
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692
A new discretization methodology for diffusion problems
on generalized polyhedral meshes

Franco Brezzi a,d, Konstantin Lipnikov b,*, Mikhail Shashkov b, Valeria Simoncini c,d

a CeSNA, Istituto Universitario di Studi Superiori, Pavia, Italy
b Los Alamos National Laboratory, Theoretical Division, MS B284, Los Alamos, NM 87545, United States
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Abstract

We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements
having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure)
variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically important
case of logically cubic meshes with randomly perturbed nodes, the mixed finite element with the lowest order Raviart–Thomas elements
does not converge while the proposed mimetic method has the optimal convergence rate.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Tetrahedral and structured hexahedral meshes have
been used for decades in the majority of engineering simu-
lations; they are relatively easy to generate and there exists
an enormous repository of numerical methods designed for
these meshes. Nowadays, a growing number of complex
simulations show advantage of using polyhedral meshes.
For example, in the simulation of flow through a water
jacket of an engine [14], the results obtained on a polyhe-
dral mesh are more accurate than the results obtained on
a tetrahedral mesh with a comparable number of elements.
In oil reservoir simulations, the polyhedral mesh topology
offers unlimited possibilities: elements can be automatically
joined, split, or modified by introducing additional points,
edges and faces to model complex geological features.
Unfortunately, most of the existing numerical methods
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cannot be extended to polyhedral meshes, especially to
meshes with elements having non-planar faces. This
includes the practically important case of logically cubic
meshes with randomly perturbed nodes.

In this paper we consider a diffusion problem, which
appears in computational fluid dynamics, heat conduction,
radiation transport, etc., and develop a family of simple
inexpensive numerical schemes. This paper continues our
analysis of the new discretization methodology that we
began in [5]. The methodology follows the general principle
of the mimetic finite difference (MFD) method – to mimic
the essential underlying properties of the original contin-
uum differential operators such as the conservation laws,
solution symmetries, and the fundamental identities and
theorems of vector and tensor calculus [7,11,12,4,6] (see
also the book [15] and the references therein).

The mixed form of our diffusion problem is

~F ¼ �Kgradp; div~F ¼ b; ð1:1Þ

where the first equation is the constitutive equation relating
the scalar function p (pressure in flow simulations) to the
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flow field ~F and the second one is the mass conservation
law. The material properties are described by the full sym-
metric tensor K, and b is the source function. For this
problem, the MFD method mimics the Gauss divergence
theorem, the symmetry between the continuous gradient
and divergence operators, and the null spaces of these oper-
ators. Therefore, it produces a discretization scheme which
is symmetric and locally conservative.

In some sense, the MFD method lies between the stan-
dard mixed finite element (MFE) and finite volume (FV)
methods. In the FV method, the fluxes are defined only
at interfaces between mesh elements and a finite difference
formula is used to discretize the constitutive equation. On
the contrary, in the MFE method, a polynomial represen-
tation of the vector field inside each mesh element is used
to define the inner product between vectors and then to
write the constitutive equation by duality. This, however,
can be done only for simple geometrical shapes. In the
MFD method, there is notion of the inner product between
vectors but the vector field inside a mesh element is never
introduced explicitly. It is like a ‘‘guardian angel’’ who
helps us prove convergence results but cannot be seen in
the method formulation. Since the inner product is derived
without any reconstruction, the practical implementation
of the method is quite simple.

The MFD method developed in [4] (the old method) uses
one degree of freedom per element to approximate the
pressure and one degree of freedom per mesh face (the
average normal component of the flow) to approximate
the flow field. The same degrees of freedom are used in
the mixed finite element method on tetrahedral and hexa-
hedral meshes. We demonstrate with numerical experi-
ments that both methods lack convergence on generalized
polyhedral meshes.

The MFD method developed in [5] (the new method)
uses three degrees of freedom (three average flow compo-
nents) to approximate the flow field on non-planar faces.
We proved that this recovers the optimal convergence rate
on generalized polyhedral meshes, thus making our discret-
ization methodology appealing in practical applications.
When mesh elements are regular polyhedra, the new
MFD method is reduced to the old one. When the element
faces are strongly curved, the extra degrees of freedom
allow the new method to succeed and perform much better
than other methods.

The efficient implementation of the old MFD method
has been analyzed in [6] where we derived a family of
MFD methods with optimal convergence properties. In
this article, we develop a family of MFD methods for gen-
eralized polyhedral meshes. Moreover, we prove supercon-
vergence for the pressure (with an O(h2) rate) under very
general assumptions. This result was already observed
experimentally in the case of flat faces, but it was not
proved. Here we prove it for both flat and curved faces.
The key to this proof is to show existence of a reconstruc-
tion field inside a mesh element. Then, the superconver-
gence result follows from Theorem 5.3 in [5].
The outline of the paper is as follows. In Section 2, we
present the mimetic finite difference method on generalized
polyhedral meshes. In Section 3, we develop a family of
efficient (inexpensive and easy-to-code) numerical schemes.
In Section 4, we prove the superconvergence result for the
scalar variable. In Section 5, the theoretical results are con-
firmed with numerical experiments on logically cubic and
generalized polyhedral meshes.

2. A mimetic finite difference method

To simplify the presentation, we consider the homoge-
neous Dirichlet boundary value problem. Other types of
boundary conditions are naturally embedded in the
mimetic methodology [10].

Let X 2 R3 be a domain with a Lipschitz continuous
boundary. Furthermore, let Xh be a non-overlapping confor-
mal partition of X into simply-connected generalized polyhe-

dral elements. The generalized polyhedral element is, roughly
speaking, the image of a polyhedral element under a bi-Lips-
chitz mapping, and can be thought as a ‘‘polyhedron’’ with
possibly non-planar faces. Some basic assumptions of shape
regularity are necessary to prove convergence estimates [5];
however most of these assumptions are not required until
Section 3 and will be discussed there. To simplify the presen-
tation, we assume that the tensor K is constant inside each
mesh element but may strongly vary across mesh faces. We
also assume that K is strongly elliptic, that is there exist
two positive constants j* and j* such that

j�kvk2
6 kK1=2vk2

6 j�kvk2 8v 2 R3; ð2:1Þ
where k � k denotes the Euclidean norm.

The first step of the MFD method is to specify the
degrees of freedom for the primary variables p and ~F which
we shall refer to as the pressure and the flow, respectively.
With a common abuse of language we shall often refer to ~F
as the velocity field as well.

We consider the space Qh of discrete pressures that are
constant on each element E. For q 2 Qh, we denote by qE

its value on E. The number, NQ, of discrete pressure
unknowns is equal to the number of mesh elements.

In order to introduce the space Xh of discrete velocities
we have first to define, on each face of the decomposition,
a reference system. For that, for every element E and for
each face e of E we consider the unit outward normal ne

E,
which varies continuously on e. Thus, we can define the
average normal vector ~ne

E as

~ne
E ¼

1

jej

Z
e

ne
E dR; ð2:2Þ

where jej denotes the area of e. Later, we shall need the unit
vector

ae;3
E ¼

~ne
E

k~ne
Ek
:

It is not difficult to see that k~ne
Ek 6 1 and equality is reached

if and only if e is planar. It is also clear that if E1 and E2 are
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two elements having the face e in common then ~ne
E1
¼ �~ne

E2
.

The same is obviously true for ae;3
E1
¼ �ae;3

E2
.

Then we associate to each face e two additional unit vec-
tors ae,1 and ae,2 that are orthogonal to each other and to
the vector ~ne

E. Note that (in contrast to ae;3
E that points in

the outward direction to E) the two vectors ae,1 and ae,2

depend on the face e but not on the element E.
The space Xh of discrete velocities is then defined as fol-

lows. To every element E and to every face e of E, we asso-
ciate a constant vector Fe

E. We will now make precise the
continuity assumptions on our discrete velocity field. For
this, we need to distinguish between moderately curved
faces and strongly curved ones.

(M1) (Moderately and strongly curved faces). Let r* be a
constant independent of the partition. Then, we
say that the face e of the element E is moderately

curved if at every point of e we have
kne
E � ~ne

Ek 6 r�jej1=2
: ð2:3Þ

Otherwise, we say that the face e is strongly curved.
We impose the following continuity of the face-based
velocity unknowns: we assume that for each face e, shared
by two generalized polyhedrons E1 and E2, we have

Fe
E1
� ~ne

E1
¼ �Fe

E2
� ~ne

E2
: ð2:4Þ

Moreover, we assume that on strongly curved faces we have
the full continuity of the discrete velocity vector. This
means that together with (2.4) we also have

Fe
E1
� ae;i ¼ Fe

E2
� ae;i; i ¼ 1; 2; ð2:5Þ

where the unit vectors ae,1 and ae,2 are the ones chosen
above.

We denote the vector space of face-based velocity
unknowns by Xh. The number, NX, of our discrete velocity
unknowns is equal to three times the number of boundary
faces plus six times the number of internal faces. In our the-
oretical discussion, we shall consider Xh as the subspace of
RNX which verifies (2.4) on all faces and (2.5) on strongly
curved faces.

On moderately curved faces, only the normal compo-
nent of Fe

E is subject to the continuity requirements, and
the other two components are treated as internal degrees

of freedom and are eliminated during the assembly process
by static condensation. Hence, in the final matrix, after sta-
tic condensation, the total number of velocity unknowns
equals the total number of moderately curved faces, plus
three times the number of strongly curved faces.

The second step of the MFD method is to define suitable
inner products in the discrete spaces. In the space Qh, the
inner product is almost straightforward:

½p; q�Qh ¼
X
E2Xh

pEqEjEj; ð2:6Þ

where jEj is the volume of E. In the space Xh, the inner
product is a sum of elemental inner products ½F;G�E de-
fined for every element E in Xh. Let FE be the restriction
of F 2 X h to element E. Furthermore, let kE be the total
number of faces in E, so that the total number of scalar
components of FE and GE is ‘E ¼ 3kE. We denote them
by fFEg1; . . . ; fFEg‘E

and fGEg1; . . . ; fGEg‘E
, respectively.

For every positive integer number r, we define two unique
integer numbers aðrÞ and bðrÞ such that

r ¼ 3ðaðrÞ � 1Þ þ bðrÞ; aðrÞP 1; 1 6 bðrÞ 6 3:

Then, we say that fFEgr is associated with a face eaðrÞ
E and a

unit vector a
eaðrÞ;bðrÞ
E (hereafter, we shall write a

ðrÞ
E to simplify

the notation).
Let us assume that we are given (for each E) a symmetric

positive definite ‘E � ‘E matrix ME. Then, we set

½F;G�E ¼
X‘E

r;s¼1

ME;s;rfFEgsfGEgr: ð2:7Þ

Here and in the sequel, ME;s;r indicates the (s, r) entry of the
given matrix ME. From (2.7), we can easily construct the
inner product in Xh by setting

½F;G�X h ¼
X
E2Xh

½F;G�E 8F;G 2 X h: ð2:8Þ

Some minimal approximation properties for the scalar
product (2.7) are required, that make the construction of
the matrix ME a non-trivial task. We formulate and ana-
lyze these conditions in the next section.

The third step of the MFD method is to discretize
the divergence operator. For each G in Xh, we define
DIVhG as the element of Qh such that

ðDIVhGÞE :¼ 1

jEj
XkE

s¼1

Ges
E � ~nes

E jesj: ð2:9Þ

Note that (2.9) is a discrete version of the Gauss divergence
theorem.

The fourth step of the MFD method is to define the dis-
crete flux operator, Gh, as the adjoint to the discrete diver-
gence operator, DIVh, with respect to the inner product
(2.8), i.e.

½F;Ghp�X h ¼ ½p;DIVhF�Qh ; 8p 2 Qh 8F 2 X h: ð2:10Þ

Using the discrete flux and divergence operators, the
continuum problem (1.1) is discretized as follows:

DIVhFh ¼ b; Fh ¼ Ghph; ð2:11Þ

where b 2 Qh is the vector of mean values of the source
function b. This completes the derivation of the MFD
method.

3. A family of accurate scalar products

The choice of the matrix ME in the inner product (2.7) is
not unique and every choice one makes will result in a new
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MFD method. In this section, we describe a family of
acceptable matrices ME. Recall our assumption that the
tensor K has a constant value inside each mesh element
E, which we denote by KE. To simplify the notation, we
omit the subscript E unless it becomes necessary to avoid
confusion.
3.1. Matrix algebraic equation

For every vector-valued function ~G 2 ðH 1ðXÞÞ3, we
define GI 2 X h as follows. To define the components of
ðGIÞeE in the three orthogonal directions, we set

ðGIÞeE � a
e;3
E :¼ 1

jejk~ne
Ek

Z
e

~G � ne
E dR and

ðGIÞeE � ae;i :¼ 1

jej

Z
e

~G � ae;i dR; ð3:1Þ

where i ¼ 1; 2. If ~G is continuous across the interior mesh
faces, it is easy to see that the resulting vector GI will satisfy
the continuity conditions (2.4) and (2.5). Hence GI 2 X h.

We begin our analysis with two conditions on the inner
product (2.7) that are sufficient for getting a convergent
MFD method [4].

(S1) There exist two positive constants s* and S* such that,
for every element E, we have
s�jEj
XkE

s¼1

jGes
E j

2
6 ½G;G�E 6 S�jEj

XkE

s¼1

jGes
E j

2 8G 2 X h:

ð3:2Þ

(S2) For every element E, every linear function q1 on E,

and every G 2 X h, we haveZ Z

½ðKrq1ÞI ;G�Eþ

E
q1ðDIVhGÞE dV ¼

oE
q1GE �nE dR:

ð3:3Þ

Assumption (S1) states that the matrix ME is spectrally

equivalent to the scalar matrix jEjI‘E where I‘E is the ‘E � ‘E

identity matrix. In practice, the constants s* and S* are
expected to depend only on the skewness of the mesh
elements and on the tensor K.

Assumption (S2) is the discrete Gauss–Green formula
with the constant velocity Krq1. Since DIVhG is a con-
stant, the second term in (3.3) can be easily computed.
Also, note that all terms in (3.3) are linear functionals of
q1. For each q1, this assumption results in a system of linear
equations where the unknowns are the coefficients of the
matrix ME.

Taking q1 ¼ 1 in (3.3), we get the formula for the dis-
crete divergence operator. As we obviously expect frame
invariance, we use this freedom and, for every element E,
we set the origin in center of mass of E, which simplifies
the construction of the matrix ME. Thus, Assumption
(S2) can be replaced by the following one.
(S2 0) For every element E with center of mass at the origin,
for each i ¼ 1; 2; 3, and for each s ¼ 1; . . . ; ‘E, the
‘E � ‘E matrix ME satisfies,
X‘E

r¼1

ME;s;rfðKrxiÞIgr ¼
Z

eaðsÞ
xia
ðsÞ � nE dR; ð3:4Þ
where ðx1; x2; x3Þ are the Cartesian coordinates.

We continue by pointing out the Gauss–Green formula
for linear functions xi and xj:Z

oE
ðKrxiÞ � nExj dR ¼

Z
E

Krxi � rxj dV ¼ jEjKi;j: ð3:5Þ

If we further introduce the ‘E � 3 matrices R and D by

Rs;i ¼
Z

eaðsÞ
aðsÞ � nExi dR and Ds;i ¼ fðKrxiÞIgs; ð3:6Þ

where s ¼ 1; 2; . . . ; ‘E and i ¼ 1; 2; 3, then the identity (3.5)
becomes

RTD ¼ jEjK; ð3:7Þ

implying, among other things, that both matrices D and R

have full rank 3. Using (3.6), Assumption (S2 0) thus
becomes

MED ¼ R: ð3:8Þ

Next, we shall construct ME as the sum of two positive
symmetric semi-definite matrices, ME ¼M0 þM1, where
M0 satisfies (3.8) and M1D ¼ 0.

Lemma 3.1. Let R be given by (3.6). Then, the symmetric

and positive semi-definite matrix

M0 �
1

jEjRK�1RT ð3:9Þ

satisfies (3.8).

Proof. From (3.7) and (3.8) we have M0D ¼
1
jEjRK�1RTD ¼ R. h

Since the matrix M0 is only positive semi-definite,
assumption (S1) does not hold. The following result shows
how M0 can be completed to meet the positive definiteness
requirement.

Theorem 3.2. Let C be an ‘E � ð‘E � 3Þ matrix whose ‘E � 3

columns span the null space of the full rank matrix DT, so

that DTC ¼ 0. Then, for every ð‘E � 3Þ � ð‘E � 3Þ symmet-

ric positive definite matrix U, the following symmetric
matrix:

ME ¼M0 þ CUCT ð3:10Þ
satisfies (3.8) and is positive definite.

Proof. By construction, MED ¼M0D, and therefore by
Lemma 3.1, the matrix ME satisfies (3.8). Moreover, again
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by construction, ME is symmetric and positive semi-defi-
nite. We show that it is non-singular. Let us assume that
there exists a non-zero vector v such that MEv ¼ 0. Then
we must have

1

jEj1=2
K�1=2RTv

�����
�����

2

þ kU1=2CTvk2 ¼ 0; ð3:11Þ

which in turn implies that RTv ¼ 0 and CTv ¼ 0. Hence
ðv;CuÞ ¼ 0 for any vector u in R‘E , and therefore we get

v 2 fimðCÞg? ¼ fkerðDTÞg? ¼ imðDÞ;
so that RTv ¼ RTDw ¼ 0 for some w 2 R3. Now the iden-
tity (3.7) implies that w ¼ 0, so that v ¼ 0, and the non-sin-
gularity of ME follows. h

Since U has size ‘E � 3, a general symmetric positive
definite matrix of this size has ð‘E � 2Þð‘E � 3Þ=2 free
parameters, yielding a family of matrices with the required
properties. The liberty of choosing U within this family
could be used to tackle other computational problems,
e.g., enforcement the discrete maximum principle.

One of the efficient ways for solving the discrete problem
(2.11) is based on the KKT theory of constrained minimi-
zation (see e.g. [13, Chapter 16]) where the constraints are
given by (2.4) and (2.5). The solution of the KKT system is
reduced to the solution of a sparse system for Lagrange
multipliers with a symmetric positive definite matrix. This
is what in the Finite Element context is often called hybrid-

ization and is usually attributed to Fraeijs de Veubeke [8]
(see also [1], or [3] pp. 178–181). The procedure requires
the inversion of matrix ME. More precisely, during the
whole procedure we only need the matrix M�1

E , while the
explicit knowledge of the matrix ME is not required. We
show that we can directly compute a matrix WE, the
inverse of an inner product matrix, with the required
properties.

Theorem 3.3. Let Q be a ‘E � ð‘E � 3Þ matrix whose ‘E � 3

columns span the null space of the full rank matrix RT, so

that RTQ ¼ 0. Then, for every ð‘E � 3Þ � ð‘E � 3Þ symmet-

ric positive definite matrix eU, the following symmetric matrix

WE :¼ 1

jEjDK�1
E DT þQ eUQT ð3:12Þ

satisfies WER ¼ D and is positive definite.

The proof of this result follows the proofs of Lemma 3.1
and Theorem 3.2; therefore, it is omitted. Note that the
matrix D contains the material properties and thus the first
term in (3.12) is scaled properly.

Since, in practice, we are interested only in the matrix
M�1

E , we could define M�1
E :¼WE. Indeed, the matrix ME

defined in this way will be symmetric positive definite,
and will satisfy (3.8). Moreover, it is not difficult to see that
the matrix ME :¼W�1

E can still be written in the form
(3.10), where the choice of the matrices U and C obviously
depends on the choice of eU and Q. In Section 3.3 we
explicitly derive a matrix Q that satisfies the hypotheses
of Theorem 3.3, and we provide the computational costs
associated with the use of WE.
3.2. Spectral analysis

Assumption (S1) imposes some restrictions on the
choice of the parameter matrix U in Theorem 3.2 (or oneU in Theorem 3.3), and requires fixing some further
hypotheses on the shape-regularity of the mesh elements
formulated in [4,5]. They hold for basically all meshes
which are not totally unreasonable, thus making our
discretization methodology appealing in practical ap-
plications. For instance, they allow degenerate and non-
convex elements. Let hE denote a diameter of E and let
the following assumptions hold:

(M2) There exist a positive integer Ne such that every
element E has at most Ne faces.

(M3) There exist a positive number c* such that, for every
generalized polyhedron E, there exist a polyhedron
E0 (with planar faces e0,s) and a radial map U with
center at a point cE and such that UðE0Þ ¼ E,
Uðe0;sÞ ¼ es,
kJðUÞk 6 c�; and kJðU�1Þk 6 c�; ð3:13Þ

where J denotes the Jacobi matrix.

(M4) There exists a positive number s* such that every ele-
ment E and the corresponding polyhedron E0 are
star-shaped with respect to every point of a common
sphere of radius s�hE centered at the point cE.

Before entering the discussion on Assumption (S1), we
re-scale the matrices D and R and prove a technical lemma.
Let us define

eD :¼ DK�1 and eR :¼ 1

jEjR; ð3:14Þ

so that
eRT eD ¼ eDT eR ¼ I3: ð3:15Þ

It is not difficult to see that the rth row of the matrix eD is
ðaðrÞE Þ

T. Let Ds be the 3� 3 matrix whose rows are the
orthonormal vectors aes;1, aes;2, and aes;3

E of the face es and
D ¼ diagfD1; . . . ;DkEg.

Then,

DsDT
s ¼ DT

s Ds ¼ I3 and DDT ¼ DTD ¼ I‘E : ð3:16Þ

If we further introduce the ‘E � 3 matrix N by

Ns;i ¼
Z

eaðsÞ
rxbðsÞ � nExi dR;

where s ¼ 1; . . . ; ‘E and i ¼ 1; 2; 3, then
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R ¼ DN and eD ¼
D1

D2

..

.

DkE

0BBBB@
1CCCCA: ð3:17Þ

With the notation above, the following bounds hold.

Lemma 3.4. Assume that (M3) and (M4) hold. Then for

every element E we have the following bounds:

k eDwk ¼
ffiffiffiffiffi
kE

p
kwk and

1ffiffiffiffiffi
kE

p 6
keRwk
kwk 6

3c2
�

s�
; 8w 6¼ 0:

ð3:18Þ

Proof. Using (3.17), for every w 2 R3 we have k eDwk2 ¼
wT eDT eDw ¼ kEwTw, which proves the equality in (3.18).
To estimate the norm of eR, we note that

jEj2keRwk2 ¼ kNwk2 ¼
XkE

s¼1

Z
es

nEðw � xÞdR

���� ����2

: ð3:19Þ

Recall that we put the origin in the center of mass of E,
so that kxk 6 hE for any x in E. Thus

jEj2keRwk2
6 kwk2

XkE

s¼1

jesj
Z

es

kxk2 dR

6 kwk2h2
E

XkE

s¼1

jesj
 !2

: ð3:20Þ

Now, we consider the pyramids P0,s having e0,s as bases,
and the point cE from Assumption (M3) as common vertex.
Assumption (M4) implies that the height, h0,s, of the pyra-
mid P0,s is bigger than s�hE. Assumption (M3) implies that
the volume of E is bounded by the volume of E0. More
precisely, we have

jEjP 1

c�
jE0j ¼

1

c�

XkE

s¼1

jP 0;sj ¼
1

3c�

XkE

s¼1

je0;sjh0;s

P
s�hE

3c�

XkE

s¼1

je0;sjP
s�hE

3c2
�

XkE

s¼1

jesj:

Inserting this in (3.20), we have

keRwk2
6

9c4
�

s2
�
kwk2

: ð3:21Þ

The proof of the lower bound follows from the Gauss–
Green formulaZ

oE
nE;iðw � xÞdR ¼

Z
E
rxi � wdV ¼ wijEj:

Applying this result to (3.19), we get

jEj2keRwk2 P
1

kE

X3

i¼1

XkE

s¼1

Z
es

nE;iðw � xÞdR

 !2

P
1

kE

X3

i¼1

jEj2w2
i ¼
jEj2

kE
kwk2

:

This proves the assertion of the lemma. h
From Lemma 3.4 we may easily obtain estimates for the
unscaled matrices R and N and their products with the
tensor K. In particular, using Assumption (M2), we may
prove that

1

ðNej�Þ1=2
jEj 6 kK

�1=2RTwk
kwk 6

3c2
�

j1=2
� s�

jEj; 8w 6¼ 0: ð3:22Þ

It is obvious that the matrix ME will satisfy Assumption
(S1) if and only if its inverse matrix satisfies it. Hence, in
what follows, we discuss only the case of the matrix ME.
If one decides to follow the path of Theorem 3.3 (con-
structing directly the matrix WE ¼M�1

E ), the same argu-
ments will hold for WE as well.

Theorem 3.5. Let the assumptions of Theorem 3.2 and

Lemma 3.4 hold. Assume further that there exist two positive

constants s�U and S�U , independent of E, such that
s�U jEjkvk
2
6 kU1=2CTvk2 8v 2 imðCÞ ð3:23Þ

and

kU1=2CTvk2
6 S�U jEjkvk

2 8v 2 R‘E�3: ð3:24Þ

Then, the matrix ME constructed as in (3.10) satisfies

Assumption (S1). In particular, we have

min
1

2
s�U ; r�

� �
jEjkvk2

6 kM1=2
E vk2

6 maxfS�U ; r�gjEjkvk
2
;

ð3:25Þ

where

r� ¼
j�s2

�s
�
U

N ej�ð18c4
� þ s�Uj�s2

�Þ
and r� ¼ 9c4

�
j�s2

�
:

The proof of this theorem follows closely the proof of
Theorem 3.6 in [6]; therefore, it is omitted.

In actual numerical computations (based on Theorem
3.2), we recommend to multiply the matrix U by a charac-
teristics value of K�1

E , for example, its trace. This will
improve the spectral properties of the matrix ME with
respect to material properties. The estimates in (3.25) pro-
vide an illustration of the practical role of U in the condi-
tioning of ME. As long as the extreme eigenvalues of U are
within those of K�1

E , the conditioning of ME is not strongly
affected by the choice of U. The same remark obviously
applies to the matrix eU, if we decide to use Theorem 3.3
to construct directly the matrix M�1

E . This latter approach
is what we have employed in our experiments.

3.3. Computational considerations

According to Theorem 3.3, the most computationally
demanding part in building the matrix M�1

E ¼WE is the
construction of the matrix Q. For the particular choice
U ¼ uI, a cheap algorithm was proposed in [6] to directly
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build a matrix eQ ¼ QQT with Q having orthonormal
columns. The computation of eQ in [6] with our notation
requires 3‘2

E þOð‘EÞ floating point operations (flops). The
same algorithm can be efficiently applied to the present
case as well.

Let mE be the number of internal degrees of freedom for
FE and mE 6¼ 0. In this case, only part of matrix WE has to
be computed. After permutation of columns and rows,
matrices ME and WE may be written in a 2� 2 block form:

ME ¼
M11

E M12
E

M21
E M22

E

 !
and WE ¼

W11
E W12

E

W21
E W22

E

 !
;

with the first diagonal blocks corresponding to internal de-
grees of freedom. The algorithms of static condensation
and subsequent hybridization require the inverse of the
Schur complement M22

E �M21
E ½M11

E �
�1

M12
E which is nothing

but the matrix W22
E . The corresponding block of eQ can be

computed with 3ð‘E � mEÞ2 þOð‘EÞ flops. If all faces of ele-
ment E are moderately curved, mE ¼ 2kE and the above
modification becomes essential.

In the rest of this subsection we present an alternative
strategy for the explicit construction of a matrix Q satisfy-
ing the hypotheses of Theorem 3.3, so that no restrictions
are posed on eU, and the full family of MFD methods
can be generated.

Proposition 3.6. Let the matrix I be defined as follows:

I ¼

I3

�I3 I3

�I3
. .

.

. .
.

I3

�I3

0BBBBBBB@

1CCCCCCCA 2 R‘E�ð‘E�3Þ:

Then, the matrices C and Q given by

C ¼ DI and Q ¼ C� 1

jEjDK�1NTI; ð3:26Þ

respectively, have full column rank and satisfy
CTD ¼ RTQ ¼ 0. Moreover,

condðQÞ :¼ rmaxðQÞ
rminðQÞ

6
1þ 3

ffiffiffiffiffi
‘E

p
c2
�=s�

sinðp=ð2kEÞÞ
;

where rmaxðQÞ, rminðQÞ are the largest and smallest non-zero
singular values of Q, respectively.

Proof. It is obvious that C has full column rank and spans
the null space of DT. Let us show that RTQ ¼ 0. Since D is
an orthogonal matrix, we have

RTQ ¼ RTC� RT 1

jEjDK�1NTI ¼ RTC�NTI

¼ NTDTDI�NTI ¼ 0:

Let us show now that Q has full column rank. The defini-
tion (3.26) yields
Q ¼ DI� 1

jEjD
I3

..

.

I3

0BB@
1CCANTI:

We use again property (3.16) and the simple fact that
½I3; . . . ; I3�I ¼ 0 to show that

QTQ ¼ ITIþ kE

jEj2
ITNNTI:

Since the matrix ITI has full rank equal to ‘E � 3 and ma-
trix ITNNTI is symmetric and positive semi-definite, the
matrix QTQ is symmetric and positive definite and has full
rank. Therefore, the matrix Q has full column rank.

We next obtain bounds for the extreme singular values
of Q. Straightforward calculations show that ITI is a
tensor product of I3 and a tridiagonal matrix of size kE � 1
with 2 on the main diagonal and �1 on the off diagonals.
Thus, kjðQTQÞP kjðITIÞ ¼ 4 sin2ðjp=ð2kEÞÞ where j ¼
1; . . . ; kE � 1. Therefore,

rminðQÞ ¼ kminðQTQÞ1=2 P 2 sin
p

2kE

� �
:

Noticing that kDk ¼ 1 and kIk 6 2, and recalling (3.19)
and (3.21), we obtain

rmaxðQÞ ¼ kQk 6 I � 1

jEj

I3

..

.

I3

0BB@
1CCANT

��������
��������kIk

6 2 1þ 1

jEj
ffiffiffiffiffi
‘E

p
kNk

� �
6 2 1þ

ffiffiffiffiffi
‘E

p 3c2
�

s�

� �
:

Collecting the bounds for rminðQÞ, rmaxðQÞ the final result
follows. h

The shape regularity constant s* makes usually bigger
impact on the condition number condðQÞ than c*. For
a shape-regular element E, the condition number grows
as ‘

3=2
E . If condðQÞ becomes too large, the matrix

Q 2 R‘E�ð‘E�3Þ can be orthogonalized by the modified
Gram–Schmidt process, with a computational cost of
2‘Eð‘E � 3Þ2 flops [9]. This approach may be advantageous
when ‘E is not much greater than 3.

4. Superlinear convergence

In [5], we proved the super-linear convergence of the
pressure variable for the case in which the inner product
matrix ME is constructed as follows. For every element
E, we define a lifting operator RðGEÞ with values in
ðL2ðEÞÞ3 and the following properties:

RðGEÞjoE � GE on oE;

divRðGEÞ � ðDIVhGÞE in E
ð4:1Þ

for all GE and

REðGI
EÞ ¼ ~G ð4:2Þ
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for all constant vector-valued functions ~G (where GI is
constructed using ~G as in (3.1)). Then, the choice

½F;G�E :¼
Z

E
K�1REðFEÞ �REðGEÞdV ð4:3Þ

allowed us to prove the second order convergence rate for
the pressure variable. In practical computations the matrix
ME was constructed in a different way, essentially following
Theorem 3.2 or Theorem 3.3. However the numerical evi-
dence still showed superconvergence for the pressure. In
order to obtain a theoretical justification of such numerical
evidence, we adopt the following strategy: For every matrix

ME given by (3.10), find a lifting operator RE such that the
matrix ME coincides with the matrix induced by RE through

(4.3).
Let us fix a p with 6=5 6 p < 2, and for every GE consider

the following Stokes-like problem: find g 2 ðW 1;pðEÞÞ3 and
v 2 LpðEÞ such that

� Dgþrv ¼ 0 in E;

divg ¼ DIVhGE in E;

g ¼ GE on oE:

ð4:4Þ

We recall that for p P 6=5, in three dimensions, we have
W 1;pðEÞ � L2ðEÞ. It is clear that the lifting operator fRE de-
fined by g ¼: fREðGEÞ satisfies properties (4.1) and (4.2).

We can now consider the space XE made by the restric-
tions of Xh to E, and the space W obtained as
W :¼ fREðX EÞ. The dimension of both spaces is equal to
‘E. It is clear that the space W contains the constant
vectors.

For notational convenience, we apply a change of basis
in W, putting the three constant vectors in the last three
positions, and we apply the corresponding change of vari-
ables in XE. Let ~W 1; . . . ; ~W ‘E be the new orthogonal basis in
ðL2ðEÞÞ3, where ~W ‘E�2, ~W ‘E�1, and ~W ‘E are constant vectors
in E. The change of basis in XE results in an equivalency
transformation for the matrix ME. We denote the trans-
formed matrix by fME. The matrix obtained from the lifting
operator fRE using (4.3) will be given byeSs;r ¼

Z
E

K�1~W s � ~W r dV :

Let S be the representation of matrix eS in the original
basis of XE.

We cannot expect that the matrix eS coincides with fME

based on (3.10). We note however that, due to our change
of basis, the last three columns and the last three rows of all
possible transformed matrices fME obtained through (3.10)
will coincide with the corresponding columns and rows ofeS. This is due to the fact that all inner products induced
by all these matrices will be exact on constant vectors.
The rigorous proof is based on Assumption (S2) and prop-
erties (4.1) and (4.2):

0 ¼
Z

E
K�1~W r � ~W s dV ¼

Z
E
ru1

r � ~W s dV

¼
Z

oE
u1

r
~W s � nE dR ¼ ½ðKru1

r Þ
I
E; ð~W sÞIE�E;
where 1 6 s 6 ‘E, ‘E � 3 < r 6 ‘E and we denoted by u1
r a

linear function such that ru1
r ¼ K�1~W r.

Thus, the matrices eS and fME are block diagonal with
two blocks of size ‘E � 3 and 3, respectively. Moreover,
in the new basis, imðDÞ is spanned by the last three

columns of either S or fME. We are going therefore to mod-
ify the first ‘E � 3 elements of the basis ~W 1; . . . ; ~W ‘E , and
then use the new basis to construct a new lifting operator
RE in such a way that the matrix obtained from it by

(4.3), coincides with the matrix fME based on (3.10). This
will not be feasible for all matrices fME, but, as we shall
see, for many of them.

Lemma 4.1. The matrix ME given by (3.10) is induced by an

inner product (4.3) if and only if

kfM1=2
E vkP keS1=2vk 8v 2 imðfME � eSÞ:

Proof. Re-using the original idea from [2], we consider the
space of vector-valued functions ~V satisfying

div~V ¼ 0 in E;

~V ¼ 0 on oE;Z
E

K�1~W s � ~V dV ¼ 0 s ¼ 1; 2; . . . ; ‘E:

ð4:5Þ

It is clear that such space is non-empty, and actually is infi-
nite dimensional. Then we choose ‘E � 3 independent ele-
ments ~V 1; . . . ; ~V ‘E�3 in this space, and consider the lifting
functions

~W 1 þ ~V 1; ~W 2 þ ~V 2; . . . ; ~W ‘E�3 þ ~V ‘E�3; ~W ‘E�2; ~W ‘E�1; ~W ‘E :

We denote by T the matrix induced by (4.3). The ortho-
gonality property gives:

T ¼ eS þV; ð4:6Þ
where V is the Gram matrix of functions ~V s

(s ¼ 1; 2; . . . ; ‘E � 3), completed by zeroes in the last three
rows and columns. The matrix V is symmetric and positive
semi-definite. With an abuse of notation, we shall indicate
by V the ‘E � ‘E matrix V as well as its ð‘E � 3Þ � ð‘E � 3Þ
principal diagonal block. We note that for any symmetric
positive semi-definite ð‘E � 3Þ � ð‘E � 3Þmatrix P, it is pos-
sible to find functions ~V s that will generate this matrix.
Indeed, if we choose ‘E � 3 orthonormal vectors ~V 0;r satis-
fying (4.5) and a matrix Z such that ZTZ ¼ P, then taking

~V s ¼
X‘E�3

r¼1

Zs;r
~V 0;r;

we easily obtain V ¼ ZZT ¼ P.
Now, the assertion of the lemma can be rephrased as

follows: Find necessary and sufficient conditions for the

transformed matrix fME (defined above) to be one of
the matrices T. It follows from (4.6) that fME ¼ T if and
only iffME � eS ¼ V P 0
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or

ððfME � SÞv; vÞP 0 8v 2 R‘E : ð4:7Þ
This proves the assertion of the lemma. h

Corollary 4.2. The matrix ME given by (3.10) is induced by

an inner product (4.3) if and only if

kM1=2
E vkP kS1=2vk 8v 2 imðCÞ:

The proof of this corollary is based on deriving an expli-
cit form for the equivalency transformation mentioned
above. We leave it as the exercise for the reader.

When C has orthonormal columns and U ¼ uI, the
above lemma requires u to be sufficiently large. Indeed,
since CCTv ¼ v, we get

ðMEv; vÞ ¼ 1

jEj1=2
K�1=2RTv

�����
�����

2

þ ukvk2 P ukvk2
:

On the other hand,

ðSv; vÞ 6 kmaxðSÞkvk2
;

where kmaxðSÞ is the maximum eigenvalue of S. Thus, it is
sufficient to take u larger than kmaxðSÞ to satisfy (4.7) and
hence, to guarantee superlinear convergence of the family
of MFD methods. This justifies, in some sense, our state-
ment in Section 1 concerning the vector field representation
inside each element (the guardian angel). Indeed, at least
when u is sufficiently large, we can say that our inner prod-
uct is indeed based on a reconstruction of the vector vari-
able inside each element, but we actually do not see how
such reconstruction looks like: we only see the resulting in-
ner product.
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Fig. 1. A logically cubic mesh with randomly perturbed interior points (le
convergence rate for the new MFD method (blue), and the lack of convergence
interpretation of the references in colour in this figure legend, the reader is re
It is also pertinent to note that the approach based on
the lifting operator RE is only one of the ways to prove
the superconvergence result. Therefore, in practice, the
superconvergence may be observed for a wide range of
parameters u.

5. Numerical experiments

We shall consider diffusion problems with sufficiently
smooth solutions, so that we may expect the second order
convergence rate for the scalar variable ph and the first
order convergence rate for the other primary variable Fh

on generalized polyhedral meshes.
We shall measure the accuracy of the discrete solution

ðph;FhÞ in the natural norms induced by the scalar products
(2.6) and (2.8). Let ðpI ;FIÞ be the interpolated solution
where pI is the vector of mean values of the solution p over
the elements and FI is given by (3.1). We define the follow-
ing discrete L2 errors:

jjjpI � phjjj ¼ ½pI � ph; p
I � ph�

1=2
Q ;

jjjFI � Fhjjj ¼ ½FI � Fh;F
I � Fh�1=2

X :

For all meshes considered in this section, we have per-
formed the following consistency check. We have solved
the Dirichlet boundary value problem with a constant ten-
sor K and an exact solution p1 given by p1 ¼ x1 þ 2x2 þ 3x3.
All non-planar mesh faces were classified as strongly
curved. As p1 is linear, it follows from Assumption (S2)
that the errors should be zero, and this is indeed observed
in our experiments.

The discrete problem (for the Lagrange multipliers) was
solved with the preconditioned conjugate gradient (PCG)
method. A V-cycle of the algebraic multigrid [16] was
–2
10

–1

h

MFD new: pressure

MFD old: pressure

MFE: pressure

MFD new: velocity

MFD old: velocity

MFE: velocity

ft picture) and the convergence graphs (right picture) showing optimal
for the mixed finite element (black) and the old MFD (red) methods. (For

ferred to the web version of this article.)
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Fig. 2. The trace of the generalized polyhedral mesh (left picture) and convergence graphs (right picture) showing the optimal convergence rates for the
new MFD method (blue) and lack of convergence for the old MFD method (red). (For interpretation of the references in colour in this figure legend, the
reader is referred to the web version of this article.)
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chosen as the preconditioner. The stopping criterion for the
PCG method was a reduction of the Euclidean norm of the
residual by a factor 10�12. In both experiments below,
mesh faces were classified on moderately and strongly
curved using r� ¼ 0:2.

Example 1. We consider the Dirichlet boundary value
problem (1.1) in the unit cube [0,1]3 with the identity tensor
K and the exact solution
pðx; y; zÞ ¼ x2y3zþ 3x sinðyzÞ:

We consider a sequence of generalized hexahedral meshes
as shown in Fig. 1 where a part of the unit cube was cut
out to show the interior mesh. The meshes are generated
by moving each mesh point P (of an originally uniform
mesh with mesh step h) to a random position inside a cube
C(P) centered at the point. The sides of C(P) are aligned
with the coordinate axes and their length equals to 0.8 h.

For every element E, we define a scalar matrix eU ¼ ~uEI

where ~uE ¼ traceðKEÞ=jEj. The convergence graphs in
Fig. 1 show the optimal convergence of the new MFD
method and the lack of convergence for the mixed finite
element method with the lowest order Raviart–Thomas
elements and the old MFD method. Recall that the last two
methods use one degree of freedom per mesh face to
approximate the flow field. Note that we have the first
order convergence rate for the velocity variable and the
second order convergence rate for the pressure variable.
Example 2. Let us consider the Dirichlet boundary
described in the previous example on a different sequence
of generalized polyhedral meshes (see Fig. 2 where we show
only the mesh trace). It is pertinent to note that 68% of
interior mesh faces are strongly curved according to defini-
tion (M1) with r� ¼ 0:2.

The mixed finite element method cannot be used on such
meshes. The old MFD method lacks convergence for both
primary variables. For the new MFD method, we have
again the first order convergence rate for the velocity
variable and the second order convergence rate for the
pressure variable.
6. Conclusion

We gave a rigorous mathematical description of a family
of mimetic finite difference methods for diffusion problems
on generalized polyhedral meshes. We developed an inex-
pensive and easy-to-implement numerical algorithm, ana-
lyzed it both theoretically and numerically, and proved
the superconvergence result for the scalar variable. With
this new method, discretizations of elliptic equations on
generalized polyhedral meshes becomes as simple as on tet-
rahedral meshes. The results were obtained for the full
material tensor.
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