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Abstract—The numerical solution of partial differential equations solved with finite-difference ap-
proximations that mimic the symmetry properties of the continuum differential operators and satisfy
discrete versions of the appropriate integral identities are more likely to produce physically faithful
results. Furthermore, those properties are often needed when using the energy method to prove con-
vergence and stability of a particular difference approximation. Unless special care is taken, mimetic
difference approximations derived for the interior grid points will fail to preserve the symmetries
and identities between the gradient, curl, and divergence operators at the computational boundary.
In this paper, we describe how to incorporate boundary conditions into finite-difference methods so
the resulting approximations mimic the identities for the differential operators of vector and tensor
calculus. The approach is valid for a wide class of partial differential equations of mathematical
physics and will be described for Poisson’s equation with Dirichlet, Neumann, and Robin boundary
conditions. We prove that the resulting difference approximation is symmetric and positive definite
for each of these boundary conditions. Published by Elsevier Science Ltd.

Keywords—TFinite-difference, Logically-rectangular grids, Discrete vector analysis, Boundary
conditions.

1. INTRODUCTION

Mimetic finite-difference methods retain or mimic the main properties of the continuum problem.
We have developed a discrete analog of vector and tensor calculus [1-3], based on the Support
Operator Method (SOM) [4-7], that can be used to accurately approximate continuum models
on nonuniform grids for a wide range of physical processes. The SOM defines discrete mimetic
approximations of the divergence, gradient, and curl operators that satisfy discrete analogs of
the coordinate invariant integral identities, such as Gauss’ or Stoke’s theorem, responsible for the
conservative properties of the continuum model. These initial discrete operators, called the prime
operators, then support the construction of other discrete operators, using discrete formulations
of the integral identities. That is, we use the formal adjoints of the natural operators to derive
compatible divergence, gradient, and curl operators with complementary domains and ranges of
values.

For example, if the initial discretization is defined for the divergence (prime operator), it should
satisfy a discrete form of Gauss’ theorem. This prime discrete divergence DIV is then used to
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support the derived discrete operator GRAD, thus satisfying a discrete version of the integral
identity relating the DIV and GRAD. Because the derived operator GRAD is defined to be
the negative adjoint of DIV, the discrete Laplacian operator DIV- GRAD is guaranteed to be
a positive symmetric operator. Finite-difference methods derived for nonuniform grids by the
SOM automatically preserve discrete versions of the integral identities for the gradient, curl, and
divergence operators and satisfy discrete analogs of many of the theorems of vector and tensor
calculus, including Stoke’s theorem and a diserete orthogonal decomposition theorem.

For these methods to provide reliable approximations to the solutions for a wide class of
partial differential equations, they must retain these properties when the boundary conditions
of the partial differential equation being approximated is incorporated into the discrete model.
For example, when solving Poisson’s equation, if the discrete operator, including the boundary
conditions, is symmetric and positive, then we can investigate the stability and accuracy by
applying an approach similar to that what has been used in [8-10]. In addition, powerful iteration
methods for solving linear systems often require symmetric and positive discrete equations {11].

‘We will demonstrate how to incorporate boundary conditions into the finite-difference methods
on nonsmooth, logically rectangular grids and still preserve the integral identities and symmetries
of the original differential equation. We demonstrate the main ideas by constructing a finite-
difference method that preserves the symmetry and is a positive definite approximation of the
stationary heat equation

—divgradu = f, (z,y) e V. (1.1)

This equation arises in solving for the pressure in the incompressible fiow equations, in solving
for the temperature in the steady-state heat equation, and in solving for mass concentration in
the steady-state diffusion equation. Here V is a two-dimensional region, div is the divergence,
grad is the gradient, and f = f(z,y) is a given function.

The boundary conditions may be general Robin (or mixed):

(grad uvﬁ) +au = 9, (:an) € 9V, (12)

where 71 is the vector of the unit outward normal to the boundary 8V, and o and v are functions
given on 8V. These boundary conditions include the Neumann boundary condition

(gradu, @) =¢, (z,y) € 9V, (1.3)

when « is zero. We will consider the Dirichlet boundary conditions when the solution u(z,y) is
given on the boundary

u(z,y) =9(z,y), (z,y) € V. (1.4)

The boundary conditions (1.2) and (1.3) are natural boundary conditions because they can be
taken into account by changing the definition of the inner product in the functional spaces without
imposing the boundary conditions on the solution u(x,y). The Dirichlet boundary condition (1.4)
is called an essential boundary condition and has to be explicitly imposed on the function space
where we are looking for the solution.

We incorporate Robin boundary conditions into the discrete problem by defining an inner
product in the space of discrete scalar functions, which includes a discrete analog of boundary
integral.

We begin by analyzing the continuum problem for Poisson’s equation with Dirichlet, Neumann,
and Robin boundary conditions to illuminate the properties, such as symmetry and positiveness,
of the operators that we wish to preserve in the discrete case. Next, we introduce the notation
for nonuniform staggered grids, the discretizations of scalar and vector functions, and the appro-
priate discrete inner products for the space of scalar discrete functions for each type of boundary
condition. We describe SOM for approximating the div and grad on nonuniform grids, and
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we provide a detailed analysis proving that the approximations for the Dirichlet, Neumann, and
Robin boundary value problems are symmetric positive operators.

2. PROPERTIES OF THE CONTINUUM PROBLEM

We begin by analyzing the continuum problem for Poisson’s equation with Dirichlet, Neumann,
and Robin boundary conditions and emphasize the properties of differential operators that we
want to retain in the discrete case.

2.1. Dirichlet Boundary Value Problem
The Dirichlet boundary value problem,

~divgradu = f, (z,y) €V,

u(x, y) = w(f,y), (z’ y) € 8V, (21)

can be transformed into an equivalent problem with zero boundary conditions if we assume that
the shape of the domain satisfies the extensibility or continuability condition {12]. Then there
is & smooth function ¥(z,y) which coincides with ¥(z,y) on the boundary ¥(z,y) = ¥(z,¥%),
(z,y) € OV.

We introduce the new unknown function

i(z,y) = u(z,y) - ¥(z,y), (2.2)

and reformulate (2.1) as 3
—divgradi = f, (:B,y)EV,

i(e,y) =0, (z,) €V, @3)

where ;
f=f+divgrad ¥. (24)

This transformed problem has zero Dirichlet boundary conditions and a modified right-hand side.
We restate this problem in operator notation by introducing the space of scalar functions that
are equal to zero on the boundary; that is,

H = {v(z,y) € H, v(z,y) = 0 € 8V}, (2.5)

with the following inner product:
(u,v)0 = / uvdV. (2.6)
H 1

0
The problem now is to find & € H, which satisfies the equation
Adi = f, A = — divgrad, (2.7)

0
where the operator grad is defined on the subspace H of the space H.
To show that the operator A is symmetric and positive, we note that the identity

/¢div1D‘dV+/ (@, grad ¢) dV:}{qb(u'i,ii)dS (2.8)
v v S

reduces to
/ ¢ divwidV + / (w, grad ¢) dV = 0, (2.9)
|4 v
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()]
for the scalar functions in H. In addition,
(Au,v)e = —/ v div gradudV
H 14
= / (grad u,grad v) dV,
v

and hence,
(Au,v) 8= (u, Av) B (Au,u) 5> 0.

If we introduce the inner product in the space of vector functions H as

(A,B)H .—./V (48) av,
then the identity (2.9) implies
(le A, u)gl = (A, grad u)H s
and the operators div and — grad are adjoint to each other in these function spaces,
div = — grad*.

2.2. Neumann Boundary Value Problem

The Neumann boundary value problem is defined as

—divgradu = f, (z,y) €V,
(grad u7ﬁ)|(z,y) = '{(J(I, y)’ (xl y) € a‘/,

where 7 is the unit outward normal to V. The divergence theorem

LdideV:f(W,r’i) ds,

requires the compatibility condition

—/de: $dS,
Vv v

for the Neumann problem to have a unique solution (up to constant).

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

We analyze the Neumann problem from two different approaches: the modified inner-product
approach (where we embed the boundary integral in inner-product space), and flux form approach

(used for the Dirichlet boundary conditions).

2.2.1. Modified inner-product approach
In the modified inner-product approach, we rewrite (2.15) in operator form as
Au=F,
where

A { —divgradu, (z,y) €V,
U=
(gradu,i), (z,y) €48V,

(2.18)

(2.19)
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and

F=

{ fi @y eV, (2.20)

¥, (z,y) €dV.

Next, we introduce an inner product in the space of the scalar functions, which includes the
boundary integral

(u, v) iz % / wdV + f wdS, (2.21)
v v

(from here on, we use the notation 4! when we define a new object) and leave the values of u(z, y)
unrestricted on the boundary.
In this inner product, the Neumann problem is symmetric and nonnegative because

(Au,v)y = ~/ divgraduvdV + (grad u,v) dS

v v (2.22)

= / (grad u,grad v) dV.
v

The Neumann boundary conditions are called natural boundary conditions in this approach
because they can be embedded in a natural way into the definition of the inner product, or in
finite-element methods, by changing the variational functional or variational identity.

If we extend the divergence operator to the boundary and define the operator d : H — H as

+divw, (z,y) €V,
= { ’ (@,7), Eng cav, (2.23)
we can express (2.19) in compact form,
= —d - grad, (2.24)
and (2.15) can be written as the first-order system
dw = F, W = —grad u. A(2.25)

From the definition of operator d, the definition (2.21) for the inner product in the space H,
and the integral identity (2.8), we have

(du')’,u)H=/ udivwdv-f u(W,ii) dS
|4 Vv

- / (@, gradw) dV (2.26)
|4
= (7, - grad u),,
or
d = —grad”. (2.27)

This is a crucial relationship, which we must retain in our discrete approximation. An immediate
benefit of (2.27) is that the operator A,

A= —d grad = dd* (2.28)

is symmetric and nonnegative.
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2.2.2. Flux form approach
In the flux form approach, we first rewrite problem (2.15) in fluz or mized form as the first-order
system
divW = §, (x,9) €V, (2.29a)
W = —gradu, (z,9) €V, (2.29b)
-(Wa)|_ =vew,  @wev, (2.29¢)

(z.v)

where W is flux.
If we assume that we can find a scalar function ¢, where

(grad §,7))|,,) = ¥(=.9),  (a,y) €Y, (2:30)

then we can reformulate problem expressed as (2.29a)—(2.29c) as

diviW = f, (z,y) € V, (2.31a)
W =—gradd, (z,y)€V, (2.31b)
- (ﬁ’,'r‘i) =0, (z,y) € V, (2.31¢)
(z,v)
where .

U=u-— ¢!
W=Ww-8  &=grado, (2.32)

f=f-divd

Now, we now need only consider the problem expressed as (2.31a) and (2.31b) in the space

H x ’}Oi, where
= {Wen, (W)

=0, (z,y) € BV} .

(z,y)

That is, in the flux formulation, the Neumann boundary condition is an essential boundary
condition, which must be imposed on the solution.

0
The operator div, defined on the subspace #, satisfies

div = - grad*.

That is, either when we consider grad on subspace I(} or when we consider div on subspace 7?{,
we have div = — grad” in an inner product that does not include the boundary integral in (2.8).
This boundary integral no longer contributes to the inner product because the problem has been
reformulated in subspaces where the boundary integral vanishes.

2.3. Robin Boundary Value Problem
The Robin boundary value problem can be formulated as

—divgradu = f, (z,y) €V,

(gradu,i) +au=19, (z,y)€dV, a>0, (2:33)

or in operator form as
Au=F. (2.34)
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Here, A is defined by

—divgradu, (z,y) €V,
A:H— H, Au= - (2.35)
(gradu,7) + au, (z,y) € 8,
o f. @wev.
k) x, 3
F= { v (2.36)
¥, (z,y) €0V
We can easily prove that A is symmetric and positive, that is,
(Au,v)g = (u, Av)y, (Au,u)g >0, (2.37)
with a proof similar to the one for Neumann boundary conditions and using the identity
(Au,v)g = —/ divgrad uv dV +f (grad u,v)dS +f auv dS
= / (grad u,grad v)dV + f auvds.
v av
The operator A can be represented in the form
A=-d- grad, (2.39)
where the operator d is defined by (2.23) and Q : H — H is defined as
0, z,y) €V,
Qu = { (#.9) (2.40)
au, (z,y) e dV.
It can be useful to formulate problem (2.33) in terms of first-order operators as
divw = f, (z,y) €V,
W = — grad u, (z,y) €V, (2.41)
—(@,7) + au =1, (z,y) € 9V,
or in terms of first-order operators as
Qu+du = F, W = — grad u. (2.42)

Because A = 2 +d-d” and @ = Q* > 0, the properties (2.37) follow from the properties
of the operators 2, d, and — grad. The boundary conditions are included in definitions of the
operators and spaces of functions in a natural way.

3. SPACES OF DISCRETE FUNCTIONS

3.1. Grid Notations

We index the nodes of a logically rectangular grid using (4, j), where 1 <i < M and 1 < j<N
(see Figure 1). The quadrilateral defined by the nodes (i, j), (i +1,5), (i + 1,5+ 1), and (1,7+1)
is called the (i +1/2, j+1/2) cell (see Figure 2a). The area of the (i +1/2,j+1/2) cell is denoted
by VCit1/2,5+1/2; the length of the side that connects the vertices (i,) and (4, + 1) is denoted
by 5%i,j+1/2; and the length of the side that connects the vertices (i, j) and (i + 1, 5) is denoted
by S7i+1/2,;. The angle between any two adjacent sides of cell (i + 1/2,j + 1 /2) that meet at

node (k,!) is denoted by (p;:'ll/&jﬂ/z'



86 J. M. HYMAN AND M. SHASHKOV

(L1) Ui

Figure 1. Cell-centered discretization of the scalar functions (HC) on a logically
rectangular grid.

When defining discrete differential operators, such as CURL, it is convenient to consider a
2-D grid as the projection of a 3-D grid. This approach simplifies the notation and generalizing
finite-difference methods to three dimensions. Here we consider functions of the coordinates z
and y, and extend the grid into a third dimension z by extending a grid line of unit length into
the z-direction to form a prism with unit height and with a 2-D quadrilateral cell as its base (see
Figure 2b).

Sometimes it is useful to interpret the grid as being formed by intersections of broken lines that
approximate the coordinate curves of some underlying curvilinear coordinate system (¢, 1, ¢)-
The &, 7, or { coordinate corresponds to the grid line where the index i, j, or k is changing,
respectively.

Using this analogy, we denote the length of the edge (¢, 7, k) — (i+1, j, k) by i;41/2,5,%, the length
of the edge (i, 7, k) — (4,7 + 1,k) by In; j+1/2,x, and the length of the edge (3,7, k) — (i, 4,k + 1) by
Ui, k+1/2 (Which we have chosen to be equal to 1). The area of the surface (6,5, k) — (3,5 +1,k) ~
(4,3, k+1)—(3, j+1, k+1), denoted by S&; j41/2,k+1/2, is the analog of the element of the coordinate
surface dS€. Similarly, the area of surface (i,7,k) — (i + 1,5,k) — (4, 5,k +1) = (i + 1,5,k + 1)
is denoted by Smi+1/2,5,k+172- We use the notation S¢;1/2,541/2,% for the area of the 2-D cell
(i +1/2,7 + 1/2); that is, Si41/2,541/2k = VCis1/2.j+1/2- Because the artificially constructed
3-D cell is a right prism with unit height, we have

S&ij+1/2.k+172 = Mijr1/2.k  WGigik+1/2 = Mije1/2.5

and
Snir1/2,5k+1/2 = Eir1/2,5% * i er1/2 = Wiv1/2,5,k-

With this 3-D interpretation, the 2-D notations S§; ;412 and Sn;.1/2,; are not ambiguous
because the 3-D surface (i,j,k), (i,5 + 1,k), (3,5,k + 1), (3,5 + 1,k + 1) corresponds to an
element of the coordinate surface S¢, and since the prism has unit height, the length of the side
(3,7) — (3,7 + 1) is equal to the area of the element of this coordinate surface.
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(i+1j+1)

S& ij+if2

i+12,j+172
i+1/2,j+1/2

i+1,j

( l]) SNy ( H'];] )
.
(a) The (i + 1/2,7 +1/2) cell in a logically rectangular grid has area VCit1/2,541/2

and sides S€¢,1+1/2, ST],'.’.I/QJ', SEi+1,j+1/2: and sf],'+]/2’j+1. The interior a.ngle

N i+1/2,741/2
between S'I-H-l/z,j and Sf'-+1,j+1/2 is Sa:d—l,/j J+1/ .

A

Z ij+Lk+1

Ljk+1 i+1j+Lk+1

i+l jk+1

i+l j+lk

X

(b) The 2-D (i 4 1/2,j + 1/2) cell (z = 0) is interpreted as the base of a 3-D, logical
cuboid (i+ 1/2,5 + 1/2,k + 1/2) cell (a prism) with unit height.

Figure 2.

3.2. Discrete Scalar and Vector Functions

In a cell-centered discretization, the discrete scalar function Uit1/2,j+1/2 is defined in the
space HC' and is given by its values in the cells (see Figure 1), except at the boundary cells.
The treatment of the boundary conditions requires introducing scalar function values at the
centers of the boundary segments: Uy j11/2), UM,j+1/2), where j=1,...,N —1 and Uti+1/2,1)
Uti+1/2,n), where i = 1,...,M — 1. In three dimensions, the cell-centered scalar functions are
defined in the centers of the 3-D prisms, except in the boundary cells where they are defined on
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the boundary faces. The 2-D case can be considered a projection of these values onto the 2-D
cells and midpoints of the boundary segments.

0
We define the subspace HC of HC to be the scalar functions that are zero on the boundary

U(l,j+l/2) = 0, U(M,:H-I/Z) = 0, ] = 1, e ,N - 1, (3.1)

U(i+l/2.1) = 0, U(i+1/2,N) = 0, 1= 1, e ,M -1 (32)

The vectors can have three components, but in our 2-D analysis, the components depend on
only two spatial coordinates, x and y. The HS space (see Figure 3a), where the vector components

are defined perpendicular to the cell faces, is the natural space when the approximations are based
on Gauss’ divergence theorem.

A

Z ij+lk+1

ijk+1 i+l j+Lk+1

i+1jk+1
1AYS

i+ 1/2,k+

y o/n

h,.‘
WSTI i+172 jk+ 1/

l,j+

LAY i+1j+1k

i+l

X

(a) MS discretization of a vector in three dimensions is defined at the center of the
faces of the prism.

(i+1,j+1)

WS,
4 i+1j+172

(if) Wiy (HLJ)

(b) 2-D interpretation of the HS discretization of a vector results in the face vectors
defined perpendicular to the cell sides and the vertical vectors defined at cell centers
perpendicular to the plane.

Figure 3.
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The projection of the 3-D HS vector space into two dimensions results in the face vectors
defined perpendicular to the quadrilateral cell sides and cell-centered vertical vector perpendicular
to 2-D plane (see Figure 3b).

We use the notation

WS s/ t=1,...,M, j=1,...,N -1,
for the vector component at the center of face S§; j11/2) (side In(; j+1/2)), the notation
WSnit1y2,5) :t=1,...,M-1,5j=1,...,N,
for the vector component at the center of face Sn;41/2,j) (side [£(i11/2,5)), and the notation
WSCur1y2441/2)i8 =1, M =1, j=1,...,N~1,

for the component at the center of face S(;41/2,j+1/2) (2-D cell Vi41/2541/2)-
Here, we will consider 2-D vector functions that have only the WS¢, W Sn components.

3.3. Discrete Inner Products

In the space of discrete scalar functions defined in the cell centers HC, the natural inner
product corresponding to the continuous inner product (2.21) is

M-1N-1

U, V)ac = Z Z Uti1/2,541/2) Vii+1/2,5+1/2)V Civr/2,541/2)

i=1 j=1
M-1 N-1

+ 3 UsrranVirr/2nSmas1/2.) + Y UinienynVir,i41/25€,54172)
i=1 J=1
M-1 N-1

+ Y UssiomnVisr 2. 861728 D Ui Vi Sasie)-
i=1 i=1

0
The inner product in HC,

M-1 N-1
UV)s. = Y D Usnrzirm V12,1V Car1/2,i41/2) (3.3)

i=1 j=1

is analogous to the continuous inner product (2.6) for (u,v) [x
In the space of vector functions HS, the natural inner product corresponding to the continuous
inner product (2.12) is

M-1 -1
(A’ j'E?)ns = Z (A’ B ) (1/2541/2) | CEHI2IY/D) 34)

i=1 j=1

where ([f, B ) is the dot product of two vectors. The dot product must be defined for vectors
in HS (Figure 4). Suppose the axes £ and n form a nonorthogonal basis and ¢ is the angle
between these axes. If the unit normals to the axes are nS¢ and nSn, then the components of
the vector W in this basis are the orthogonal projections WS¢ and W Sn of W onto the normal
vectors. The expression for the dot product of A = (AS¢, ASn) and B = (BS¢,BSn) is

(45) = ASEBSE + ASnBSY +S§$S§BS’7 + ASnBS¢) cosp. (3.5)
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—_—

In

S

nSt
Figure 4. The grid lines (£,7) form a local nonorthogonal coordinate system with
unit vectors IE. l'ﬁ and corresponding unit normals to these directions n.§€ and n§n.
In this basis, the components (WS¢, WSn) are orthogonal projections to normal
directions.

From this expression, the dot product in the cell is approximated by

1 H/2,641/2)
( A E) _ (i+k,3+1)
1241/2) ot o2 JEHI/2ITID)
GH1/2541/2) A sin® )

' [AS&(i+k,j+1/2)Bsg(i+k,j+1/2) + AS0G41/2,540B5M6 1172540 (3.6)

+ (-1)FH (Asf(i+k,j+1/2)BS’?(i+1/2,j+z)

(+1/2,+1/2)
+ ASn 1254y BSEGn i1y o8 Vinnrin )

where the weights yi+1/2541/2) satisfy

(+k.j+1)
1
(i-+1/2,j+1/2) (i+1/2,j+1/2) _
Viswasn 0200 3 VY =1, (3.7)
k=0

In this formula, each index (k,!) corresponds to one of the vertices of the (i +1/2,7 + 1/2) cell,
and notations for weights are the same as those for angles between the cell edges.

0
The inner product in 1S is defined by the same equations as those that define the inner product
0
in HS if we eliminate WSE(; j11/2), WSn@i41/2,5) (which are equal to zero in HS).
When we compute the adjoint relationships between the discrete operators, it is helpful to
introduce the formal inner products (which we denote by square brackets [-,-]) in the spaces of

scalar and vector functions:
M-1 N-1 M-1

U Vlne = D D UstizsrymViryasrya + 3 UsryanVitzn
i=1 j=1 i=1

N-1 M-1 N-1
+ Y UmsrimVimssm + 3 UsnamVasnam + 3 UnjsynVisivia.
j=1 i=1 j=1
0
In HC, the formal inner product is
M-1N-1
U,V]e. = Yo S Usrypism Vs, (3.8)

i=1 j=1
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and in HS the formal inner product is

M N-1 M-1
[fi‘, B ] s = 3N ASEG 41/ BSEG g1 + > ASngsr/2.5)BSTG+1/2.5)-

i=1 j= i=1l j=1

“,

The formal inner product in HC corresponds to the usual dot product of two vectors in R™,
where m is the total number of unknowns. The formal inner product in HS corresponds to the
usual dot product of two vectors from the direct sum of the two spaces HS¢ and H S,

HS = HS¢ @ HS. (3.9)
Here, the spaces HS¢ and H S are defined as follows:
HSE & (WS jp1yas i=1,...,M; j=1,...,N -1},
HSn ¥ {(WSniy1pys i=1,....M-1; j=1,...,N}.

This connection with usual linear algebra dot products is useful for deriving the matrix form of
the finite-difference equations.
The natural and formal inner products satisfy the relationships

(U,VIwo =[CU,V]ye and (4B )Hs . [SE,B']HS, (3.10)

where C and S are symmetric positive operators in the formal inner products. For operator C,

we have

and therefore,

(CU)it+172.4+1/2) = VCis1/2.5+1/20UG 417254172, 1=1,..., M -1, j=1,...,N -1,
(CU)i,i+172) = S€G,i+1/2U0G541/2) i=landi=M, j=1,...,N -1,
(CU)(.‘+1/2.J‘) = Sna+1/2,)UG+1/2,5)1 i=1,...,.M—-1,j=1and j = N.

The operator S can be written in block form

i Su S ASE SllAsf + SmAS‘r]
SA = =
(.5'21 S22 ) (ASn) (5‘21As§ + SxASn )’ (3.12)

and is symmetric and positive in the formal inner product
[sE,B'] - [/i, SB’] , [s.xf, ,«T] > 0. (3.13)
HS HS HS
By comparing the formal and natural inner products, that is,
(4 B) .= [s

d

3
-1
[(811488) 5,5+1/2) + (S12A8n) 5 541/2)) BSE(s,541/2)

HS

Me

KH

(3.14)

7

i
-

%

+ 3 Y [(50A4SE)ar1/2,5) + (S2AST41/2.5)] BSNG41/2.),

N
i ;

1 j==1
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we can derive the explicit formulas for S:

V(i+k,j+ 1/2)

()
(511488) ¢ j41/2) = > 2 ,J(e‘+k.j+lf2) ASCG.i+1/2)
k=+1/2;1=0,1 S P(; 547)

((z'+k,31'+1/2)
k+1/2+1 i,5+ (i+k,j+1/2)
(S1248M); j41/2) = Z (~1)eH/2 GRS Pan) ANtk 4D
k=41/2;1=0,1 sin (5,3+1) 3.15
(i+1/2,j+k) (3.15)
k417241 (i+3) (i+1/2,5+k)
(SnAS)ppppy= D (“DMVEH R cos oy T ASE gy,
k=41/2;1=0,1 SN Pi41,5)
V(i+1/)2,j+k)
(t+1,5
(SzzASﬂ)(i+1/2,j) = Z _—sinz G124 E) ASn(i-’-l/z.J')‘
k=+1/2;l=0,1 ‘p(i'*'l;j)

The operators S1; and S3; are diagonal, and the stencils for the operators Sy and S3; are
shown in Figure 5. These formulas are valid only for the sides of the grid cells interior to the
domain. They can be applied at the domain boundary if the grid and discrete functions are first
extended to a row of points outside the domain by using the appropriate boundary conditions.

These discrete inner products satisfy axioms of inner products,

e (A, B)g, = (B, A)Hln

e (AA, B)n, = A(A, B)g, (for all real numbers ),

o (A1 + Az, B)n, = (A1B)n, + (A2B)4,,

e (A Ay, >20and (A, A)y, =0, ifand only if A =0.
In these axioms A and B are either discrete scalar or discrete vector functions, and (., }g, is
the appropriate discrete inner product. Therefore, the discrete inner products are true inner
products, as well as approximations for continuous inner products and the discrete spaces are
Euclidean spaces.

4. DISCRETE ANALOGS OF div AND grad

4.1. Natural Operator DIV

The coordinate invariant definition of the div operator is based on Gauss’ divergence theorem

fov (W,7) ds

divW = xl/ii.no 7 , (4.1)
where 7 is a unit outward normal to boundary V.
The natural definition of the discrete divergence operator is
DIV :HS — HC, (4.2)
where
(DIVW)(:'+1/2,J’+1/2) =7 Cl( ” {(WS€it1,541/2)S€G+1,5+1/2) — W SE(i j+1/2)58.5+1/2)) 43)

+ (WSN641/2,541)SM6+1/2,541) — WSNG41/2,)SM41/2,5)) } -

The extended divergence operator d defined by (2.23) is approximated by the discrete opera-
tor D coinciding with DIV on the internal cells (DW)i+1/2,j41/2) = (DIV W) (1172 j41/2), and
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is defined by
¥ = - i .=1,...,M—1,
(DW ) (i+1/2,1) WSna+1/2,), :
¥ = ; i=1,...,M~-1,
(DW)(H-I/Z,N) TWSMr28y, (4.4)
¥ = -W ;i N '=1,...,N_1,
(DW)(l,j+1/2) S€(1,5+1/2) J
P = +WSE s , i=1,...,N—1,
(DW)(M,1+1/2) WS sm,
on the boundary.
4.2. Adjoint Operator GRAD
Operator grad is the negative adjoint of d, in inner products (2.21) and (2.12);
grad = —d*, (4.5)
that follows from the identity (2.8)
(0, grad u),, = / (7, grad u) dV
v
=- (/ u divu‘idV—f{ u (@, 7) dS) (4.6)
v av
= (—duj, U)H .
We define the derived discrete operator GRAD as the negative adjoint of D
AT def e
GRAD = -D". (4.7)

Because D : HS — HC, the adjoint operator GRAD : HC — HS is defined in terms of the
inner products

(DW, U) e = (W, D“U) o (4.8)
which translates to the formal inner products as
[DW,CU] = [W,SD*U] . (4.9)
HC HS

The formal adjoint DY of D is defined as the adjoint in the formal inner product,
[W, DTCU] = [W, SD*U] . (4.10)
HS HS

This relationship must be true for all W and Uj; therefore, D!C = SD* or D* = S~!D1¢, and
GRAD = -D* =-5"'Dfc. (4.11)

Because the operator S is banded on nonorthogonal grids, its inverse S~ is full; consequently,
GRAD has a nonlocal stencil.
The discrete flux,
W = -GRADU = $~'DicU

is obtained by solving the banded linear system (recall that C, S, and D are local operators),

SW = DicU, (4.12)
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ij+1
i+1j
i

PaN

4

Stencil for aperator § 2 Stencil for operator S 21

Figure 5. The stencils of the components S12 and S2; of the symmetric positive oper-
ator S that connects the natural and formal inner products (4, B)us = [SA, Blns.

where the right-hand side F = (FS¢, FSn) = DICU is

FS¢ 172 = —=S& j+172 Uir1y2,54172 — Uic1/2,j41/2) » (4.13)
FSniv1y2 = —SMiv1/2,; Uisry2,i+1/2 — Uitr/2,5-1/2) -

The discrete operator S is symmetric positive definite and can be represented as the matrix with
five nonzero elements in each row (see (3.15) and Figure 5).

5. DISCRETE DIRICHLET BOUNDARY VALUE PROBLEM

5.1. Finite-Difference Method in Operator Form
The discrete problem for Dirichlet boundary conditions is formulated as

DIVW = F,
W = —-GRADVU, (5.1)

Urji+1/2 = ¥Yri+1720  Umg+12 = ¥mg+1y2s 3=1,...,N -1,
Uit172,1 = Yit17200  Uirr72,8 = Yir1/2,n, i=1,...,M~1,
where F = {fi+1/2,j+1/2; i=1,..., M—-l; j =1,... , N—-l} and f1'+1/2,j+1/2 is an approxima.tion
of f(z,y) in the cell. The function v, approximates ¥(z,y), determining Dirichlet boundary
conditions.
To transform (5.1) into a problem with zero Dirichlet boundary conditions, we introduce the
discrete function ¥ € HC, which is equal to zero in interior cells and which has values on the
boundary that coincide with corresponding values of ¥ and defines a new unknown function U

as ~
U=U-v,

satisfying the equations

DIVW = F, F=F+DIVGRADY,
W = —GRADU,

N . (5.2)
Ujr12=0, Umjy1;2=0, j=1,...,.N-1;

Uit1/21 =0, Uig128 =0, i=1,...,M -1

0

We use the “™” notations to denote functions and operators that are defined in H. Therefore,
i 0

we define the operator GRAD as a restriction of GRAD to subspace H by dropping terms in
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GRAD that vanish on the boundary. Problem (5.2) can now be stated as

DIVW = F, (5.3a)

W = -GRADU. (5.3b)

Y

By definition, the operators DIV and —~GRAD are adjoint to each other in the inner prod-
ucts (]f, B.)‘Hs and (U, V);,I;

~-GRAD =DIV* =DIV! C. (5.4)

0
Also, in the subspace H, the operator DIV .C simplifies on the boundary. For example, for
i=1, we get

(V) =S50 o9

The flux V:I’:’ can be eliminated in (5.3a) to give the explicit operator form of (5.3b);

AU =DIV.§7!.DIViCU = F. (5.6)

- 0
The operator A is symmetric and positive definite in the space HC;

( Av, V) o= (U, ziv) o (AU, U) 2> 0. (5.7)
In terms of the formal inner products, we have
[c/iU, v] = [U, c/iv] o [cAU, U] >0 (5.8)

Therefore, the discrete operator A = C - A will be symmetric and positive definite in the formal
inner product.

To obtain the corresponding system of linear equations with a symmetric positive discrete
operator, we apply C to both sides of (5.6):

AU =C DIV-§~!.DIViCT = CF. (5.9)

Because the operator S~! has a nonlocal stencil for general grids, equation (5.9) is interesting
primarily from a theoretical point of view and is not explicitly constructed when we define the
finite-difference method. Further in this section, we explain how to formulate these equations so
that they can be effectively solved.

5.2. Solving a System of Equations with Nonlocal Stencil

In this section, we describe an approach to solving (5.6), where the operator S is local, but
where the operator S~! has a nonlocal stencil. The equations are formulated so that algorithms,
such as preconditioned conjugate gradient methods, requiring only a multiplication of a vector
by A can be used. Given U, AU can be computed efficiently by solving SW =DIvtcu , for W
and evaluating AU = DIV W. When solving the system SW = DIV'CU, we need to use the
appropriate formulas like (5.5) on the boundary. Because S is a positive-definite symmetric local
operator, the equation for W can be solved efficiently with iterative methods.

Other efficient algorithms to solve this system include the family of two-level gradient methods,
such as the minimal residual method, the minimal correction method, and the minimal error
method. All these methods can be written as

BU+D) = BU®) 4 7, (F - AU(")) ’ (5.10)
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where U(®) is an approximate solution to U on iteration number s, 7, is some iteration parameter,
and the operator B is a preconditioner.

A family of three-level iteration methods, which require only the computation of AU, includes
the three-level conjugate-direction methods, like the conjugate gradient method. All these meth-
ods can be written as

BUGCH) = g, 1 (B~ 7,11 A)U® + (1 — a,41) BUCD 4 a, 17, F,
BUW = (B -1 A)U® + 1 F.

The appropriate inner product with which to compute the parameters a,, 7, is the natural inner
product, where operator A is symmetric and positive-definite.

The effectiveness of these methods strongly depends on the choice of the preconditioner. The
simplest Jacobi-type preconditioner approximates S by its diagonal blocks. This preconditioner
is exact for orthogonal grids and produces a five-cell symmetric, positive-definite operator corre-
sponding to removing the mixed derivatives from the variable-coefficient Laplacian on nonorthog-
onal grids. Some details can be found in [11,13].

6. DISCRETE NEUMANN BOUNDARY VALUE PROBLEM

Following the continuous case in Section 2.2, we consider both the modified inner product and
flux form approaches. The discrete analog of (2.18) is

AU = -D.GRADU = F, (6.1)

where the operator GRAD is defined on the space HC including the boundary faces, F includes
the approximation of 3 on the boundary and is defined similarly to F in (2.18). The operator
GRAD = -D* in the HC inner product (which includes boundary terms), and therefore,

A=D.D* A=A"2>0.

In [3], we proved that the solution of this problem is unique up to a constant if the compatibility
condition

M-1 N-1 M-1
NN firpinreVCinpagerz = Y (Yai41/256m54172 = ¥1,541/2561,541/2)
=1 j=1 $==1

N-1
+ Z (Yit1/2,8STit1/2,8 — Vit1/2,05Mi+1/2,1)
j:l
is satisfied.

The explicit operator form of (6.1) is similar to (5.9) and can be written as

¢DS~'DicU = F. (6.2)

The flux form of (6.1) is
DIVG = f;;, for all cells, (6.3a)
G= (ggf}) - _GRADU, for all faces, (6.3b)

GS& 54172 = Y15+1720 GSEMj41/2 = ¥Mj+1722  F=1,...,N-1,

. 6.3c
GSNig1/21 = Yivr1/200  GSMig172,8 = Yiv1/2,N, i=1,...,M-1. (6.3¢)
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To construct the discrete analog of the flux form expressed in (2.31a) to (2.31c), we start with
a discrete analog of (2.29a)

(orvw)
i+1/2,541/2
[WS€i41,541/25641,541/2 = WSEi,j41/256i,541/2W STit 12,5 415Mi+1/2,5+1 = WSNiz1/2,5Mi41/2,4] (6.4)
VCitisa,i+172 = fiv1/2,54172

and a discrete analog of the boundary conditions in (2.29¢):

WS jr172 = Yrje120 WSEMmjr172 = YMje1722 F=1,...,N -1,

WSnit1/2,1 = Yir12,1,. WNit12. 8 = Yiv1/2.8, i=1,...,M~1.
If we eliminate the known boundary fluxes from (6.4), we obtain equations defining the discrete
operator ﬁ\/f, which is the restriction of DIV, on the subspace of vector functions with zero
normal components on the boundary. Also, the right-hand side of these equations has to be
modified. In the interior, the operator DIV and modified right-hand side f coincide with DIV
and f, respectively. The formulas for the modified discrete divergence, and f in the left-bottom
corner cell and in the bottom row of cells are

(]5i/VW') _ WS56,3/25€2,3/2 + WSn3/2,25m3/2,2
3/2,3/2 VCs/2,3/2
¥1,3/25€1,3/2 + ¥3/2,15M3/2,1
VCs/23/2 VCasa,3/2

(6.5)

= faja,372 = faj2,3/2 +

6.6
(ﬁﬁ’ﬁ' ) _ W& ;41/258,541/2 + WSNa/2,415M3/2,541 — WSns/2,;5m3/2,5 (6.6)
3/2,j+1/2 VCa2jt1/2
¥,5+1/25€1,541/2

= f3/2,j+1/2 = f3/2.5+172 + ji=2,...,N-2

VCs2541/2
The formulas in the other corner cells and the cells adjacent to the boundary are similar.

We define the discrete analog of the operator grad as the negative adjoint of ﬁ\I/V, using the
relationship that the operator grad is adjoint to the restriction of div defined on vector functions
with zero normal components on the boundary. In the discrete case, this means that the inner
product for the space of scalar functions does not include boundary terms. Therefore, we define
GRAD only on the interior faces, and this definition does not include the values of U on the
boundary.

The discrete analog of (2.31a) and (2.31b) is

(ﬁ/VV‘f’) = f, in all cells, (6.7)
W = —-GRADU, in internal faces, (6.8)

where all the values of the scalar function U are unknown in the cells and where the components
of W = {WS¢,WSn)} are unknown only on the internal faces. The known boundary values of
WS¢, WSn have been taken into account in the definition of f.

Equation (6.8) is defined only for internal faces and does not contain U on the boundary.
Furthermore, the right-hand sides of these equations contain only the differences of U/ in the
cells. Therefore, the values of U on the boundary do not participate in equations (6.7) and (6.8).
This is the main difference between the approach based on flux formulation and the modified
inner-product approach.

The values of U on the boundary can be found in terms of the internal values of U/ and the
fluxes by using equations like (6.3b) and (6.3c), written in the form

S8G =Dt .cv, (6.9)
after solving the system expressed in (6.7) and (6.8). The relations in (6.9) are explicit because

the right-hand side of each equation expressed as (6.9) contains only differences between one
value of U in the internal cell and one value of I on the boundary.
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7. DISCRETE ROBIN BOUNDARY VALUE PROBLEM

We follow the approach used in the continuous case to define discrete analogs of the operators d,
grad, and €} for Robin boundary conditions. The discrete analogs of the first two operators are
defined by (4.3), (4.4), and (4.11). The discrete analog of ( (2.40) is defined by

in the interior,

0,
au _ 7.1
( )(k,l) { a(k,l)U(k,l)) on the bound&l‘)’, ( )

where k and [ are corresponding indices. The discrete analog of the continuum system (2.42) is
QU+DW =F, W =gU. (7.2)

The operator equation (2.39) is given by

AU=(Q+DG)U =F, (7.3)

and the explicit form of (7.2) is
DIVG = f, ;, for all cells, (7.48)
G= (ggf’) — -GRADU, for all faces, (7.4b)

=GS¢&1,j+172 + a1,54172U1,541/2 = Y1412, Jj=1...,N~-1,
+GSEm,j+1/2 + amjr12Umjrr2 = Umjyr2s §=1,...,N -1,
—GS8Miv1/21 + 121 Uir121 = Yisay2,1, i=1,...,M -1,
+G5nir1/2,8 + ig1/2,NUiv1/2,8 = Yigr/2,N, t=1,...,M~1.

In this system, the fluxes are defined on all the faces and unknown values of U include the values
on the boundary faces. These equations are formally equivalent to (7.3), which contains only U.
By construction, the operator of this equation is self-adjoint and positive definite.

8. SUMMARY

The goal of mimetic finite-difference methods is to retain crucial properties of the continuum
problem. This approach has proven effective in practical applications in fluid dynamics [7],
including the flow through strongly heterogeneous, nonisotropic materials {7,13].

We have described an approach for embedding Dirichlet, Neumann, and Robin boundary con-
ditions into a finite-difference approximation for Poisson’s equation and proved that the resulting
model is self-adjoint and positive-definite on nonsmooth logically rectangular grids.

The two key ideas in these proofs are to define an appropriate discrete inner product and to
exploit the fact that the SOM discrete gradient is the negative adjoint of the SOM divergence op-
erator on arbitrary nonuniform grids and preserve this property when incorporating the boundary
conditions. Then, forming the Laplacian divgrad as the composition of these operators guar-
antees the resulting discrete operator to be self-adjoint. Once the symmetry properties for the
discrete operators is established, the proofs for the discrete approximations follows the same logic
as that for the continuum equations.

The Dirichlet boundary condition is an essential boundary condition and has to be explicitly
imposed on function space where we are looking for the solution. To prove the result for Dirichlet
boundary conditions, we transformed the problem into an equivalent problem with zero boundary
conditions and then accounted for in the class of discrete functions that vanish on the boundary.

We took the Neumann and Robin boundary conditions into account by changing the definition
of the inner product in the functional spaces without imposing the boundary conditions on the
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solution. We proved that the discrete approximation of the Neumann boundary value problem is
self-adjoint and positive when the equations are solved as a second-order system and the boundary
conditions are incorporated directly into the inner product and when the equations are written
in flux form and solved as a first-order system. We proved the result for the Robin boundary
conditions by defining an inner product in the space of discrete scalar functions, which includes
a discrete analog of the boundary integral for the boundary conditions.

12.
13.
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