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Abstract

We consider a nonlinear finite volume (FV) scheme for stationary diffusion equa-
tion. We prove that the scheme is monotone, i.e. it preserves positivity of analytical
solutions on arbitrary triangular meshes for strongly anisotropic and heterogeneous
full tensor coefficients. The scheme is extended to regular star-shaped polygonal
meshes and isotropic heterogeneous coefficients.

1 Introduction

Predictive numerical simulations require not only more sophisticated physical models
but also more accurate and reliable discretization methods for these models. In this ar-
ticle we consider a stationary diffusion problem with a full tensor coefficient. Develop-
ment of a new discretization scheme for this problem should be based on a few practical
requirements [2, 3]. The scheme must

- be locally conservative;

- be monotone, i.e. preserve positivity of the differential solution;

- be reliable on unstructured anisotropic meshes that may be severely distorted;

- allow heterogeneous full diffusion tensors;

- result in a sparse system with minimal number of non-zero entries;

- have higher than the first order of accuracy for smooth solutions.

As far as we know, a linear scheme satisfying all the above requirements is not
known. Several linear schemes satisfying one or more requirements have been pro-
posed in [1, 7, 8, 4]. In this article, we analyze a nonlinear scheme that satisfies all six
requirements.
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Monotonicity is the most difficult requirement to satisfy. We distinguish two classes
of monotone schemes. The larger class contains schemes which preserve positivity of
a continuum solution. The smaller class contains schemes which satisfy the discrete
maximum principle (DMP). Both classes are tightly connected to algebraic properties of
the matrix of the discrete operator. A monotone matrix [18] guarantees that the solution
of a system of linear algebraic equations will be non-negative for any non-negative right
hand side. The discrete maximum principle requires the matrix to be monotone and to
have weak diagonal dominance in rows [16].
Classical finite volume (FV) and finite element (FE) schemes violate the discrete max-

imum principle on general meshes and for full diffusion tensors [6, 8]. The schemes
which satisfy the DMP impose severe restrictions on both meshes and problem coeffi-
cients [13, 14]. To enlarge the class of admissible problems and meshes, some schemes
such as themulti-point flux approximationmethods [1] use built-in flexibility to increase
their monotonicity regions. The other schemes use the first physical principles such as
the constrained minimization of the energy functional [11] to get the positive solution.
In this article, we analyze a FV scheme which is monotone (i.e. preserves positivity of
a continuum solution) and imposes no constraints on both the problem coefficients and
mesh regularity.
Recently a few nonlinear schemes [5, 10] have been suggested to guarantee mono-

tonicity on unstructured simplicial meshes. The Poisson equation in arbitrary space
dimensions was analyzed in [5] and a general two-dimensional parabolic equation was
considered in [10]. In this article, we further develop and analyze the nonlinear FV
scheme proposed in [10]. First, we rectify the scheme by giving correct positions of collo-
cation points for the case of a full diffusion tensor and an unstructured triangular mesh.
Second, we propose an alternative interpolation technique [15] to improve robustness
of the scheme for problems with strong anisotropy and sharp gradients. Third, we prove
monotonicity (in the sense of solution positivity) of the scheme for stationary diffusion
equations. It was shown in [10] that the scheme is monotone only for parabolic equa-
tions and sufficiently small time steps. Fourth, we study numerically important features
of the scheme such as violation of the DMP as well as impact of anisotropy of the diffu-
sion tensor on the scheme convergence. Finally, we extend the scheme to shape-regular
quadrilateral meshes and heterogeneous isotropic diffusion tensors. We also mention
the recent extension of the scheme to tetrahedral meshes [19].
The outline of the article is as follows. In Section 2 we formulate the stationary dif-

fusion equation and introduce the conformal simplicial mesh. In Section 3 we describe
and analyze the nonlinear FV scheme. In Section 4 we extend the scheme to polygonal
meshes. In section 5 we present the numerical experiments which illustrate the basic
features of the scheme.

2 Stationary diffusion equation

Let Ω be a two-dimensional polygonal domain Ω with boundary Γ = ΓN ∪ ΓD where
ΓD = Γ̄D and ΓD 6= ∅. We consider a model diffusion problem for unknown concentra-
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tion c:
−div D∇c = f in Ω

c = gD on ΓD

−D
∂c

∂n
= gN on ΓN

(1)

where D = D
T > 0 is a piecewise constant (possibly anisotropic) diffusion tensor and n

is the exterior normal vector.
Let T be a conformal triangulation composed of NT triangular cells T . We assume

that the tensor D is constant inside each cell and its jumps occur only along mesh edges
of T . Let q = −D∇c denote the diffusion flux which satisfies the mass balance equation:

div q = f in Ω. (2)

3 Monotone nonlinear FV scheme on triangular meshes

In this section, we derive a nonlinear FV scheme with 2-point flux approximation. In-
tegrating the mass balance equation (2) over a cell T and using the Green formula we
get:

∫

∂T

q · n ds =

∫

T

f dx, ∀T ∈ T , (3)

where n denotes the outer unit normal to ∂T . Let e denote an edge of triangle T and
ne be the corresponding normal vector. For a single cell T , we shall always assume that
ne is the outward normal vector. We shall specify orientation of ne in all other cases.
Hereafter, it will be convenient to assume that |ne| = |e| where |e| denotes the length of
edge e. The equation (3) becomes

∑

e∈∂T

qe · ne =

∫

T

f dx, ∀T ∈ T , (4)

where qe is the average flux density for edge e:

qe =
1

|e|

∫

e

q ds.

The FV schemes differ by approximations for the fluxes qe. In this article we use a
two-point flux approximation. For each cell T , we assign one degree of freedom CT for
concentration c. Let C be the vector of discrete unknowns. The two-point flux approxi-
mation uses only two degrees of freedom CT+

and CT−
corresponding to cells T+ and T−

that share the edge e. Sometimes, we shall write C+ instead of CT+
for simplicity. The

general form for the two-point flux is as follows:

q
h
e = A+

e C+ − A−
e C−,

where A+
e and A−

e are some coefficients. For instance, A
+
e = A−

e in some classical FV
schemes. Substituting discrete approximation q

h
e for qe in (4), we obtain a system of NT

equations with NT unknowns CT .
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3.1 Nonlinear two-point flux

In this section, we consider a nonlinear two-point flux approximation where coefficients
A+

e and A−
e depend on concentration. We begin with the physical meaning of discrete

unknowns. The discrete concentration CT approximates the continuous concentration
c at a point xT inside triangle T . We shall refer to this point as the collocation point.
Denoting the vertices of this triangle by v1, v2 and v3, we define the collocation point as
follows:

xT =
3

∑

i=1

viλi, λi =
|nα(i)|D

∑3
j=1 |nα(j)|D

, (5)

where |n|D = (Dn · n)1/2 is the length of vector n in metric D induced by the diffusion
tensor in triangle T and α(i) denotes the edge opposite to vertex vi. The reason for such
a choice of coordinates λi will be explained later.
Let us consider an interior mesh edge e with end points v1 and v2 shared by two

triangles T+ and T−. Let D+ and D− be the values of diffusion tensor in triangles T+ and
T−, respectively. Similarly, we denote the collocation points for these triangles by x+

and x− (see Fig. 1). We assume that the normal vector ne is outward for triangle T+.
Let Ti, i = 1, 2, be the triangle with vertices x+, x−, and vi. For triangle T1, we

denote the normal vectors to its edges by n
+
1 , n

−
1 and nM as shown in Fig. 1. We assume

again that length of these vectors equals to length of the corresponding edge, i.e. |n±
1 | =

|v1 − x±| and |nM | = |x+ − x−|. In a similar way we define normals n
±
2 to edges of

triangle T2. The following identities hold:

n
+
1 + n

−
1 + nM = 0 and n

+
2 + n

−
2 − nM = 0. (6)

Case I. To illustrate the general idea of the method, we consider first the case D+ =
D− = D. The Green formula for triangle T1 and definition of flux q yield:

∫

T1

D
−1

q dx = −

∫

∂T1

cn ds. (7)

Applying the mid-point (second-order) quadrature rule for both integrals, we obtain

−|T1|D
−1

q
h
e,1 =

C1 + C+

2
n

+
1 +

C1 + C−

2
n
−
1 +

C+ + C−

2
nM

where C1, C+ and C− are the values of concentration c at points v1, x+, and x−, respec-
tively. Only concentrations C± are our discrete unknowns. The concentration C1 will be
eliminated later. Using identity (6), we get

q
h
e,1 =

1

2|T1|
D

(

C+ n
−
1 + C− n

+
1 − C1 (n+

1 + n
−
1 )

)

. (8)

Now we apply the same derivations to triangle T2 to obtain the second formula for the
flux density:

q
h
e,2 =

1

2|T2|
D

(

C+ n
−
2 + C− n

+
2 − C2 (n+

2 + n
−
2 )

)

. (9)
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x+
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n
+
1

n
+
2

Figure 1: Case I. Interior edge e with end points v1 and v2. The collocation points x+

and x− are marked by solid balls. The triangles T+ and T− are marked by dashed lines.

Given two flux density approximations (8) and (9), we seek for the discrete flux q
h
e ·ne

through edge e as their linear combination:

q
h
e · ne = µ1 q

h
e,1 · ne + µ2 q

h
e,2 · ne, (10)

where µ1 and µ2 are positive unknown coefficients. The approximation of flux density
yields

µ1 + µ2 = 1. (11)

The second equation for these coefficients follows from the requirement that qh
e · ne is

the two-point flux approximation. Substituting (8) and (9) into (10), we require that:

µ1
C1 (n+

1 + n
−
1 ) · ne

|T1|
+ µ2

C2 (n+
2 + n

−
2 ) · ne

|T2|
= 0. (12)

The solution of system (11)–(12) gives

µ1 =
C2/|T2|

C1/|T1| + C2/|T2|
and µ2 =

C1/|T1|

C1/|T1| + C2/|T2|
. (13)

Substituting (13) in (10) gives the discrete flux through the interior edge e:

q
h
e · ne = A+

e (C) C+ − A−
e (C) C−, (14)
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where

A+
e (C) =

µ1

2|T1|
n
−
1 · Dne +

µ2

2|T2|
n
−
2 · Dne

A−
e (C) = −

µ1

2|T1|
n

+
1 · Dne −

µ2

2|T2|
n

+
2 · Dne. (15)

The coefficients A+
e and A−

e depend on concentrations C1, C2, i.e. the flux (14) is
nonlinear. The unknown concentrations C1 and C2 must be approximated using the
original degrees of freedom, i.e. concentrations at collation points. The total number of
collation points isNT which leave enough flexibility for accurate approximation of these
concentrations. We consider two interpolation methods.
First interpolation method uses three collocation points closest to v1 that form a

imaginary non-degenerate triangle T̃ containing v1. We denote these points by xTj
,

j = 1, 2, 3. The linear interpolation over this triangle gives a second-order approxi-
mation for C1 [10]:

C1 =
3

∑

j=1

C(xTj
)λ̃j (16)

where λ̃j , j = 1, 2, 3, are the barycentric coordinates of point v1 in triangle T̃ . Note that

0 6 λ̃j 6 1. We found out that this interpolation method is not robust for problems with
strong anisotropy and/or solutions with sharp gradients (see Section 5).
Second interpolationmethod uses the inverse distanceweighting [15] of valuesC(xT )

for all triangles T ∈ T that have v1 as a vertex. Let U(v1) be the collection of these trian-
gles. Then

C1 =
∑

T∈U(v1)

C(xT ) wT , wT =
|xT − v1|

−1

∑

T ′∈U(v1) |xT ′ − v1|−1
. (17)

Note that 0 6 wT 6 1. We shall use this fact later. The same interpolation methods are
used for approximating C2.

Case II. Now we proceed to the general case D+ 6= D−. In this case the interval
[x+,x−] may not intersect the edge e. Therefore we definem as the midpoint of edge e,
see Fig.2. The edge e and point m split the quadrilateral v1x+x−v2 into four triangles
T±

i , i = 1, 2. For example, triangle T+
1 is defined by verticesm, x+ and v1.

In addition to vectors introduced above (see Fig. 1), we define vectors n±
M , and ne,i,

i = 1, 2, that are normal to intervals [m; x±] and [m; vi], i = 1, 2, respectively. The
orientation of these normal vectors is shown in Fig. 2. We assume again that their length
equals to the length of corresponding intervals; for example, |n+

M | = |x+ − m|. Since
ne,i = 1

2
ne, the following identities hold:

n
±
1 + n

±
M ±

1

2
ne = 0. (18)

Applying the Green formula (7) for triangle T+
1 and using the mid-point (second-

order) quadrature rules for both integrals, we get

−2|T+
1 |D−1

+ q
h,+
e,1 = (C1 + C+)n+

1 +
1

2
(C1 + Cm)ne + (C+ + Cm)n+

M , (19)
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v2

n
+
1

v1

n
−
1

x−

x+

m

n
+
M

n
−
M

T
−
1

T
+
1

T
−
2

n
−
2

T
+
2

ne,1

ne,2

Figure 2: Case II. Interior edge e with end points v1 and v2. The collocation points x+

and x− are marked by solid balls. The triangles T±
1 and T±

2 are marked by thick lines.
The triangles of T sharing the edge e are marked with dashed lines.

where Cm is the concentration value at pointm. A similar formula holds for triangle T−
1 :

−2|T−
1 |D−1

− q
h,−
e,1 = (C1 + C−)n−

1 −
1

2
(C1 + Cm)ne + (C− + Cm)n−

M . (20)

Taking into account identities (18) and continuity of the normal flux across edge e,

q
h,+
e,1 · ne = q

h,−
e,1 · ne ≡ q

h
e,1 · ne,

we eliminate Cm from (19) and (20). To simplify formula, we introduce the following
numbers:

k
(i)
± = D± n

±
i · ne, i = 1, 2, and d± =

1

2
D± ne · ne.

Then,

q
h
e,1 · ne =

C+(d+k
(1)
− ) + C−(d−k

(1)
+ ) − C1(d+k

(1)
− + d−k

(1)
+ )

2(|T+
1 | k

(1)
− − |T−

1 | k
(1)
+ )

. (21)

Repeating the above derivations for triangles T−
2 and T+

2 , we obtain a similar for-
mula:

q
h
e,2 · ne =

C+(d+k
(2)
− ) + C−(d−k

(2)
+ ) − C2(d+k

(2)
− + d−k

(2)
+ )

2(|T+
2 | k

(2)
− − |T−

2 | k
(1)
+ )

. (22)

Now we proceed as in Case I. Given two flux densities, we seek for their linear com-
bination:

q
h
e · ne = µ1 q

h
e,1 · ne + µ2 q

h
e,2 · ne, (23)
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where µ1 and µ2 are positive unknowns. The approximation of flux density yields

µ1 + µ2 = 1. (24)

The second equation for these coefficients follows from requirement of two-point flux
approximation. Substituting (21) and (22) into (23), we require that:

µ1γ1 + µ2γ2 = 0, γi =
Ci (d+k

(i)
− + d−k

(i)
+ )

2(|T+
i | k

(i)
− − |T−

i | k
(i)
+ )

. (25)

The solution of system (24)-(25) gives

µ1 =
γ2

γ2 − γ1

and µ2 =
−γ1

γ2 − γ1

. (26)

Therefore, the nonlinear flux through an interior edge e is

q
h
e · ne = A+

e (C) C+ − A−
e (C) C−, (27)

where

A+
e (C) = µ1

d+k
(1)
−

2(|T+
1 | k

(1)
− − |T−

1 | k
(1)
+ )

+ µ2
d+k

(2)
−

2(|T+
2 | k

(2)
− − |T−

2 | k
(2)
+ )

,

A−
e (C) = −µ1

d−k
(1)
+

2(|T+
1 | k

(1)
− − |T−

1 | k
(1)
+ )

− µ2
d−k

(2)
+

2(|T+
2 | k

(2)
− − |T−

2 | k
(2)
+ )

. (28)

Boundary edge. We consider separately the case of Dirichlet and Neumann bound-
ary edge e. If e ∈ ΓN , we simply set

q
h
e · ne = ḡN |ne|, (29)

where ḡN is the mean value of gN on edge e. If e ∈ ΓD, there exists a triangle Te ∈ T
such that Te ∩ ΓD = e. To avoid additional notations, we assume that Te is the triangle
T+ in Fig. 1. The Green formula (7) for triangle T+, mid-point quadrature rules for both
integrals, and the identity (6) yield:

−|T+|D
−1
T+

q
h
e =

C1 + C+

2
n

+
1 +

C2 + C+

2
n

+
2 −

C1 + C2

2
(n+

1 + n
+
2 ). (30)

Since C1 and C2 are end points of the Dirichlet edge, Ci = gD(vi). From (30) we derive
the linear approximation of flux through edge e:

q
h
e · ne =

1

2|T+|
(gD(v1)n

+
2 + gD(v2)n

+
1 ) · DT+

ne −
1

2|T+|
C+(n+

1 + n
+
2 ) · DT+

ne

or in a compact form:
q

h
e · ne = A+

e C+ + A−
e , (31)

where

A+
e = −

1

2|T+|
(n+

1 + n
+
2 ) · DT+

ne, A−
e =

1

2|T+|
(gD(v1)n

+
2 + gD(v2)n

+
1 ) · DT+

ne. (32)

In Section 3.3, we show that the coefficients A±
e appeared in (14), (27), and (31) are

positive.
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3.2 Discrete system and its iterative solution

Let EI and EB denote the sets of interior and boundary edges of T , respectively. We split
the set EB into subsets E

D
B and EN

B of Dirichlet and Neumann edges, respectively. The
normal vector ne to edge e is defined according to the following rules. If e ∈ EB , we
choose the outward normal vector to Ω. If e ∈ EI , we denote by Te+ and Te− the two
triangles that share edge e and assume that ne is outward for Te+. Equation (4) may be
rewritten as

∑

e∈∂T

χ(T, e)qh
e · ne =

∫

T

f dx, ∀T ∈ T , (33)

where χ(T, e) = 1 for e ∈ EB and

χ(T, e) =

{

1, if T = Te+

−1, if T = Te−

otherwise.
Substituting (14), (27), and (31) into (33), we get a system of NT equations in NT

unknowns CT . Let C be the vector discrete unknowns and A(C) be the matrix of this
system. The matrix A(C)may be represented by assembling of 2 × 2matrices

Ae(C) =

(

A+
e (C) −A−

e (C)

−A+
e (C) A−

e (C)

)

for interior edges and 1 × 1 matrices Ae(C) = A+
e for Dirichlet edges. The coefficients

A±
e (C) are defined in (15), (28), and (32). The global discrete nonlinear system reads as:

A(C)C = F (34)

where
A(C) =

∑

e∈T

Ne Ae(C) N
T
e , (35)

FT =

∫

T

f dx −
∑

e∈ED
B
∩∂T

A−
e −

∑

e∈EN
B
∩∂T

∫

e

gN ds, (36)

A−
e is defined in (32) and Ne are assembling matrices consisting of zeros and ones.
The nonlinear system (34) may be solved by a number of different methods. We use

the Picard iterations: Choose a small value εnon > 0 and initial vector C0 ∈ ℜNT with
positive entries, C0

i > 0, i = 1, . . . , NT , and repeat for k = 1, 2, . . . ,

1. solve A(Ck−1)Ck = F ,

2. stop if ‖A(Ck)Ck − F‖ 6 εnon ‖A(C0)C0 − F‖.

The linear system with non-symmetric matrix A(Ck−1) is solved by the Bi-Conjugate
Gradient Stabilized (BCGStab) method [17] with the second order ILU preconditioner
[9]. The BCGStab iterations are terminated when the relative norm of the initial residual
becomes smaller than εlin.
According to numerical evidence, the Picard iterations always converge provided

that the linear systems are solved with very low tolerance εlin.
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v2

v1

ne
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n
+
1

xT+

v3

n
+
2

n23

Figure 3: Notations for triangle T+. The collocation point xT+
is marked by a solid bullet.

3.3 Monotonicity

The main result of this section is the following theorem.

Theorem 3.1 Let FTi
> 0, C0

Ti
> 0 for i = 1, . . . , NT and linear systems in Picard iterations

are solved exactly. Then all iterates Ck are non-negative vectors:

Ck
Ti

> 0, i = 1, . . . , NT .

Proof. Assume for a moment that the matrix A(Ck−1) is monotone for any non-negative
vector Ck−1. Then the solution Ck of A(Ck−1)Ck = F is a non-negative vector and the
next matrix A(Ck) is again monotone. Therefore, Ck

Ti
> 0 for all i and k.

It remains to prove that matrixA(C) is monotone for any vector C with non-negative
components. We begin by showing that for any conformal triangulation T and any
piecewise constant diffusion tensor D, the following inequalities hold:

A±
e (C) > 0, ∀e ∈ EI ,

A+
e > 0, ∀e ∈ ED

B .
(37)

Let us show that
k

(1)
+ = D+n

+
1 · ne < 0. (38)

To this end we consider a triangle T+ ∈ T with vertices vi, i = 1, 2, 3 (see Fig. 3). We
use the same notations as on Fig. 1 and Fig. 2. We denote the normals to the triangle
edges by n13, n23 and ne. As before, the length of these normals equal to the length of
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corresponding edges. For example, |n13| = |v1 − v3|. Let αD(n, m) denote the angle in
metric D between vectors n andm.
Without loss of generality, we put the origin of the coordinate system in vertex v1.

Equation (5) gives the following formula for the collocation point xT+
:

xT+
=

v2 |n13|D+
+ v3 |ne|D+

|ne|D+
+ |n13|D+

+ |n23|D+

.

Note that n+
1 is orthogonal to xT+

, ne and n13 are orthogonal to vectors v2 and v3, respec-
tively. We search n

+
1 as a linear combination of vectors ne and n13. The direct substitution

verifies that

n
+
1 = −

ne |n13|D+
− n13 |ne|D+

|ne|D+
+ |n13|D+

+ |n23|D+

,

and

D+ne · n
+
1

|ne|D+

+
D+n13 · n

+
1

|n13|D+

= 0. (39)

Identity (39) implies that angles between ne and n
+
1 and between n13 and −n

+
1 are

equal in metric D+. We shall refer to the line which passes through a triangle vertex
and cuts angles with the above properties as the angle D+-bisectors. From the mutual
orientation of vectors shown on Fig. 4, we conclude that

αD+
(ne, n

+
1 ) = αD+

(n+
1 , n13) + αD+

(n13, ne)

and
αD+

(−n
+
1 , n13) = π − αD+

(n+
1 , n13).

Since αD+
(ne, n

+
1 ) = αD+

(−n
+
1 , n13), we get that

αD+
(ne, n

+
1 ) =

π

2
+

1

2
αD+

(n13, ne)

which in turn implies that the angle between ne and n
+
1 is obtuse in metricD+. Therefore

k
(1)
+ < 0. Using similar arguments we show that

k
(2)
+ ≡ D+n

+
2 · ne < 0 and k

(i)
− ≡ D−n

−
i · ne > 0, i = 1, 2. (40)

The positive-definiteness of the diffusion tensor implies that the coefficients d± are pos-
itive.
Now, we show that for non-negative CTi

, i = 1, . . . , NT , the coefficients µ1 and µ2 in
(13) and (26) are non-negative. For µ’s in formula (13) this follows from non-negativity of
C1, C2 and positivity-preserving interpolation methods (16) and (17). For µ’s in formula
(26) we need to show that γ1 and γ2 have opposite signs. Since the denominators in
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n
+
1

n13

−n
+
1

ne

Figure 4: Normals emanating from a common point. The marked angles are equal in
metric D+.

definition of γ’s are positive, we have to analyze sings of the nominators. Introducing a
2 × 2matrix U = 1

2
D−(nen

T
e )D+ and using identity n

+
1 + n

−
1 + n

+
2 + n

−
2 = 0, we get

d+k
(1)
− + d−k

(1)
+ = 1

2
n

T
e D+nen

T
e D−n

−
1 + 1

2
n

T
e D−nen

T
e D+n

+
1

= n
−
1 · Une + n

+
1 · UT

ne

= −n
−
2 · Une − n

+
2 · Une + n

+
1 · (UT − U)ne

= −(n−
2 · Une + n

+
2 · UT

ne) + n
+
2 · U

T
ne − n

+
2 · Une + n

+
1 · (UT − U)ne

= −(d+k
(2)
− + d−k

(2)
+ ) + n

+
1 · (UT − U)ne + n

+
2 · (UT − U)ne.

(41)
Based on identity n

+
1 + n

+
2 + ne = 0 and skew-symmetry of matrix U

T − U we conclude
that sum of the last two terms in (41) is zero. Thus γ’s in (26) have opposite sings and
therefore µ’s are non-negative.
Using (38), (40), and non-negativity of µ1 and µ2, we get that the first inequality in

(37) holds for any non-negative vector C ∈ ℜNT . Similarly, from (32), (38), and (40)
we get the second inequality in (37). Summarizing, we have proved three important
statements.

1. All diagonal entries of matrix A(C) are positive.

2. All off-diagonal entries of A(C) are non-positive,

3. Each column sum inA(C) is non-negative and there exists a columnwith a positive
sum (ED

B 6= ∅).

Therefore, matrix A
T (C) is theM -matrix and all entries of (AT (C))−1 are non-negative.

Since inverse and transpose operation commute, (AT (C))−1 = (A−1(C))T , we conclude
that all entries of A−1(C) are non-negative and A(C) is the monotone matrix. �

Corollary 3.1 For any tensor D the angle D-bisectors of triangle T are concurrent and intersect
at the collocation point xT defined by (5).

Corollary 3.2 Let gN 6 0 on ΓN , f > 0 in Ω, gD > 0 on ΓD. Then A−
e 6 0 in (36) and

therefore FTi
> 0, i = 1, NT .
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Remark 3.1 The original version of the method [10] gives the wrong position of the collocation
point xT in the case of a full diffusion tensor. For the triangle with vertices (1, 0), (0, 1), and
(0.25, 0.25) and for the diagonal tensor D = diag{16, 1} the method in [10] results in a non-
monotone scheme.

4 Monotone nonlinear FV scheme on polygonal meshes

Construction of a nonlinear FV scheme on a polygonal mesh is similar to that on a tri-
angular mesh. The main difficulty is to determine a position of collocation point inside
each mesh cell such that the resulting system is monotone. For the triangular case it is
proved that such points exist for any diffusion tensor and any geometry. For general
polygonal meshes such points exist only for a restricted class of meshes and diffusion
tensors. We modify the scheme to relax some of the restrictions.
LetD be an isotropic heterogeneous diffusion tensor andQ be a conformal polygonal

mesh composed of NQ cells. We assume that the mesh is composed of shape-regular and
star-shaped cells in the following sense.

1. For each polygonal cell Q ∈ Q, we have

d(Q)

ρ(Q)
6 R∗,

where d(Q) is the diameter of Q, ρ(Q) is radius of maximal inscribed circle, and R∗

is a constant independent of the mesh.

2. Each cell Q is star-shaped with respect to an interior point xQ, i.e. any ray emanat-
ing from this point intersects the boundary ∂Q at exactly one point. If geometry
allows, we shall always place xQ at the center of mass of Q.

Let EI and EB denote again the sets of interior and boundary edges ofQ, respectively.
We split EB into two subsets of Dirichlet, E

D
B , and Neumann, E

N
B , edges. To each edge

e we assign a normal vector ne such that |ne| = |e|. If e ∈ EB , we choose the outward
normal to Ω. For e ∈ EI we denote by Qe+ and Qe− the two polygons that share edge e
and assume that ne is outward for Qe+. The equation (4) may be rewritten as

∑

e∈∂Q

χ(Q, e)qh
e · ne =

∫

Q

f dx, ∀Q ∈ Q, (42)

where χ(Q, e) is defined in the same way as the function χ(T, e) in Section 3.2.
Given a two-point flux formula (27) we may follow the path described in the previ-

ous section to get a nonlinear system (34). In order to guarantee positivity of coefficients
in formula (27), we propose the following method. For an edge e ∈ EI with end points
v1 and v2, we define a minimal interval e

′ = [v′
1; v

′
2] containing e such that

D−n
−
i · ne > 0 and D+n

+
i · ne 6 0, i = 1, 2, (43)

13



v
′
2

v
′
1

n
−
2

n
−
1

n
+
1

x+

x−

n
+
2

v2

v1
ne

Figure 5: Interval [v′
1; v

′
2] containing the interior mesh edge ewith end points v1 and v2.

The collocation points x+ and x− are marked by solid balls. The quadrilaterals Q+ and
Q− are marked by dashed lines.

where n
±
i are outward normals to edges of polygon v

′
1 x+ v

′
2 x− as shown in Fig. 5. For-

mally extending coefficients D± to the respective half planes of e
′, we may use formula

(27) to calculate the flux density through e′ and associate this flux density with the
mesh edge e. The accuracy of such a modification depends on the ratio |e′|/|e| which
is bounded for shape-regular polygonal meshes and isotropic heterogeneous tensors.
The monotonicity of the matrix A(C) for any non-negative vector C follows from (43)
and arguments used in Section 3.3.

5 Numerical experiments

We consider several numerical tests to demonstrate that the discretization scheme sat-
isfies the practical requirements mentioned in the introduction. The convergence rate
is studied for both smooth and non-smooth highly anisotropic solutions. The positivity
of a discrete solution is verified on different types of meshes. We show that the dis-
cretization scheme is applicable to unstructured and strongly distorted meshes and can
accommodate full heterogeneous and anisotropic diffusion tensor.
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5.1 Implementation issues

Since the FV scheme uses the collocation points xQ (xT for triangular meshes) to approx-
imate the solution, it is appropriate to use discrete L2-norms to evaluate approximation
errors. For the concentration c, we use the following norm:

εc
2 =

[

NQ
∑

i=1

(c(xQi
) − CQi

)2 |Qi|

]1/2

.

For the flux q, we use the following norm:

εq
2 =

[

MQ
∑

i=1

(

(q − q
h
ei
) · nei

)2
|ei|

]1/2

,

whereMQ is a total number of mesh edges.
Two interpolation methods were described in Section 3.1. The linear interpolation

method is used in Sections 5.3.1 and 5.6. The inverse weighting interpolation method is
used in the other sections. The numerical results presented in Section 5.4 demonstrate
that the linear interpolation method is not robust for problems with strong anisotropy
and/or solutions with sharp gradients.
To visualize a solution, we use the MATLAB tool which constructs the Delaunay

triangulation from the set of collocation points and draws a solution on this triangular
mesh.

5.2 Triangular meshes: positivity of solution

In this section we consider several test problems illustrating Theorem 3.1. We also to
compare the nonlinear FV method with the mixed finite element (MFE) method and the
multi-point flux approximation (MPFA) method. Recall that the MFE method always
results in an algebraic problem with a symmetric positive definite matrix. The MPFA
method results in a nonsymmetric matrix whose positivity was not proved in general.

5.2.1 Comparison with linear methods

Let us consider problem (1) in the unit square Ω = (0, 1)2 and set

D =

(

y2 + εx2 −(1 − ε)xy
−(1 − ε)xy εy2 + x2

)

, ε = 5 · 10−2, (44)

and

f(x, y) =

{

1 if (x, y) ∈ [3/8, 5/8]2,
0 otherwise.

We impose the homogeneous Dirichlet boundary conditions on ∂Ω. Let T be the trian-
gular partion of Ω shown on Fig. 6.
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Figure 6: Uniform triangular partion of Ω.

The exact solution is unknown but the maximum principle states that c(x, y) is non-
negative. The numerical solutions obtained with the MFE, MPFA, and nonlinear FV
methods are shown on Fig. 7. Only the FV method preserves positivity of the contin-
uum solution. Both linear methods produce negative values in large subdomains. The
largest negative values appear in the vicinity of the source term area where the solution
has sharp gradients. The MPFA solution has more non-physical oscillations than the
MFE solution. As parameter ε decreases, the oscillations grow. This behavior of linear
methods has been also observed by other researchers.

5.2.2 Different type of meshes

Quality of the solution produced with a linear method is improved when the mesh is
aligned with the solution. The numerical results presented in this section demonstrate
that the nonlinear FV method preserves positivity of a continuum solution on differ-
ent triangulations and produces solutions of the same quality. We consider the diffu-
sion problem described in the previous section and the following triangular partitions:
the regular structured mesh (Fig.8a), the regular unstructured mesh (Fig.8b), and the
anisotropic mesh (Fig.8c). In all cases the discrete solution is non-negative.

5.3 Triangular meshes: convergence study

The next group of tests addresses the convergence rate of the nonlinear FV scheme on
randomly distorted triangular meshes. To construct such a mesh, we take a uniform
square partition of Ω with a mesh size h, split each cell into four triangles, and distort
randomly the positions of mesh nodes:

x := x + ξxh, y := y + ξyh,

where ξx and ξy are random variables with values between−0.15 and 0.15. It is pertinent
to note that showing convergence of a scheme on a sequence of true random meshes is

16



MFE method MPFA method nonlinear FV method

Solution profile Solution profile Solution profile
Cmin = −0.02 Cmin = −0.08 Cmin = 0.

Subdomain where Subdomain where
solution is negative solution is negative

Figure 7: Comparison of the MFE, MPFA, and nonlinear FV methods.

a more difficult task than that on a sequence of uniformly refined meshes.

5.3.1 Smooth solution

We consider problem (1) in the unit square Ω = (0, 1)2 with the exact solution

c(x, y) = 2 cos(πx) sin(2πy) + 2. (45)

We set D = I and impose the Dirichlet boundary condition of ∂Ω.
The convergence results are presented in Table 1. The linear regression analysis

shows that error εc
2 approaches the second-order convergence rate. The convergence

rate for the flux q is greater than the first-order. Note that in linear methods, the super-
convergence of the flux is usually observed on smooth meshes.

5.3.2 Non-smooth anisotropic solution

Let us consider now problem (1) with a non-smooth anisotropic solution. The computa-
tional domain is the unit square with a hole, Ω = (0, 1)2/[4/9, 5/9]2, so that the boundary
∂Ω is composed of two disjoint parts Γ1 and Γ0 as shown on Fig. 9.
We set f = 0, gD = 0 on Γ0, gD = 2 on Γ1, and take the anisotropic diffusion tensor D,

D =

(

cos θ sin θ
− sin θ cos θ

)(

k1 0
0 k2

) (

cos θ − sin θ
sin θ cos θ

)

, (46)
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(a) (b) (c)

Solution profile Solution profile Solution profile
Cmin = 0. Cmin = 0. Cmin = 0.

Figure 8: Solution profile on different type of meshes.

where k1 = 1, k2 = 100 and θ = π/6.
Since the exact solution is unknown, we replace it with the discrete solution com-

puted on a very fine mesh with h = 1/576 (Fig.10). The numerical results shown in
Table 2 indicate the first-order convergence rate for concentration c.

5.4 Triangular meshes: violation of discrete maximum principle

The nonlinear FV scheme may not satisfy the DMP. In the absence of a source term, the
discrete solution may have a few maxima inside the computational domain. We refer
to this feature of the scheme as “overshoots”. Numerical experiments presented below

h εc
2 εq

2

1/18 9.43e − 3 3.25e − 2
1/36 2.33e − 3 8.48e − 3
1/72 6.00e − 4 2.73e − 3
1/144 1.57e − 4 9.17e − 4
rate 1.96 1.7

Table 1: Convergence analysis for the smooth solution on randomly distorted triangular
meshes.
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Γ 1 Γ 0

Figure 9: Computational domain Ω and randomly distorted triangular partition.

Figure 10: Solution profile for the problem with the diffusion tensor defined by (46).

show that an appearance and values of overshoots depend on the mutual orientation of
the solution and mesh edges. Moreover, the overshoots are sensitive to the interpolation
method implemented in the scheme.
Let us consider the problem from section 5.3.2 discretized on the uniform triangular

partition shown on Fig. 11. The maximal value of the continuum solution is attained on
the boundary and equals to 2.
We have tested tensors (46) for different ratio k1/k2 and orientation θ of principal

axes. The solution profiles are shown on Fig. 12. Maximum values of the discrete so-
lutions are collected in Table 3. The inverse distance weighting interpolation method
reduces overshoots and makes the scheme more robust. Moreover, no overshoots are
observed when sharp gradients of the solution are aligned with mesh edges. The same
observations are held for the MFE and MPFA schemes.
Table 4 demonstrates that the discrete L2-norm of the overshoot error

εover =

[

NQ
∑

i=1

(max{0, CQi
− 2})2 |Qi|

]1/2
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h εc
2

1/18 8.69e − 2
1/36 4.60e − 2
1/72 2.34e − 2
1/144 1.37e − 2
1/288 6.72e − 3
rate 0.9

Table 2: Convergence analysis for the non-smooth solution on randomly distorted
meshes.

Γ 1 Γ 0

Figure 11: Uniform triangular partion of Ω.

θ = π
6

θ = 5π
6

Cmax Interpolation method

linear inverse
k1/k2 distance

weighting
101 1.82 1.82
102 1.90 1.90
103 1.98 1.98

Cmax Interpolation method

linear inverse
k1/k2 distance

weighting
101 1.89 1.89
102 2.39 2.00
103 3.41 2.05

Table 3: Maximum value of the discrete solution for different diffusion tensors and in-
terpolation techniques.

goes to zero linearly with h.
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k1/k2 = 103, θ = π
6

k1/k2 = 103, θ = 5π
6

Linear interpolation Linear interpolation

k1/k2 = 103, θ = π
6

k1/k2 = 103, θ = 5π
6

Inverse distance weighting Inverse distance weighting

Figure 12: Solution profiles for different diffusion tensors and different interpolation
techniques.

5.5 Triangular meshes: heterogeneous diffusion tensor

In this section we demonstrate that the nonlinear FV scheme can handle strong jumps
of full diffusion tensor across mesh edges. We consider problem (1) in the unit square
Ω = (0, 1)2 with the source term

f(x) =

{ 1
|ω|

if x ∈ ω,

0 otherwise,
where ω = [7/18, 11/18]2 ,

and the homogeneous Dirichlet boundary condition gD = 0 on ΓD = ∂Ω.
The domain Ω is partitioned into four square subdomains Ωi, i = 1, . . . , 4, as shown

in Fig. 13a. The diffusion tensor is given by formula (46) with different parameters k1,
k2, and θ in subdomains Ωi. First, we fix the anisotropy ratio by setting k1 = 103 and
k2 = 1 and vary only parameter θ (see Fig. 13a). Second, we use the same values of θ
and the chess board distribution of k1 and k2 (see Fig. 14a). In both cases we get the
non-negative discrete solution (see Figs. 13b,14b). Both discrete solutions have a good
eye-ball quality.

21



h εover

1/18 2.48e − 3
1/36 1.40e − 3
1/72 5.89e − 4
1/144 2.24e − 4

Table 4: Reduction of the overshoot error εover for k1/k2 = 103 and θ = 5π/6.
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2

k  =1000  k  = 1
21

θ = π/6 θ = −π/6

θ = π/6θ = −π/6

(a) (b)

Figure 13: Principle directions of the anisotropic diffusion tensor with fixed eigenvalues
k1 and k2 (left picture) and profile of the discrete solution (right picture).

5.6 Quadrilateral meshes: convergence study

The next group of tests addresses the convergence rate of the nonlinear FV scheme on
polygonal meshes in the case of isotropic diffusion tensors. We consider a set of ran-
domly distorted quadrilateral meshes. The quadrilateral mesh is constructed from the
uniform square mesh with the mesh size h by random distortion of its nodes:

x := x + αξxh, y := y + αξyh.

Here ξx and ξy are random variables with values between −0.5 and 0.5 and α ∈ [0, 1] is
the degree of distortion. We consider α ∈ [0.5, 0.7]. The larger α is, the more distorted
mesh is produced (see Fig. 15). If α > 0.5, mesh cells may be non-convex. For each
quadrilateral cell Q the collocation point xQ is defined to be the mass center.
We consider the Dirichlet boundary value problem (1) in the unit square Ω = (0, 1)2

with the isotropic diffusion tensor D = I and the smooth exact solution

c(x, y) = 2 cos(πx) sin(2πy) + 2. (47)

In all experiments the edge extention factor |e′|
|e|
was bounded by 1.5. The numerical

results presented in Table 5 show that the convergence rate of the nonlinear FV scheme
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Figure 14: Principle directions and eigenvalues of the heterogeneous anisotropic diffu-
sion tensor (left picture) and profile of the discrete solution (right picture).

Figure 15: Two randomly distorted quadrilateral meshes with α = 0.5 (left picture) and
α = 0.7 (right picture).

is not affected by the distortion parameter α. For the considered degrees of distortion
we observe the second-order convergence rate for concentration c and greater than the
first-order convergence rate for flux q.

5.7 Polygonal meshes: positivity of solution

We return to the problem discussed in section 5.2.1 and discretize it on the polygonal
partition Ωh of Ω = (0, 1)2 shown in Fig. 16a. Since the polygonal extention of the non-
linear FV scheme is restricted to the case of isotropic or slightly anisotropic diffusion
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εc
2 εq

2

h α = 0.5 α = 0.6 α = 0.7 α = 0.5 α = 0.6 α = 0.7
1/16 8.57e − 3 9.06e − 3 9.47e − 3 3.19e − 2 3.48e − 2 4.27e − 2
1/32 2.17e − 3 2.39e − 3 2.53e − 3 9.12e − 3 1.06e − 2 1.26e − 2
1/64 5.57e − 4 5.94e − 4 6.37e − 4 5.12e − 3 3.46e − 3 4.12e − 3
1/128 1.38e − 4 1.51e − 4 1.59e − 4 9.83e − 4 1.18e − 3 1.44e − 3
rate 1.98 1.97 1.96 1.59 1.62 1.63

Table 5: Convergence results for different distortion parameters.

tensors, we pick a larger parameter ε = 0.1 in the formula (44) for the diffusion tensor.
The exact solution c(x, y) is unknown but according to the maximum principle it

is positive in Ω. The discrete solution profile shown in Fig. 16b demonstrates that the
discretization scheme preserves solution positivity.

(a) (b)

Figure 16: The polygonal mesh (left picture) and the solution profile (right picture).

6 Conclusion

In this article, we further developed the nonlinear finite volume method proposed by
C. Le Potier in [10]. First, we rectified the method by providing the correct formula for
positions of collocation points. Second, we proposed the alternative interpolation tech-
nique which improves robustness of the method for problems with strong anisotropy
and sharp gradients. Third, we proved monotonicity of the method for the stationary
diffusion equation. Fourth, we studied numerically important properties of the method
such as the convergence rate and violation of the discrete maximum principle. Fifth,
we extended the method to regular star-shaped polygonal meshes and heterogeneous
isotropic diffusion tensors.
The nonlinear FVmethod ismonotone and conservative for arbitrary triangular meshes

and arbitrary full tensor diffusion coefficients. It has the four-point stencil for triangular
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meshes and the five-point stencil for quadrilateral meshes. It gives the second-order con-
vergence rate for the scalar unknown and the first-order convergence rate for the flux
unknown. The price for these appealing features is the method non-linearity.
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