triangular and mixed meshes of a pig
(Figure 8); distances are presented as a percentage of the problem size.

6 Conclusions

A procedure was presented to improve the quality of complex surface meshes
without an underlying smooth surface using numerical optimization. The op-
timization is designed to improve the quality of the mesh faces without dis-
torting the discrete surface too much. The vertices are kept on the original
surface mesh using movement in local parametric spaces of mesh faces. Two
methods were proposed for improving the quality of the surface mesh. The
first method improved the quality of mesh elements as much as possible by
minimizing a global condition number objective function. The minimization
of the global function was achieved by minimizing a local component of the
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(a)

(b) (c)

Fig. 10. (a) Mixed mesh of the Igea artifact (from Cyberware, Inc.), (b) Mesh opti-
mized with CN objective function, (c) Mesh optimized with RJ objective function.

global objective function at each mesh vertex. The second method was the two
stage reference Jacobian matrix or RJM based method, which was designed to
improve the mesh quality as well as minimize the movement of vertices from
their original locations. In the first stage of this method, minimization of a
local condition number obective function at each mesh vertex was used only
to calculate the locally optimal, virtual position for that vertex. These virtual
or reference positions were then used to form a global RJM based objective
function which was also minimized by minimizing a local component of the
global function at each vertex.
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K̄ Original CN Opt. RJ Opt.

1.0 – 1.5 15984 23341 22021

1.5 – 2.0 6071 310 1537

2.0 – 3.0 1370 1 88

3.0 – 4.0 142 0 5

4.0 – 5.0 33 0 1

5.0 – 7.5 40 0 0

7.5 – 10.0 8 0 0

10.0 – 15.0 3 0 0

15.0 – 1 0 0
Table 3
Histograms of Normalized Average Condition Number in Original and Optimized
Meshes for Igea artifact (Figure 10).

Measure CN Opt. RJ Opt.

Hausdorff Distance 0.5% 0.2%

Max. Vertex Movement 3.1% 1.3%

Ave. Vertex Movement 0.5% 0.2%
Table 4
Quantitative measures of the change in the mesh and discrete surface characteristics
for CN optimization and RJ optimization for Igea artifact (Figure 10); distances are
presented as a percentage of the problem size

The procedure has been successfully tested on a number of complex trian-
gular and quadrilateral surface meshes. Several quantitative measures were
presented to show that both types of optimizations do not distort the surface
much. The RJM optimization strategy improves the mesh quality considerably
but also keeps the vertices of the original mesh close to their original positions.
On the other hand, the global condition number based optimization can cause
considerable movement of the vertices from their original positions in order to
provide a small improvement in mesh quality beyond what is possible by the
RJM based method.

Future work will attempt to extend the procedure to general polygonal meshes.
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