
                   

JOURNAL OF COMPUTATIONAL PHYSICS139,406–409 (1998)
ARTICLE NO. CP975877

Local Reconstruction of a Vector Field
from Its Normal Components

on the Faces of Grid Cells

Mikhail Shashkov, Blair Swartz, and Burton Wendroff

Los Alamos National Laboratory, T-7, MS-B284, Los Alamos, New Mexico 87545
E-mail: misha@t7.lanl.gov

Received May 27, 1997; revised October 1, 1997

Key Words:discrete vector fields; reconstruction; non-smooth grids; discrete op-
erators; Lagrangian gas dynamics.

We compare two local least squares approximations for the reconstruction of the Cartesian
components of a vector field at the nodes of a logically rectangular grid, when this vector
field is given by its components normal to the faces (edges in 2D) of the cells of the grid.
Such a problem appears naturally, for example, for Lagrangian gas dynamics codes based on
Godunov’s method, where the normal component of a vector on an edge between two cells
is computed from the solution of a 1D Riemann problem [1], but the Cartesian components
are needed at nodes in order to compute the nodal motion. This kind of reconstruction is
also interesting in the framework of discrete vector analysis [2] as a map between different
spaces of vector functions. Reconstructed vector fields are often used to compute discrete
analogs of differential operators such as divergence and curl. Therefore, to estimate the
quality of the reconstruction we need to evaluate not only the accuracy of the vector itself
but also the accuracy of the approximate discrete div andcurl . More specifically we are
given the exact values at the edge centroids of the projection of a vector function on the
directions normal to the sides of the cells (see Fig. 1a for notation). Our goal is to reconstruct
the Cartesian componentsAx

i, j , Ay
i, j of the vectorA at the node(i, j ).

The zero-order reconstruction algorithm described in [1] is based on choosingA i, j to
minimize the local quadratic functional∑

l= j − 1
2 , j + 1

2

(
A i, j · nξ

i,l − Aξ
i,l

)2 +
∑

k=i − 1
2 ,i + 1

2

(
A i, j · nη

k, j − Aη
k, j

)2
,

wherenξ andnη are the unit normals to the grid linesi = const andj = const, respectively,
and Aξ , Aη are the given projections ofA onto these normals. This procedure produces
a 2× 2 system of equations that can easily be solved for the unknownsAx

i, j , Ay
i, j . This

algorithm is exact only for constant vector functions.
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FIG. 1. Normal componentsAξ andAη involved in reconstructing the Cartesian componentsAx
i, j andAy

i, j at
node(i, j ): (a) zero-order reconstruction; (b) first-order reconstruction.

We suggest here a new first-order approximation which leads to a 6× 6 system of
equations that is exact for linear vector functions. The unknowns in this method will be
the values of the Cartesian components of the vector function and their first derivatives
d Ax/dx, d Ax/dy, d Ay/dx, d Ay/dy at the nodes. Because now we have six unknowns we
need to use more information, and we will try to match the 12 normal components that are
naturally related to node(i, j ) (see Fig. 1b). If we definer = (x, y), then the functional to
minimize is∑

k=i −1,i,i +1

∑
l= j − 1

2 , j + 1
2

[
(A i, j + (r k,l − r i, j ) · (∇A)i, j ) · nξ

k,l − Aξ
k,l

]2
+

∑
k=i − 1

2 ,i + 1
2

∑
l= j −1, j, j +1

[
(A i, j + (r k,l − r i, j ) · (∇A)i, j ) · nη

k,l − Aη
k,l

]2
.

(Note. While aquadraticfield would involve exactly 12 degrees of freedom, the resulting
(12×12) system for their determination from the given data is singular for a uniform square
grid.)

The accuracy of these reconstructions strongly depends on the smoothness of the grid. We
will consider two grids. The first grid is the smooth grid (shown in Fig. 2a) obtained by map-
ping a uniform grid on the square [−0.5, 0.5]× [−0.5, 0.5] in the space(ξ, η) into the same
square in computational space(x, y) via x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη), y(ξ, η) =
η + 0.1 sin(2πξ) sin(2πη). The second grid is a nonsmooth (random) grid that is obtained
from a uniform grid with mesh sizeh = 1/(M − 1) by moving each node to a random
position in a square with side 0.25h centered at the original position of the node (shown in
Fig. 2b). The error of the approximation toA was computed in the max norm over interior
nodes.

To compute a discrete divergence, DIV, and discrete curl,CURL , for a cell we use the ap-
proximate Cartesian components ofA at the nodes and a standard difference approximation



              

408 SHASHKOV, SWARTZ, AND WENDROFF

FIG. 2. (a) Smooth grid; (b) non-smooth (random) grid.

for derivatives. For this, the discrete analog of∂u/∂x is(
1u

1x

)
i +1/2, j +1/2

= (ui +1, j +1 − ui, j )(xi, j +1 − xi +1, j ) − (ui, j +1 − ui +1, j )(xi +1, j +1 − xi, j )

2Vi +1/2, j +1/2
,

whereVi +1/2, j +1/2 is the volume of the cell(i + 1/2, j + 1/2), with a similar expression
for ∂u/∂y (see, for example, [3]). The error of the resulting approximation for div and
curl (evaluated at the average of the cell’s vertices) is also measured in the max norm over
(strictly) interior cells.

We test the reconstruction procedures on two vector fields. The first is a “smooth” vector
field, Ax(x, y) = x − y + x2 − y2, Ay(x, y) = x + y + x2 + y2. In the second field we try
to model the structure of the velocity field in a 1D shock, and we takeA to have the form

Ax(x, y) = e20x/(1 + e20x), Ay(x, y) = 0.

The errors in the max norm for the “smooth” vector function itself and for its div and curl,
for both smooth and random grids are given in Table 1. This table suggests that both methods

TABLE 1

Maximum Errors for the “Smooth” Vector Field; Smooth and Random Grids

Smooth Nonsmooth

Grid type M A DIV CURL A DIV CURL

Zeroth 33 9.28E-3 1.12E-1 3.49E-1 2.75E-2 1.08 1.30
65 2.43E-3 3.37E-2 1.11E-1 1.36E-2 1.13 1.48

129 6.13E-4 8.72E-3 2.94E-2 6.49E-3 1.38 1.68

First 33 2.22E-3 1.01E-2 9.74E-3 1.26E-3 3.46E-2 2.32E-2
65 5.55E-4 2.56E-3 2.57E-3 3.17E-4 1.73E-2 1.34E-2

129 1.39E-4 6.41E-4 6.53E-4 8.06E-5 9.02E-3 7.07E-3



             

LOCAL RECONSTRUCTION OF VECTOR FIELDS 409

TABLE 2

Maximum Errors for the “Shock” Vector Field, Random Grid

Type M A Ay DIV CURL

Zeroth 33 2.90E-2 2.90E-2 6.71E-1 2.21
65 1.91E-2 1.55E-2 1.05 1.97

129 9.10E-3 9.10E-3 1.40 3.25

First 33 1.45E-2 1.96E-3 3.65E-1 2.26E-1
65 4.06E-3 5.68E-4 1.22E-1 1.29E-1

129 1.03E-3 1.51E-4 6.83E-2 7.20E-2

yield second-order convergence on the smooth grid, not only for the vector function itself,
but also for divergence and curl. It is interesting to note that the zeroth order method, which
is exact only for constant functions, still converges with second-order inh even for div and
curl . This phenomenon is due to the smoothness of both the grid and the function to be
interpolated. Readers can easily understand this phenomenon by considering the 1D analog
of our procedure. For the random grid the convergence of the zeroth order approximate
vector is first order, and there is no convergence for its DIV andCURL . However, as
expected, the first-order method has second-order convergence for a vector function and
first-order convergence for its DIV andCURL .

Real Lagrangian grids can be very nonsmooth; therefore, we compare the two meth-
ods for the “shock” vector field only on a random grid. The results are presented in
Table 2. Here we also present the max norm of the error only for they component of the
vectorA because the original vector field is “one-dimensional.” For the “shock” case on the
nonsmooth grid the zero-order reconstruction gives first-order convergence for the vector
itself and no convergence for DIV andCURL . First-order reconstruction gives second-
order convergence for the vector and first-order convergence for divergence and curl. Also
notice that for the zero-order reconstruction the main error is in they-component, while
for the first-order reconstruction it is not only smaller but is in thex-component. This is
important for the one-dimensional nature of this flow.

In conclusion we can say it seems that the zero-order method should be used only on
smooth grids or for visualization purposes. If the method of solution of the gas dynamics
equations involves computation of derivatives of the reconstructed field on a nonsmooth
grid, then the zero-order method should not be used because it generates artificial divergence
and vorticity that cannot be eliminated by refinement of the grid. The extension to 3D is
clear.
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