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Abstract

A novel adaptive mesh refinement (AMR) strategy based on moment-
of-fluid (MOF) method for volume-tracking evolving interface compu-
tation is presented. Moment-of-fluid method is a new interface re-
construction and volume advection method using volume fraction as
well as material centroid. The mesh refinement criterion is based on
the deviation of the actual centroid obtained by interface reconstruc-
tion from the reference centroid given by moment advection process.
The centroid error indicator detects not only high curvature regions
but also regions with complicated subcell structures like filaments.
A new Lagrange+remap moment advection scheme, which includes
Lagrangian backtracking, polygon intersection based remapping and
forward tracking to define material centroid is is presented. The ef-
fectiveness and efficiency of AMR-MOF method is demonstrated with
classical test problems, such as Zalesak’s disk and reversible vortex
problem. The comparison with previously published results for these
problems shows the superior accuracy of the AMR-MOF method over
other methods. In addition, two new test cases with severe deforma-
tion rates are introduced, namely droplet deformation and S-shape
deformation problems, for further demonstrating the capabilities of
the AMR-MOF method.
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Figure 1: Conceptual structure of the adaptive mesh refinement strategy for
interfacial flow computation. In volume-tracking methods (MOF or VOF),
the Interface Representation module is typically composed of (i) interface
reconstruction and (ii) advection steps.

1 Introduction and background

One of popular strategy of improving accuracy in computational physics is
using adaptive mesh refinement (AMR). AMR technique is being widely used
for various types of problems [9, 35, 25, 6, 12, 38, 1, 11, 36, 33, 7, 26].

Although the flows with evolving interface is considered a very appro-
priate class of problem with potential adaptivity, the application of AMR
on such problem is relatively rare compared to the flow problems without
interfacial phenomena. For example, in proceedings of recent conference on
AMR, [36], only two papers are related to the multi-material flows [14, 24].

We also want to mention the following papers on adaptive mesh refine-
ment for interfacial flows: for those using volume-of-fluid (VOF) type meth-
ods [21, 22, 49, 31], those using level-set method [45, 29], and front-tracking
method [13].

Conceptual structure of AMR strategy for interfacial flows is presented
in Fig. 1.

In this paper we are interested in development of AMR type methods
for interfacial flows which are using volume tracking methods like VOF for
two materials - dark and light material. In volume tracking methods in-
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stantaneous material interface is described by volume fractions fdarkc , f lightc ,
which indicates how much volume of each material is present in cell, c -
fdarkc = V dark

c /Vc , f
light
c = V light

c /Vc. Because V dark
c + V light

c = Vc volume
fractions are complimentary to each other - f lightc = 1 − fdarkc . For this rea-
son, in VOF methods for two materials, one usually use only volume fraction
of of the materials and drops material index. Therefore, we will use notation
fc = fdarkc , and where it is not ambiguous we will use term material meaning
dark material. For cells completely filled with the dark material fc = 1,
and for the cell where the dark material is not present fc=0. For mixed cell,
partially filled by the dark material 1 > fc > 0. In most volume tracking
methods, [40], interface representation phase of AMR method (see Fig. 1) is
composed of interface reconstruction and some procedure for evolving vol-
ume fraction in time (usually called advection) in accordance with velocities
obtained by flow solver. Reconstructed interface is used in advection step.

One of the most important question in AMR methods is refinement/derefinement
criterion. In this paper we will only discuss refinement/derefinement criteria
in mixed cells - that is what is appropriate level of refinement is needed to
represent the interface. The simplest approach is to use the same prescribed
level of refinement in all mixed cells an its neighbors [50, 21, 48]. In [47]
authors suggest to refine uniformly all mixed cells where volume fraction
value lies in the following limits: 0.8 ≥ fc ≥ 0.2, then volume fractions are
recomputed using some remapping algorithm and refinement procedure is
repeated until some prescribed level of refinement is reached. All mentioned
approaches do not take into account complexity of the interface.

In [37] there is one example where the norm of the local gradient of the
volume fraction is used as refinement/derefinement criterion. Next level of
sophistication, which is used in practice is to use some estimates for curva-
ture of interface as criterion for refinement/derefinement [38, 39, 37, 31, 45].
There are several problems with these approaches. First of all, to obtain
reliable estimate gradient of the volume fraction or estimate for curvature
from volume fraction one needs sufficiently fine resolution. It leads to vis-
cous circle - to obtain estimate one needs enough resolution and at the same
time one is trying to use this estimate to decide what resolution is needed.
However, in practice criterion based on curvature allows to get good results.
More serious problem is related to the fact that complexity of interface not
restricted just to curvature, for example, interface can have complex topology
like filaments or subcell size droplets. Our opinion is that for such situations
curvature estimation does not make much sense.
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In series of recent reports and papers we have introduced new moment-
of-fluid (MOF) method, [17, 18, 19, 3, 4, 2, 16]. The MOF method can
be thought of as a generalization of VOF method. In VOF method, vol-
ume (the zeroth moment) is advected with local velocity and the interface
is reconstructed based on the updated (reference) volume fraction data. In
MOF method, volume (zeroth moment) as well as centroid (ratio of the first
moment with respect to the zeroth moment) are advected and the interface
is reconstructed based on the updated moment data (reference volume and
reference centroid). In the MOF method, the computed interface is cho-
sen to match the reference volume exactly and to provide the best possible
approximation to the reference centroid of the material.

By using the centroid information, the volume tracking with dynamic
interfaces can be computed much more accurately. Furthermore with this
conceptual extension of using the moment data, the interface in a particular
cell can be reconstructed independently from its neighboring cells. With the
advantages of MOF method over the VOF method, our opinion is that the
MOF method is a next generation volume-tracking interfacial flow computa-
tion method evolved from VOF method.

In this paper, we present a very accurate and efficient adaptive mesh
refinement strategy for volume-tracking interfacial flow computations based
on the moment-of-fluid method. In new AMR-MOF method the the distance
between reference centroid and actual centroid computed from reconstructed
interface is used as refinement criterion.

Below in this section, we first review the idea of piecewise linear inter-
face calculation (PLIC) method and standard MOF interface reconstruction
method. Next, we briefly describe how to obtain the data for MOF inter-
face reconstruction. Then, we introduce the motivation and an algorithmic
overview of AMR-MOF method, which is the main topic of this paper. And
finally, we describe the structure of the paper.

1.1 Piecewise linear interface calculation (PLIC)

In PLIC methods, each mixed cell interface between two materials is repre-
sented by plane (line in 2D). It is convenient to specify this plane in Hessian
normal form

n · r + d = 0 , (1)
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where r = (x, y) is a point on the interface, n = (nx, ny) are components of
the unit normal to the interface, and d is the signed distance from the origin
to the interface.

The principal reconstruction constraint is local volume conservation, i.e.
the reconstructed interface must truncate the cell, c, with a volume equal to
the reference volume V ref

c of the material (or equivalently, the volume fraction
f refc = V ref

c /Vc, where Vc is the volume of the entire cell c). Here we have
introduced superscript ref to emphasize that reference quantities are input
parameters at interface reconstruction stage and need of such notation will be
more clear in next Section, where other reference quantities are introduced,
which are not matched exactly.

PLIC methods differ in how the interface normal n is computed. In VOF
method, the interface normal (nc) for cell-c is computed from the volume
fraction data on the stencil, composed of cell-c as well as its neighbors. In
MOF method, the interface normal, nc is computed from moment data, i.e.
volume fraction and material centroids, in cell-c only.

Once the interface normal nc is computed, the interface is uniquely de-
fined by computing dc satisfying the reference volume V ref

c exactly.

1.2 Moment-of-fluid interface reconstruction

The moment-of-fluid (MOF) interface reconstruction method was first intro-
duced in [17], [16], for interface reconstruction in 2D. The 3D extension for
the arbitrary polyhedral mesh and multi-material case is described in [4].

To describe main idea of MOF method we need to introduce some defi-
nitions. For given material region, Ω, the zeroth moment (volume) and first
moment are defined as follow as

M0(Ω) =
∫

Ω
dV , M1(Ω) =

∫
Ω

x dV . (2)

Centroid of the material region Ω is a ratio of first and zeroth moments

xΩ =
M1(Ω)

M0(Ω)
. (3)

Let us assume that for each mixed cell we know not only reference volume
fraction f refc but also reference centroid xrefc . We need to emphasize that in-
terface reconstruction reference volume fraction and reference centroid are
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input data, which is supplied by some other algorithm (advection, for exam-
ple). Therefore these quantities have errors and moreover it maybe no real
material configuration which matches exactly both reference volume fraction
and reference centroid.

In the MOF method, the computed interface is chosen to match the ref-
erence volume exactly and to provide the best possible approximation to the
reference centroid of the material. That is, in MOF, the interface normal,
n, is computed by minimizing (under the constraint that the correspond-
ing pure subcell has exactly the reference volume fraction in the cell) the
following functional:

EMOF
c (n) =‖ xrefc − xc(n) ‖2 (4)

where xrefc is the reference material centroid and xc(n) is the actual (recon-
structed) material centroid with given interface normal n.

The implementation of MOF method requires the minimization of the
non-linear function (of one variable in 2D and of two variables in 3D). The
computation of EMOF

c (n) requires the following steps. First, for a given n
is to find the parameter d of the plane such that the volume fraction in cell
c exactly matches f refc . Second, we compute the centroid of the resulting
subcell containing reference material. This is a simple calculation, described,
for example, in [2, 32]. Finally, one computes the distance between actual
and reference centroids. The MOF method is linearity-preserving, that is, it
reconstructs linear interfaces exactly.

The MOF method uses information about the volume fraction, f refc as
well as centroid, xrefc of the material, but only from the cell c under consider-
ation. No information from neighboring cells is used, as illustrated in Fig. 2.
In context of AMR meshes it means that MOF method does not care about
data structures on interface reconstruction stage.

1.3 Obtaining reference volume fraction and reference
centroid information

To use MOF method for interface reconstruction one needs to have reference
volume fractions f refc and reference centroid xrefc for each mixed cell c. There
are two distinct situations: static reconstruction and dynamic reconstruction.

Static reconstruction, described in Section 3 is used to represent ”exact”
material configuration on given mesh using PLIC. Exact material configura-
tion can be provided in different ways but in any case it allows to compute
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Actual Centroid

Reference Centroid

Figure 2: Stencil for MOF in two dimensions. The stencil for MOF interface
reconstruction is composed of only the cell under consideration. The MOF
method can be used for arbitrary polygonal cells (polyhedral cells in 3D).
The solid curved line represents the true interface, and the dashed straight
line represents the piece-wise linear, volume fraction matching interface at
the cell.

reference volume fractions and reference centroids for any mesh with the
same accuracy with which material configuration is described. Static inter-
face reconstruction is used for initialization of the problem.

In case of dynamic reconstruction (Section 4), which is used during the
time evolution, the reference volume fractions and reference centroids are
obtained by ”advection” of these quantities using velocity field provided by
flow solver. There are a lot of different methods for advection of volume
fraction (see for example, [40], for review). In context of MOF method we
also need to advect centroids. One of the possible methods to advect volume
fractions and centroids is described in [17, 16]. This method close in flavor to
semi-Lagrangian techniques [44, 43] and has a lot of similarities with methods
described in [15, 53, 8, 34] and can be characterized as cell-based Lagrange
plus remap. In case of MOF it is used both for advecting volume fractions
and centroids.

In case AMR-MOF we have found that to improve accuracy we need to
modify method from [17, 16]. New method is described in Sections 4.2, 4.3
and 4.4.
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1.4 AMR-MOF: Design principles

In many physical simulations, the region of interest is often localized (e.g.
boundary layer, wake behind of a body, shock front, or multi-material/phase
interfaces) and the computational resources can be selectively utilized for
improving the accuracy in such regions. Refining the mesh in such regions,
that is adaptive mesh refinement, is very natural way of improving accuracy
for given computational resources.

For interfacial flows, there is clear definition of the localized region of
interest: the region around the interface. In most of the volume-tracking
interfacial flow computations, the major issues is how accurately resolve the
material configuration which is again defined by the interface. In flow com-
putation in Rn the interface is always defined by Rn−1, which implies a sig-
nificant potential in adaptivity. In general required level of mesh adaptation
has to depend on the complexity of the interface, two immediate examples
being curvature and topology of the interface. Fig. 3 illustrates represen-
tative interface features. We note that all features illustrated in Fig. 3 are
in subcell scale (their length scale is less then those of unrefined mesh) and
also independent from the features of their neighboring cells (neighboring cell
may not have similar features). It is interesting to note that after we have
created illustrative Fig. 3 we have discovered very similar figure in [31].

The keystone of any AMR method is refinement criterion. In context
of modeling of interfacial flows the refinement criterion suppose to detect
severe deformation of interface in wide spectrum of length scales. In this
paper, the refinement criterion is based on the error indicator, defined as
deviation of actual centroid of the reconstructed material configuration from
the reference centroid. As we will show in Section 2 the centroid error is
the effective measure of the discrepancy between the reconstructed and the
reference material configurations defined by reference volume fraction and
reference centroid. If the centroid error is higher than a certain tolerance,
then the cell is refined. It is important to note that refinement criterion is
based on the same data, namely centroid information, which is used in MOF
interface reconstruction.

Next question is how to refine? This issue is closely related to what
data structures are used to describe refined mesh. According to [29], two
most popular types of refinement are patch based [9, 10, 46], and tree based
refinement ([22, 31, 38, 37, 47]. For general discussion and more references
related to spatially adaptive techniques we refer interested reader to [29].
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Figure 3: Subcell scale interface features with different curvature and topol-
ogy. The thick solid line indicates the square cell boundary, and gray region
indicates material configuration. Top row – material configuration, bottom
row – possible AMR-MOF refinement pattern. Four representative interface
features within a square cell are illustrated: (a) one piece of the material
inside the cell — interface is the segment of the straight line (curvature is
zero); (b) two disjoint pieces of the white material — subcell thickness fila-
ment of dark material, curvature has meaning only for each segment of the
straight line and equal to zero, but one curvature per cell does not make
sense; (c) one piece of dark material with complicated shape, only average
averaged curvature makes sense; (d) disjoint pieces of dark material (subcell
size droplet), each of pieces has high average curvature.
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level-0 level-1 level-2 level-3

Figure 4: AMR-MOF interface reconstruction on adaptively refined meshes.
From the left (level-0) to the right (level-3) refinement.

In this paper we use quadtree refinement, when cell flagged for refinement
is subdivided into four subcells. From this point of view this is isotropic
refinement as opposed to anisotropic refinement [33]. Many codes which
uses quadtree data structures have constraint such that level of refinement
in neighboring cell can differ only by one level. This constraint is usually
related to available flow solver and simplicity of data communication between
different levels.

As it was mention before, in this paper we are not dealing with flow
solver but we want to mention that modern discretization techniques allows
to use quadtree meshes without constraints related level of refinement in
neighboring cells, [28, 29], and therefore, we use such unconstrained quadtree
meshes in this paper.

To give an idea how quadtree refinement and corresponding data struc-
tures in application to interface reconstruction may look like we consider
simple illustrative example of static interface reconstruction (initialization),
Fig. 4, and Fig. 5. It is the reconstruction of square material region occu-
pying [0., 0.64]2 within a cell covering [0, 1]2 square domain - level 0 mesh,
which consist only of one cell. The quadtree data structure developed in the
process of the corner reconstruction example, as shown in Fig. 4, is illustrated
in Fig. 5.

At each AMR iteration, mixed cells are refined into four child cells. Once
a cell is refined, then the reference moment data is recomputed on the child
cells for the next interface reconstruction stage. If a mixed cell has centroid
error less than a given tolerance (e.g. child cell with linear interface), the
mixed cell is not flagged into refinement.
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Level 0

Level 1

Level 2

Level 3

Pure Cell − Filled        :Leaf Node

Pure Cell − Void          :Leaf Node

Mixed Cell − Refined  :Internal Node

Mixed Cell − Unrefined    :Leaf Node

Figure 5: Quadtree structure of AMR-MOF reconstruction shown in Fig. 4.
Correspondence between Fig. 4 established by introducing local enumeration
of children of parent cell counter-clockwise starting from left-bottom child to
left-top child. Then for each level left circle corresponds to left-bottom child
and right circle correspond to left-top child.

This adaptive refinement strategy results in adequate piece-wise linear
representation of interface on adaptive mesh.

1.5 Organization of the paper

The rest of the paper is organized as follow. In Section 2 we numerically
justify use of error in centroid position as criterion for mesh refinement. The
static AMR-MOF interface reconstruction and numerical example of interface
reconstruction of a multi-element airfoil geometry are described in Section 3.
Dynamic AMR-MOF is described in Section 4. The moment advection is first
explained for case of uniform mesh case, Section 4.3, and then extended to
AMR meshes, Section 4.4. To demonstrate the effectiveness of AMR-MOF
method, various test problems are presented in Section 4.6. In Section 4
we describe numerical test related dynamic interface reconstruction. Effect
of Initial Interface Representation Quality is investigated in Section 4.6.1.
In Sections 4.6.2, 4.6.3, and 4.6.4 two classical test problems are presented,
namely Zalesak’s notched disk rotation and single reversible vortex problem.
Comparative studies with other published results are presented for both the
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standard MOF and AMR-MOF. In addition to those classical problems, two
new test problems with severe deformation rates are presented in Sections
4.6.5, 4.6.6. Finally in Section 5, we present summary of the results obtained
in the paper and consider future work.

2 Centroid error as refinement criterion

In this section, we demonstrate that the centroid error, the error indicator
for AMR-MOF method, can detects different features of the interface. This
includes not only the local curvature of the interface but also the topology
of material region within the cell.

We first demonstrate the local curvature sensing capability of AMR-MOF
method. If the true interface is straight line, MOF method reconstruct the
interface exactly, i.e. centroid error is zero. If the interface is curved, the
linear interface computed by MOF method will deviate from the true curve.
In this case, MOF computes non-zero centroid error. It can also be expected
that the higher curvature of the interface, the higher centroid error due to
the linear approximation of the curved interface.

This implies that the AMR-MOF method based on the centroid error de-
tects the curvature of the interface. This claim is supported by the examples
illustrated in Fig. 6. As the interface curvature (κ = 1

r
, where κ is curva-

ture and r is the radius of circular interface) increases, the linear interface
produced by standard MOF method results in large discrepancy between the
true and reconstructed regions, but with AMR-MOF the discrepancy be-
tween the reconstructed material region and highly curved original material
region is removed.

The Fig. 7 confirms this observation. The centroid error produced by
standard MOF method (see, Fig. 7-(a)) shows that the error is increasing
quadratically with respect to the interface curvature. This result is in ac-
cordance to the analysis in [18]. We note that the analysis in [18] assumes
the local radius (r = 1/κ) is larger than local cell size. The slight super-
quadratic behavior of the centroid error at the highest curvature is due to
the local radius falls into the subcell size, where the analysis is not valid.
The maximum level of refinement required for the AMR-MOF to achieve the
centroid error to be less than the given tolerance is displayed in Fig. 7-(b).
It is clear that the higher curvature of the interface, the more refinement is
required to decrease the centroid error.
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Another important aspect of interface complexity is its topology within
the cell. For example, it can be multiple disjoint pieces within a cell. Such
subcell-scale material configuration cannot be correctly reconstructed with
methods without refinement. Example of filament reconstruction with sub-
cell thickness is illustrated in Fig. 8. As shown in top row of the Figure, the
standard MOF reconstruction cannot resolve the filament configuration as it
falls inside of the cell. However, as shown in the bottom row, the AMR-MOF
reconstruction, based on the centroid error indicator, correctly resolves the
subcell configuration of the filament.

The previous examples confirm that our error indicator, the centroid er-
ror, is not only senses the local curvature but also reflects the overall accuracy
of reconstructed interface for complex material configurations. This centroid
error indicator eventually guides the AMR-MOF method to produce the ac-
curately interface reconstruction. Numerical examples presented in following
Sections confirm this conclusion.
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Figure 6: Curvature effect on the interface reconstruction on a square cell of
[0, 1]2. Top row shows the standard MOF interface reconstruction. Bottom
row shows the AMR-MOF interface reconstruction. To emphasize the quality
of the reconstruction, the true material region (red) is overlapped on top of
reconstructed material region (gray). For standard MOF reconstruction,
higher curvature results in higher deviation of reconstructed material region
from the true material region. This is directly indicated by the centroid error

(Euclidean distance between the actual and reference centroids,
√
EMOF
c )

and also as displayed in Fig. 7-(a). For AMR-MOF reconstruction, the higher
curvature results in higher level of refinement to decrease the centroid error
below the prescribed tolerance. This trends is also confirmed in Fig. 7-(b).
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Figure 7: Curvature effects on the centroid error and level of refinement
required. Top graph shows the centroid error computed by standard MOF
reconstruction. It confirms that the centroid error (here, it is measured by

Euclidean distance between the actual and reference centroids,
√
EMOF
c ) is

quadratic with respect to the curvature, i.e. the centroid error quadruples as
the curvature doubles. Bottom graph shows that the more level of refinement
is required to decrease the high centroid error induced by the high curvature
interface. Refinement is performed until EMOF

c < 1.e-12. These two figures
directly correspond to the results presented in Fig. 6.
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Figure 8: Subcell thickness (w = 0.1) filament reconstruction within a square
cell covering [0, 1]2 domain. From the left, the reference filament configura-
tion (indicated by transparent red) is translated to the right with increment of
∆x = 0.17. The gray region indicates reconstructed filament region. Actual
and reference centroids are marked with black square dots. Top – standard
MOF interface reconstruction, bottom – AMR-MOF interface reconstruc-
tion. As filament moves inside of the cell, standard MOF fails to represent
the true material configuration, while AMR-MOF resolves the true material
configuration.
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3 Static interface reconstruction - initializa-

tion

3.1 Logic of static interface reconstruction

The statement of the problem for AMR-MOF static interface reconstruction
is as follows: for given original material configuration, represent the recon-
structed material region by PLIC on adaptively refined mesh. The main
algorithm is composed of following three steps:

(i) identify the cells to be refined (refinement criterion)

(ii) compute reference moment data (de-referencing)

(iii) reconstruct interface on AMR mesh using MOF.

The refinement criterion is based on the centroid error, the departure of the
actual (reconstructed) centroid from the reference centroid. If this error is
bigger than a certain tolerance, then the cell is refined. The second part
can be referred to as de-referencing. For the static cases (e.g. initial stage
of interfacial flow simulation), the reference material configuration is usually
given by an analytical form or body fitted meshes describing the original
geometry. In examples presented in this paper the reference moment data
(volume and centroid) representing the true material configuration is com-
puted by exact intersection of the cell and the original geometry. Finally, the
interface is reconstructed on the AMR mesh using MOF with the provided
reference data. It completes one AMR-MOF iteration. One can continue to
the next level of refinement depending on desired error in the centroid and
maximum allowed level of refinement. The flow-chart for the static AMR-
MOF interface reconstruction of a given geometry is presented in Fig. 9. We
note that the static AMR-MOF interface reconstruction, described in Fig. 9
is only for the initial representation of given material configuration on AMR
mesh.

3.2 Example of static interface reconstruction

In this Section we present static interface reconstruction for multi-element
airfoil configuration, as shown in Fig. 10. The AMR-MOF reconstruction
starts with a single cell [0, 1]2 - level-0 mesh.
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Next AMR iteration

Refine cells with Ec
MOF >− Etol

NO

YES

E Etolc <MOF

Finish

Static AMR−MOF Module

Start

Compute Reference Moments
by intersection

Reconstruct Interface
by MOF

Figure 9: Flow-chart for static AMR-MOF interface reconstruction for initial
representation of material configuration on AMR mesh.

0.6

0.5

0.4
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 10: Multi-element airfoil configuration.

The reference moment data is computed by exact intersection of mixed
cells and original geometry, i.e. the body fitted unstructured mesh repre-
senting the airfoil, as shown in Fig. 13. The mesh is generated by using
Gmsh [20] based on the boundary data as shown in Fig. 10. Adaptive re-
finement is performed up to level-8 from the level-0 mesh. First six levels of
AMR-MOF interface reconstruction is displayed in Fig. 11.

The initial geometry as shown in Fig. 13-(a) is triangulated so that the
reconstruction error can also be easily computed in the sense of area of the
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level-1 level-2 level-3

level-4 level-5 level-6

Figure 11: AMR-MOF interface reconstruction of multi-element airfoil con-
figuration starting with one cell, i.e. the level-0 mesh is 1 × 1 covering the
domain of [0, 1]2. Different levels of AMR-MOF reconstruction process are
displayed. Etol = 1.e-15 is used as the refinement criterion.
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Figure 12: Reduction of error, Esd, computed by the area of symmetric
difference by AMR-MOF interface reconstruction. Etol = 1.e-15 is used as
the refinement criterion.

symmetric difference between the true (original) and reconstructed configu-
ration.

The symmetric difference of regions T and R defined as follows:

T 4R = (T ∪R)− (T ∩R) (5)

where T represents the set of true material regions and R represents the set
of actual (reconstructed) material regions on a given mesh.

The actual computation of the error, the area related to symmetric dif-
ference, is carried out cell-wise manner as follows:

Esd =
∑
c∈M
|Tc4Rc| =

∑
c∈M
|(Tc ∪Rc)− (Tc ∩Rc)| (6)

where M is the set of cells; Tc = T ∩ c is intersection of the material region
with cell c, and Rc is reconstructed material within the cell-c. |Tc 4 Rc|
represents the area of the region defined by Tc4Rc.

The the error Esd is displayed in Fig. 12 as function the refinement level.
The close up view on the final reconstruction is compared with the orig-

inal configuration in Fig. 13. Most of refinement structure is performed
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Figure 13: AMR-MOF interface reconstruction of stationary object. Three-
element airfoil geometry within 1 × 1 mesh (level-0) covering the square
domain [0, 1]2 is considered. Refinement is carried up to level-8, i.e. the
maximum effective mesh resolution is 256 × 256. Top – original, bottom –
AMR-MOF reconstruction. Etol = 1.e-15 is used in the refinement criterion.

around high curvature region, especially trailing edges of each airfoil. This
result supports our claim that the error indicator, based on the departure of
reference and actual centroids, detects high curvature region effectively.

4 Dynamic interface reconstruction

4.1 Logic of dynamic interface reconstruction

The algorithm of the AMR-MOF for dynamically evolving interface is illus-
trated in Fig. 14. The essential difference of AMR-MOF algorithm for the
dynamic interfaces compared to the static interface reconstruction is in the
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Next AMR iteration

Refine cells with

Advect Reference Moments

E Etol

E Etol

c
MOF

c
MOF

>−

<

YES

NO

Dynamic AMR−MOF Module

Reconstruct Interface
by MOF

Coarsen Cells

Next Time Step

Figure 14: Flow-chart for dynamic AMR-MOF interface reconstruction and
moment advection. The difference of the dynamic AMR-MOF module from
the static AMR-MOF module, as shown in Fig. 9, is reference moment com-
putation step. For dynamic case, the reference moment is computed by
advection step, as indicated with gray box.

way of computing the reference moment data. In static AMR-MOF, the
reference moment data is computed by using the original geometric descrip-
tion, usually represented by a body fitted unstructured mesh, and by exact
intersection with it. In dynamic AMR-MOF, the reference moment data is
computed by de-referencing the material configuration on the AMR mesh
at the previous time step. The material configuration at the previous time
step is represented by pure subcells obtained by AMR-MOF interface recon-
struction of the previous time step. In dynamic AMR-MOF, the reference
moment data for each refined cell is computed by moment advection between
the material configurations at the previous time step and the current time
step.

MOF method can be applied to volume-tracking evolving interface prob-
lems once moment advection scheme is augmented.

Now we give two examples of how AMR-MOF works for one time step,

22



that is “Dynamic AMR-MOF Module” in Fig.14. As a demonstration of
our moment advection scheme for AMR-MOF, one step (∆t = 1/32) of the
moment advection (computing volume and reference centroid) is illustrated
with two different material configurations under a nonlinear divergence free
velocity field (see, for example, [40]):

v (x, y, t) =

[
sin2(πx) sin(2πy)
− sin2(πy) sin(2πx)

]
cos

(
πt

T

)
(7)

where T is the period of reversing vortical flow. For both examples the
initial material configuration is chosen in such way that the true material
configuration can be reconstructed exactly on level-0 mesh without any mesh
refinement.

First, Fig. 15, we consider advection of a square box. The mesh refinement
is performed up to four levels.

Second, we present advection of a filament material configuration, Fig. 16.
In both examples internal loop in “Dynamic AMR-MOF Module” is per-
formed as many times as many refinement levels we allow, that is we need
to perform moment advection and interface reconstruction several times.

4.2 Principles of advecting moments

We explain principles of advection on the example of mesh without refine-
ment. At the initial time moment we know exact material configuration
and we can use static interface reconstruction, described in previous Section,
to approximately represent material configuration by set of pure and mixed
(multimaterial) cells of the mesh. Each mixed cell is subdivided in two pure
subpolygons representing corresponding materials.

Now we can assume that at time t = tn we have similar representation
of material configuration and our goal is to represent material configuration
at time t = tn+1, which has changed due to prescribed velocity field. Let us
denote cell of stationary Eulerian mesh by {c}. The known pure subpolygon
representing dark material in cell c at t = tn is denoted by Ωn

c (if cell c
completely filled with dark material then Ωn

c = c, and if cell c is empty cell
then Ωn

c = ∅). These subpolygons for cells surrounding central cell c are
presented gray in Fig. 17 (a). Our goal is to construct Ωn+1

c .
We will need to introduce several notions and notations. According to

the book [51] a material volume “. . . is an arbitrary collection of fluid of fixed
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before/after(red) advection level-0 level-1

level-2 level-3 level-4

Figure 15: One time step of the advection (∆t = 1
32

) of a square box using
nonlinear velocity field with T = 8.0 as described in Eq. (7). Initial square
box configuration is defined by [0.25, 0.75]2. Level-0 mesh is 8 × 8 covering
the square domain [0, 1]2. Left-top figure shows exact material configuration
before (gray) and after (red) the advection. The others are after one step of
the advection using different levels of AMR. Etol = 1.e-15 is used.
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before/after(red) advection level-0 level-1

level-2 level-3 level-4

Figure 16: One time step of the advection (∆t = 1
32

) of a filament configura-
tion using nonlinear velocity field with T = 8.0 as described in Eq. (7). Initial
filament configuration is bounded by [0.498, 0.375]× [0.502, 0.625] which does
not require any refinement. Level-0 mesh is 32 covering the square domain
[0, 1]2. Left-top figure shows exact material configuration before (gray) and
after (red) the advection. The others are after one step of advection using
different levels AMR. Etol = 1.e-15 is used.
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(a) Lagrangian backtracking (b) Polygon intersection-Remapping (c) Forward tracking

Figure 17: Moment advection by Lagrange+remap strategy. The moment
advection process for the central cell-c on 3× 3 local stencil is illustrated.

identity and enclosed by surface aslo forme by fluid particles. All points of
the material volume, including the points of its boundary, move with the local
continuum velocity. A material volume moves with the flow and deforms in
shape as the flow progresses, with stipulation that no mass ever fluxes in
or out of the volume, viz., both the volume and its boundary are always
composed of the same fluid particles.”

To avoid expressions like ”volume of the material volume”, we will use
term material element (ME) instead of material volume.

In the context of our paper ME can consist of two materials and each of
this materials is material element by itself.

Because our goal is to represent material configuration at t = tn+1 on the
Eulerian mesh, we know geometry of material element at t = tn+1 (which
is just cell c - central cell in Fig. 17), but we do not know what materials
it will consist of. To find this, we need to know what material element at
time t = tn (departure element) will arrive at cell c at t = tn+1. We will

denote geometry of departure element by
←
c . The

←
c can be approximately

defined by tracking back in time1 vertices of cell c (in the following Sections
this process will be referred as Lagrangian backtacrking), and the connecting
these vertices by segments of straight lines. The boundary of the departure
element

←
c is shown in Fig. 17 (a) in dashed lines. Clearly this procedure is

1using 4th order Runge-Kutta scheme
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approximate procedure because there is error in time integration of positions
of vertices as well as error related to connecting vertices by straight lines.
Implications related to these errors are considered the later Sections of the
paper. Here for simplicity we also assume that

←
c⊂

⋃
c′∈C(c)

c′ ,

where C(c) is the union of the immediate neighbors of cell c with cell c

itself. Also we explicitly assume that
←
c does not have self-intersections, that

is, trajectories of vertices do not cross, and even make stronger assumption
that

←
c is convex. Last assumption is not critical but if we allow

←
c to be

nonconvex then we need to use more complicated algorithms for polygon-
polygon intersection, and result of this intersection can be several disjoint
pieces. These requirements play the role of Courant-Friedrichs-Lewy (CFL)
condition.

Now using definition of the ME we can determine pieces of the material
it consist of by intersection

←
c with pure subpolygons representing material

configuration at t = tn:
Ωn
←
c ,c′

=
←
c ∩Ωn

c′ . (8)

Subpolygons Ωn
←
c ,c′

are shown in Fig. 17 (b) in dark grey. In the following

Sections this process will be referred as remapping.
According to definition of ME mass of the ME does not change with time.

We are considering here incompressible fluid and it means that volume (ze-
roth moment) of the ME does not change. Therefore, we can define reference
zeroth moment of the dark material for cell c at time moment t = tn+1 as
follows

M c,n+1
0,ref =

∑
c′∈C(c)

M0

(
Ωn
←
c ,c′

)
. (9)

To use MOF for interface reconstruction at t = tn+1 we also need to define
reference first moment. First moment is not constant in time. Because of
that we do the following. We trace forward in time (forward tracking 2 from
tn to tn+1 - Fig. 17 (c)) pieces of the materials defined by (8). We denote

polygons resulting from this operation as follows
→
Ω
n
←
c ,c′ . Schematically they

are shown shown in Fig. 17 (c) in dark grey and are located in central cell

2again using 4th order Runge-Kutta scheme
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c. Now we can define reference first moment as

M c,n+1
1,ref =

∑
c′∈C(c)

M1

(
→
Ω
n
←
c ,c′ .

)
. (10)

We want to note that polygons
→
Ω
n
←
c ,c′ can slightly overlap each other or it can

be gaps between them. The reason for this is again error related to defining
trajectories as well as result of connecting vertices by segments of straight
lines. The errors in definition of first moment are small and are not corrected
because first moment is used in definition of reference centroid only and not
suppose to be preserved exactly anyway.

In following Sections we often will refer to described moment advection
method as Lagrange+remap strategy.

In the next Section we describe details of moment advection on unrefined
(uniform) mesh and in Section 4.4 we extend it to the case of AMR mesh.
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4.3 Implementation of moment advection on uniform
mesh

First we define cells which will be pure (completely filled by dark material
- fc = 1 at t = tn+1). The simplest situation is a priori pure cell when cell
c is pure cell at t = tn and all its nearest neighbors are also pure cells. For
such cell c we perform Lagrangian backtracking step to find

←
c . According to

definition of the material element we suppose to have that

Ṽ n+1
c = Vol(

←
c ). ,

here˜ indicates that this volume may be not the final volume which will be
assigned to cell c at t = tn+1. The reason is that, as we have mentioned before
Lagrangian backtracking procedure is not exact and therefore Ṽ n+1

c maybe
not equal to volume of c as it suppose to be because cell c is declared pure
cell and we are dealing with incompressible velocity field. If Ṽ n+1

c > Vol(c)
then this cell is declared overfilled; if Ṽ n+1

c < Vol(c) then this cell is declared
underfilled. Volume Ṽ n+1

c and discrepancy Ṽ n+1
c −Vol(c) are stored and will

be used in repair stage of the algorithm which will be described later.
Next we consider potentially-mixed cells, i.e. the cells may contain mate-

rial interface at t = tn+1. The cell c is potentially-mixed cell if at least one
of the following conditions is satisfied at t = tn:

1. cell-c is mixed

2. some of the immediate neighbors of c is mixed,

3. cell-c is a pure cell - fc = 1, but at least on of its neighbors is an empty
cell - fc = 0.

The cells satisfying one of the above conditions are flagged as a potentially-
mixed cells (PMCs). PMCs reside within a narrow bands around the inter-
face. As we will see not all PMCs will be really mixed cells, some of them
will be pure cells. Once a set of PMCs is identified, we perform Lagrangian
backtracking for those cells. Next we perform remapping, that is finding of
subpolygons Ωn

←
c , c′

by intersections of
←
c with Ωn

c′ , c
′ ∈ C(c). The volume

Ṽ n+1
c for PMC is defined as

Ṽ n+1
c =

∑
c′∈C(c)

Vol
(

Ωn
←
c , c′

)
.
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Now if for all cells c′ we have
←
c ∩c′ ⊂ Ωn

c′ (if cell c′ is empty cell then we set
Ωn
c′ = ∅) then cell c is flagged as pure cell and it can be declared overfilled or

underfilled as it was described before for a priori pure cells.
Next situation when PMC is flagged as pure cell is when following con-

dition is satisfied
Ṽ n+1
c > Vol(c) .

In this case this pure cell is declared to be overfilled.
In all other cases PMCs declared mixed cell. Mixed cellcannot be over-

filled or underfilled. The preliminary zeroth moment (volume) and final first
moment for dark material in these cells are defined as described in previous
Section. The zeroth moment is preliminary because it maybe corrected at
repair stage to accommodate discrepancy in the volume for pure underfilled
and overfilled cells.

To obtain final reference volume we use a new variant of repair process
[42, 27, 30]. The repair is conservative redistribution of conservative quantity
with a goal to preserve local physical bounds of this quantity. In context of
this paper the conservative quantity is the volume of the dark (and light)
material. The amount of total volume, Vtotal of the dark material at time
t = tn is given by sum of the volumes of the Ωn

c , and we want to preserve
this total volume at t = tn+1:

Vtotal =
∑
c

Vol(Ωn
c ) =

∑
c

Vol(Ωn+1
c ) .

Our assumption is that mesh {←c} covers computational domain without gaps
and overlaps, and therefore∑

c

Ṽ n+1
c =

∑
c

∑
c′∈C(c)

Vol
(

Ωn
←
c , c′

)
= Vtotal . (11)

Therefore preliminary volumes Ṽ n+1
c sum to correct total volume. However,

Ṽ n+1
c for pure cells maybe not correct because pure cells maybe overfilled

or underfilled and have to be repaired. Using terminology of repair process
we need to establish upper, Ub(V

n+1
c ), and lower Lb(V

n+1
c ), bound for V n+1

c .
Clearly for pure cells we have

Ub(V
n+1
c ) = Lb(V

n+1
c ) = Vol(c) .

For mixed cells we only require that

Lb(V
n+1
c ) = 0 , Ub(V

n+1
c ) = Vol(c) .
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The goal of repair is conservatively redistribute volume such that resulting
volume for each cell lies in its bounds.

By construction Ṽ n+1
c for mixed cell lies in its bounds therefore these

bounds will only play the role of constraints during redistribution process.
We assume that all cells are enumerated in some order. Let us assume

that we consider cells in that order and as soon as we see overfilled cell
we repair it as follows. Because cell is overfilled we need to define final
volume for t = tn+1 as follows V n+1

c = Vol(c) and excess amount of vol-
ume δV n+1,over

c = Ṽ n+1
c − V n+1

c has to to be distributed among cells (with-
out violating their own bounds) to be conservative. To do this we first
consider nearest neighbors of cell c in some order, let say starting from
left neighbor in counter-clockwise order. First we will try to redistribute
δV n+1,over

c only among pure underfilled cells. That is, as soon as we see
pure underfilled cell,c′ we are contributing as much as possible, that is up to
δV n+1,under

c′ = |Ṽ n+1
c′ − V n+1

c′ | from δV n+1,over
c . Amount of volume which has

to be distributed is reduced by δV n+1,under
c′ . If δV n+1,over

c ≥ δV n+1,under
c′ then

δV n+1,under
c′ = 0 (therefore, it will not require repair as underfilled cell). If

δV n+1,over
c < δV n+1,under

c′ then δV n+1,under
c′ is reduced by amount it is accepted

from overfilled cell. After this we consider next underfilled cell c′ (if any) from
neighbors of cell c and repeat procedure starting with reduced about of vol-
ume we have to distribute. Process will stop if entire overfilled amount is
distributed. If after considering all underfilled neighbors of cell c we was not
able to distribute underfilled volume that we need to consider mixed neigh-
bors of cell c. Process of distribution of remaining overfilled amount (which
we will denote ∆V over) among mixed cells is slightly different. We distribute
this amount proportionally to what mixed cells can accept (see [27] for for-
mulas). If according to these formulas mixed cell will be completely filled
it is declared pure cells (it will never be overfilled). This procedure allows
us to keep mixed cell mixed if it is possible. If we use the same strategy
as with underfilled cells we can make several almost filled mixed cells pure
cells. If after considering pure underfilled and mixed cell from the immediate
neighbors we still did not distribute all overfilled volume from cell c then we
extend the stencil. It is proven in [42, 27] that it the repair process will be
successful. There are also versions of repair process which can be parallelized
[30].

After all overfilled cells are repaired we repair remaining underfilled pure
cells. Let us note that some of the underfilled cells (actually most of them)
maybe repaired when they accepted volume from overfilled pure cells, because

31



�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(a) Fragment of the {cn+1} AMR mesh (b) Correct backtracking (c) Simplified backtracking

Figure 18: Lagrangian backtracking of the AMR mesh. Overlap area for
simplified backtracking is shaded by horizontal lines, and gap is shaded by
vertical lines.

overfilled and underfilled cells typically counter balanced within the local
stencil.

We will refer to described repair process as local repair as opposed to
global repair which will need for AMR meshes.

After repair we get final reference volumes (zeroth moments) which will
be used in MOF interface reconstruction. Reference centroid is obtained from
reference zeroth moment and first moment obtained using formula (10).

4.4 Moment advection on AMR mesh

In case of AMR mesh we need more definitions. We will denote AMR mesh at
t = tn by {cn}, where cn refers to generic cell from AMR mesh. For purpose
of this Section it is not important to distinguish which level of refinement it
represent. Next mesh is AMR mesh at t = tn+1 for which we have to define
moment data. In case of advection on uniform mesh {cn+1} = {cn} = {c}.
Finally we have mesh {←c

n+1
} which is obtained by Lagrangian backtracking

of mesh {cn+1}.
There are several ways to backtrack AMR mesh. Let us consider fragment

of AMR mesh presented in Fig. 18 (a). Central cell and top cell are refined
once (level 1 refinement). Left and right cell do not refined and have one
“hanging” node at their boundary which coming from refined central cell.
From formal point of view left and right cell can be considered as pentagons
with hanging node being “degenerate” vertex. There is no hanging nodes
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on the boundary of central and top cell because they have the same level of
refinement.

Correct way of backtracking of AMR mesh is to move all vertices (in-
cluding degenerate vertices) of all cells. The result of correct backtracking

is shown in Fig.18 (b). In this case backtracked mesh {←c
n+1
} covers com-

putational domain without gaps and overlaps similar to case of advection
on uniform mesh. For correct backtracking advection of moments (including
repair) is essentially the same as for uniform mesh. The compilations are

coming from the fact that cells of mesh {←c
n+1
} maybe nonconvex, that is

one need to use more complicated algorithm for intersection of polygons; also

because both meshes {←c
n+1
} and {cn} are AMR meshes logic of what cells

has to be intersected is more complicated.
There is another simplified way of backtracking AMR mesh when each

cell is backtracked independently, that is, each cell is considered to be square,
for example, hanging nodes are ignored when backtracking left and right cell
in Fig.18 (a). Result of such simplified backtracking is shown in Fig.18 (c).

It may lead to overlaps and gaps in mesh {←c
n+1
}, which is now just collection

of convex quadrilaterals.
In this paper we have chosen to use simplified backtracking and numeri-

cally demonstrate that it still gives very good results.
In Fig. 19 we have shown main stages of moment advection remap on

AMR meshes. These stages are conceptually the same as for advection on
uniform mesh. In Fig.19 central cell represent AMR mesh {cn+1} and neigh-
boring cells represent AMR mesh {cn} with superimposed subpolygons repre-
senting material configuration at t = tn. The main difference of the moment
advection on AMR mesh in comparison to the advection on uniform mesh
is that, at the previous time step (on backtracked configuration) each mixed
cell on level-0 can have multiple layers of quadtree structure of child cells,
and each mixed child cell can have it own pure subcell configuration. Hence
the polygon/polygon intersection have to be carried out for all child cells
contained in the quadtree hierarchical structure.

Logic of defining what cells of AMR mesh {cn+1} are pure is exactly the
same as for advection on uniform mesh.

The main difference is how to perform repair. The main problem here
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(a) Lagrangian backtracking (b) Polygon intersection-Remapping (c) Forward tracking

Figure 19: Moment advection on AMR mesh. Moment advection for child
cells originated from the central parent cell is illustrated.

comes from the fact that mesh {←c
n+1
}, has gaps and overlaps and therefore∑

c

Ṽ n+1
c =

∑
c

∑
c′

Vol
(

Ωn
←
c , c′

)
6= Vtotal . (12)

This fact make use of local repair very difficult, and we use another version
of repair which is called global repair, [42]. We know that after repair total
volume V n+1

c,pure, of pure cell representing dark material and volume, V n+1
c,mixed

of dark material in mixed cells has to sum to Vtotal:∑
V n+1
c,pure +

∑
V n+1
c,mixed = Vtotal . (13)

Before repair we know preliminary volumes of dark material, Ṽ n+1
c , in all

cells, therefore we know total discrepancy

∆Vtotal =
(∑

Ṽ n+1
c,pure +

∑
Ṽ n+1
c,mixed

)
− Vtotal . (14)

Our goal is to conserve total volume, that we want final volumes V n+1
c,pure and

V n+1
c,mixed to satisfy

0 =
(∑

V n+1
c,pure +

∑
V n+1
c,mixed

)
− Vtotal . (15)

We know that final volume, V n+1
c,pure for pure cell suppose to be equal Vol(cn+1

pure),
therefore previous condition can be rewritten as follows

0 =
(∑

Vol(cn+1
pure) +

∑
V n+1
c,mixed

)
− Vtotal , (16)
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where V n+1
c,mixed has to be defined. Subtracting (16) from (14) we get

∆Vtotal = ∆Vpure + ∆Vmixed , (17)

where
∆Vpure =

∑
Ṽ n+1
c,pure −

∑
Vol(cn+1

p ure)

is total known discrepancy of the volume in the pure cells, and

∆Vmixed =
∑

Ṽ n+1
c,mixed −

∑
V n+1
c,mixed (18)

is how much total volume in all mixed cells has to change to preserve total
volume. From equation (17) we can conclude that ∆Vmixed suppose to be
equal

∆Vmixed = ∆Vtotal −∆Vpure . (19)

Now we need to decide how to modify each volume of mixed cell for global
change to match ∆Vmixed. We use algorithm described in [42]. If ∆Vmixed < 0,
then we need add volumes to mixed cells. Each mixed cell can accepted up
to

δV +
c,mixed = Vol(cn+1

mixed)− Ṽ n+1
c,mixed ,

and total volume which all mixed cells can accept is

δV + =
∑

δV +
c,mixed .

To define final volume we increase volumes of mixed cells proportionally to
what they can accept

V n+1
c,mixed = Ṽ n+1

c,mixed +
|∆Vmixed| δV +

c,mixed

δV +
. (20)

In [42] we have proved that |∆Vmixed|/δV + ≤ 1 that is mixed cell after
repair will not be “overfilled”. It easy to check that for such definition of the
volumes of the mixed cells total volume is conserved.

If ∆Vmixed > 0, then we need to subtract volumes from mixed cells.
Volume in mixed cell can reduced by the following amount

δV −c,mixed = Ṽ n+1
c,mixed ,

and total volume which can be taken from all mixed cells is

δV − =
∑

δV −c,mixed .
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To define final volume we decrease volumes of mixed cells proportionally to
what can be taken from them

V n+1
c,mixed = Ṽ n+1

c,mixed −
∆Vmixed δV

−
c,mixed

δV −
. (21)

In [42] we have proved that ∆Vmixed/δV
− ≤ 1 that is mixed cell after repair

will not have negative volume. It is also easy to check that for such definition
of the volumes of the mixed cells total volume is conserved.

This completes global repair process advection on AMR meshes.

4.5 Time-stepping

The dynamic test cases presented in this paper use one-step method time
integration, i.e. the material configuration only at the present time step tn is
used for computing the material configuration at the next time step tn+1. In
one-step method, the AMR-MOF routine keeps two different meshes. One
represents the material configuration at the time moment tn, and the other
for reconstructing the material configuration at time moment tn+1. The
AMR mesh representing the material configuration at time tn is used as the
reference for the moment advection for reconstructing material configuration
on new AMR mesh at time tn+1.

Construction of AMR mesh at t = tn+1 starts with uniform mesh (that
is, level-0 refinement). Clearly, more sophisticated strategy for de-refinement
can be developed to save the computational time in the de-refinement step,
e.g. selective de-refinement for re-cycling the AMR structure at the previous
time.

For coupled simulation with flow solvers, this one-step approach is enough
for one-step time integrators, such as second-order accurate trapezoidal scheme.
If a flow solver employs multi-step time integrators, such as the second-order
accurate backward difference formula (BDF2), the material configurations at
the previous time steps tn−1, tn−2, · · · can be easily incorporated with minor
memory overhead.

In AMR-MOF computation, the mesh is being refined locally. Hence, the
time steps ∆t based on local cell size differs over the computational domain.
For adaptively refined meshes, two different strategies for time integration
can be used. First, successively refined time steps ∆tAMR, like the uniformly
refined meshes, can be used depending on the maximum level of refinement
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allowed. The second option is using the fixed time step ∆t0 as in the level-
0 mesh regardless of the maximum level of refinement allowed. Of course,
any combination of the above two strategy can be used. If the time scale
to resolve the flow feature also has to be refined as the mesh refines, then
the first strategy ∆tAMR can be used. If not and the moment advection
scheme is robust and accurate to handle the time step ∆t0 corresponding to
level-0 mesh, then the second strategy would be preferred. In our results, we
prefer ∆t0 to ∆tAMR but both of the time steps are tested with AMR-MOF
method and the results are compared with uniform refinement cases in the
next section.

4.6 Test problems - Numerical results

We start this section with investigation of how quality of initial interface
reconstruction affect accuracy for dynamic problems, Section 4.6.1. Next in
Section 4.6.2 we consider classical example of advection of Zalesak’s notched
disk. On this example we show how accuracy depends on allowed level of
refinement. To compare results obtained by our new method with published
result we consider reversible vortex problem [40] with short period T = 2
- Section 4.6.3. The reversible vortex problem with long period T = 8 is
considered in Section 4.6.4. Additionally, results for new examples, namely
droplet deformation case and S-shape flow case are presented in Sections
4.6.5 and 4.6.6.

4.6.1 Effect of quality of the initial interface representation

The accurate representation of material configuration at the initial stage
is extremely important for long term evolving interfaces because the entire
dynamic simulation depends on the quality of initial configuration. The
significance of initial AMR-MOF interface reconstruction is demonstrated
in Fig. 20. The initial material configuration is circle, a relatively simple
geometry which can be easily represented by any interface reconstruction
method. The given circle is deformed under the reversible vortical velocity
field, as described in Eq. (7).

The effect of initial interface quality is estimated by two different initial
material reconstructions: one with initial standard MOF and the other with
initial AMR-MOF interface reconstruction. For both cases, the same AMR-
MOF advection and interface reconstruction is performed from the first time
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step to the last. At the final reversed time moment, the two results are
compared and the error Esd is computed with respect to the exact. It is
clear that the initial AMR-MOF interface reconstruction results in much
more accurate final material configuration for long term evolution of volume-
tracking computation.

We note that the final material configuration, for the case started with
initial standard MOF, is as accurate as the initial material configuration and
even slightly more accurate. We believe that this is mostly because the AMR-
MOF moment advection scheme is very accurate and the error generated
during the advection is several orders of magnitude smaller than the error
of initial standard interface reconstruction and also partly because of the
possible error cancellation during the successive time stepping (total number
of time steps, nt = 256). The effect of the initial interface reconstruction
quality is further clarified with Fig. 21. The error Esd at the final stage is
measured with different levels of AMR-MOF computation while the initial
interface is reconstructed only by standard MOF on level-0 mesh. The Fig. 21
clearly shows that the accuracy at final stage is bounded by the accuracy of
the initial interface reconstruction. This confirms that regardless of the level
of refinement, the accuracy of the final material configuration is bounded by
the accuracy of the initial material configuration.

We like to emphasize that the initial configuration is relatively simple. If
the initial material configuration is described with more complex geometries
(e.g. sharp corners or filaments with subcell size thickness), the quality of
initial interface reconstruction must be even more crucial for the accuracy of
entire dynamic simulation. For the rest of test cases in this paper, we employ
AMR-MOF starting with initial representation of the material configuration.

4.6.2 Zalesak’s notched circle

As the first case of dynamic test, we consider the rigid body rotation of
Zalesak’s notched circle. The initial configuration of the Zalesak’s case is de-
scribed in [52], and its body fitted unstructured triangulation is displayed in
Fig. 22. The circular perimeter is defined by the circle centered at (0.5, 0.75)
with radius r = 0.15. The vertical notch is produced with the width of
w = 0.05 and the maximum thickness of the upper connection is also t = 0.05,
i.e. the maximum height of the notch is h = 0.85. The initial geometry is
triangulated so that the advection and reconstruction error can also be eas-
ily computed in the sense of symmetric difference between the true (original)
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refinement level 0 1 2 3 4
Esd Esd Esd Esd Esd

initial 3.571e-04 1.099e-04 4.578e-05 1.042e-05 1.472e-06
final 2.438e-03 7.475e-04 1.744e-04 4.561e-05 1.150e-05

Table 1: Error by symmetric difference between the original geometry (shown
in Fig. 23) and AMR-MOF computation (reconstruction and advection as
shown in Fig. 24). Level-0 mesh is 32 × 32 covering [0, 1]2 computational
domain.

and reconstructed configuration.
The actual AMR-MOF interface reconstruction and advection results are

displayed in Fig. 23. The top row shows the initial AMR-MOF interface
reconstruction with various level of refinement, and the bottom row shows
the result of AMR-MOF advection and interface reconstruction method after
one full rotation. Total number of time step nt = 128 is taken for all cases.
32 × 32 mesh is used as the level-0. The centroid error tolerance of etol =
1.e-20 is used for all cases, i.e. mixed cells with e > etol are refined up to
the maximum allowed refinement level. The error measured by the area of
symmetric difference is listed in Table. 1.

Each level of refinement reduces error approximately by a factor of four,
i.e. second order accuracy. The quadratic reduction of error Esd with respect
to the level of refinement is also displayed in Fig. 24. The slight over/under
quadratic convergence of the initial reconstruction error is attributed to the
sharp corner effect of the notch. The difference of the errors between the
initial interface reconstruction and the final material configuration after one
full rotation clearly indicates the error gained by the advection and recon-
struction. This result indicates that the AMR-MOF advection and interface
reconstruction preserves the second order accuracy of the initial AMR-MOF
interface reconstruction.

4.6.3 Reversible vortex: Short period (T = 2)

The reversible vortex case was described by Rider and Kothe [40]. The initial
configuration of the material is defined by a circle with radius r0 = 0.15
centered at (0.50, 0.75) within the square domain of [0, 1]2. The circular
region deforms under the nonlinear unsteady velocity field defined by the
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following stream function,

Ψ(x, y, t) =
1

π
sin2 (πx) sin2 (πy) cos

(
πt

T

)
, (22)

which results in the nonlinear divergence free vortical velocity field as de-
scribed in Eq. (7).
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Figure 20: Initial interface reconstruction effect. Reversible vortex case with
long period (T = 8) as described in Section 4.6.4. Left–no AMR-MOF
interface reconstruction at the initial stage, right – AMR-MOF interface
reconstruction at the initial stage. Both cases are computed with same AMR-
MOF from the first advection step to the final stage. Etol = 1.e-20 is used
as the refinement criterion.
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Figure 21: Reduction of error Esd by AMR-MOF computation while the
initial interface is reconstructed by the standard MOF on level-0 mesh. The
initial interface reconstruction error is fixed because no mesh refinement is
allowed at the initial stage, and the error at the final stage is decreasing for
first a few levels of refinement but eventually bounded by the accuracy of the
initial interface reconstruction.
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Figure 22: Initial configuration of Zalesak’s notched disk. Using the trian-
gulation of the initial configuration, the reference moment data and Esd by
area of the symmetric difference can be easily computed.
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AMR up to level-0 AMR up to level-2 AMR up to level-4

Figure 23: Rotation test of Zalesak’s notched disk. Top row shows close-up
view of the initial reconstruction before the rotation. Middle row shows the
snap shots at 0

4
, 1

4
, 2

4
, and 3

4
of a full rotation along the counter-clock-wise

direction starting from the top. Bottom row shows close-up view of the final
configuration after one full rotation. Different levels of refinement is allowed.
From the left, refinement is performed up to level-0 (32 × 32), level-2, and
level-4. Value of Etol = 1.e-20 is used.
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Figure 24: Error of Zalesak’s notched disk. The error in computed by the
area of symmetric difference between the original material configuration as
shown in Fig. 22 and the material configuration by AMR-MOF interface
reconstruction and moment advection as shown in Fig. 23. The order of
accuracy is same for both before (initial) and after (final) the rotation.
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max. refinement level initial (time = 0.0) final (time = 2.0)
Esd Esd / ∆V

0 1.736e-04 5.908e-04 / 1.282e-13
1 4.061e-05 1.161e-04 / 8.154e-14
2 1.279e-05 2.329e-05 / 1.811e-14

Table 2: Reversible vortex with short period (T = 2): error computed by
the area of symmetric difference between AMR-MOF computation and refer-
ence solution obtained by front tacking and mesh generation. Total volume
gain/loss is also indicated by ∆V = Vfinal − V initial.

The AMR-MOF advection and interface reconstruction results are dis-
played in Fig. 25. Top row shows initial interface reconstruction, the middle
row shows the material configuration at maximum stretch (time = 1.0), and
the bottom row shows at the final reversed material configuration (time =
2.0). Total number of time steps nt = 64 (i.e. ∆t = 1

32
) is used for all cases.

322 mesh is used as the level-0, and the adaptive mesh refinement is allowed
up to level-2, i.e. maximum effective mesh resolution is 128× 128. The error
Esd computed by the area of symmetric difference is summarized in Table 2.
The total volume error ∆V with respect to the initial stage is also listed at
the final stage.

A different measure of the error Evf , the error based on cell-wise vol-
ume fraction difference, is computed as the following way for the comparison
purpose as summarized in Table 3,

Evf =
∑
c∈M
Vc|f refc − factc | (23)

where M is the set of all cells and Vc is the volume of cell-c (area in 2D),
and f refc is the reference (initial) volume fraction and factc is the actual (final)
volume fraction at the reversed stage. We note that the above error definition
is different from our previous error Esd based on the symmetric difference
as expressed in Eq. (6) in two reasons. First, Evf computed by Eq. (23)
measures a relative error with respect to the initial material configuration not
to the exact material configuration. This error is a measure of error occurred
during the advection process between the initial and the final reversed stage.
Second, the error Evf is blind of subcell interface configuration in the cell.
The intra-cell interface configuration cannot be captured by this error. For
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Figure 25: Single vortex flow (period, T = 2). Top row shows the material
configuration at the initial stage (time = 0.0), middle row shows the material
configuration at maximum stretch (time = 1.0), and the bottom row shows
at the reversed configuration (time = 2.0). 32 × 32 mesh is used as the
level-0, and result with different maximum level of refinement is displayed.
Etol = 1.e-20 is used as the refinement criterion
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Figure 26: Mesh convergence study: MOF vs. AMR-MOF. For adaptive
meshes, mesh resolution is taken by the maximum level of refinement. The
error Evf is computed with Eq. (23). ∆tref refers to the time step is also
refined as the mesh refines. ∆tfix refers to the fixed time of level-0 mesh is
used regardless of mesh refinement.

the above reasons, we prefer the error Esd by symmetric difference to Evf by
volume fraction. For comparison purpose, however, we also provide the error
Evf .

For comparison with previous works [40, 23, 41], the reversible vortex
case is presented first with a relatively short period of time, T = 2. The
mesh convergence study is performed for AMR-MOF as well as uniform mesh
MOF. For 322 level-0 mesh, time step of ∆t = 1

32
is used. For uniformly

refined meshes, time step is also successively refined by the factor of two, i.e.
uniform 642 mesh case uses time step ∆t = 1

64
.

The convergence of the error Evf , obtained from the present MOF and
AMR-MOF computation, are displayed in Fig. 26. For AMR-MOF, the
error Evf is computed on level-0 mesh by summation of the signed error,
because of the non-uniform distribution of mesh resolution, and we note that
this may result in minor error cancellation effect for AMR-MOF cases. Our
present results (both the error and CPU time) are summarized in Table 3
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Resolution (a) (b) (c) (d) (e) (f)
Evf Evf Evf Evf Evf Evf

(CPU time) (CPU time) (CPU time)
322 2.36e-3 2.37e-3 1.09e-3 5.22e-4 5.22e-4 5.22e-4

(level-0) (7.22) (7.22) (7.22)
642 5.85e-4 5.65e-4 2.80e-4 1.10e-4 1.02e-4 8.27e-5

(level-1) (34.62) (22.52) (13.96)
1282 1.31e-4 1.32e-4 5.72e-5 2.20e-5 1.61e-5 1.25e-5

(level-2) (183.72) (107.36) (27.10)

Table 3: Mesh convergence study and comparison with other published re-
sults. First three columns (a–c) are from others, and last three columns
(d–f) are from the present results (MOF and AMR-MOF). The error Evf
computed by Eq. (23) is presented at the first row for each mesh resolution,
and the CPU time in [sec] is presented within the parenthesis at the second
row of each corresponding mesh resolution. For AMR-MOF, mesh resolution
is taken by the finest level of mesh. The column (a) is taken from Rider and
Kothe [40], the column (b) is from Harvie and Fletcher [23], the column (c)
is from Scardovelli and Zaleski [41]. The column (d) is from standard MOF
using uniform meshes, and column (e–f) is form AMR-MOF. The column
(e) is AMR-MOF with the refined time step, i.e. time step is also refined
for each mesh refinement. Finally, column (f) is AMR-MOF with fixed time
step, i.e. the time step computed on level-0 mesh is used for all levels of
AMR-MOF computation.
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level of refinement # of cells % with respect to uniform mesh
0 1024 100 %
1 1237 30.2 %
2 1672 10.2 %

Table 4: Total number of cells required for AMR-MOF and its comparison
to the uniform mesh case. For AMR-MOF, maximum number of cells are
taken.

and also compared with other results published in literature. This table
shows that even the results from the standard MOF using uniform meshes
show much less error compared to other published results. For AMR-MOF,
the error shows even less with successively refined time steps. We believe
this may attribute to the error cancellation effect on level-0 mesh where the
error Evf is computed for AMR-MOF cases. For AMR-MOF with fixed
time steps, the error is even less. We speculate that this is due to less
frequent interface reconstruction (hence, less error from inexact interface
representation) compared to the refined time step cases, which needs more
interface reconstruction.

We note that the larger time step can also be used for uniform mesh
cases with extra computational overhead. This will require extended stencil
for the advection scheme. The advection with larger time step will also incur
additional computational cost for extended search for polygon intersection
algorithms.

The efficiency of the AMR-MOF is demonstrated with the comparison
of computational cost, CPU time as summarized in Table 3 and also total
number of cells involved as listed in Table 4.

Table 4 shows the total number of cells produced in the AMR-MOF com-
putation. Since the number of cells are changing as the evolution of the
material interface (the number of cells increases as vortex stretches, and
vice versa), the maximum number of cells produced around the maximum
stretch moment are counted for AMR-MOF cases. The total number of cells
increases quadratically for uniform mesh cases, but only sub-linearly for the
AMR-MOF case. This is because the mesh refinement is carried only on the
mixed cells with high centroid errors. For example, in the level-2 mesh case,
the maximum number of cells for the AMR-MOF is only about 10% of the
uniform mesh case. This is the clear indication that AMR-MOF uses much
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Figure 27: Computational cost: AMR-MOF vs. standard MOF. ∆tref refers
to the time step is also refined as the mesh refines. ∆tfix refers to the fixed
time step regardless of mesh refinement.

less memory spaces.
Next, the actual CPU time is compared with uniform mesh MOF and

AMR-MOF cases. The machine used for this benchmark test is an Opteron
2 GHz with 24 GB memory running 64 bit Fedora Core 3 as its operating
system. For MOF with uniform mesh computations, the CPU time quadru-
ples for every refinement (at each uniform refinement, roughly the number
of mixed cell doubles and also the total number of time stepping doubles
with halved ∆t). For AMR-MOF with refined time steps, the CPU time also
quadruples however much less CPU time is required compared to the uniform
mesh refinement case. This is because AMR-MOF use much less number of
cells compared to the uniform mesh case, as listed in Table 4. Finally the
AMR-MOF with fixed time steps (not refined time step) shows only linear in-
creases in CPU time for every increment of refinement level, and the amount
of CPU time is less than 15% of it for 1282 uniform mesh MOF. This is clear
that AMR-MOF significantly improves both accuracy and also decreases the
computational cost for volume-tacking evolving interface computation.
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Resolution Rider/Kothe Harvie/Fletcher AMR-MOF
Evf Evf Evf

322 (level-0) 4.78e-2 3.72e-2 2.33e-2
642 (level-1) 6.96e-3 6.79e-3 3.15e-3
1282 (level-2) 1.44e-3 1.18e-3 5.04e-4

Table 5: Comparison with results published in literature [40, 23] for long
period (T = 8) vortex case. For the present AMR-MOF, mesh resolution is
taken by the finest level of the mesh. The error Evf is computed with Eq. (23).
The first column is taken from Rider and Kothe [40], the second column is
from Harvie and Fletcher [23]. For AMR-MOF, time step computed on level-
0 mesh, ∆t = 1

32
, is used for all cases.

4.6.4 Reversible vortex, long period (T = 8)

The reversible vortex problem is presented with longer period, T = 8. Time
steps of ∆t = 1

32
(total number of time stepping, nt = 256) is used for all

AMR-MOF computation. First, for comparison purpose with uniform mesh
results, published in literature [40, 23], the maximum level of refinement
is allowed up to level-2 (to be consistent with the mesh resolution of oth-
ers [40, 23]) starting with 322 level-0 mesh. The error are computed by using
Evf as defined in Eq. (23). The results are summarized in Table 5. Due
to the non-uniform cell distribution of adaptively refined mesh, the Evf is
computed on level-0 mesh for AMR-MOF cases. This could result in mi-
nor error cancellation of adaptively refined mesh. However, we note that the
AMR-MOF with maximum level-0 refinement (essentially a fixed mesh MOF
on 322 mesh) already shows most accurate result. Like for the short period
(T = 2) vortex case, AMR-MOF gives most accurate result in long period
(T = 8) vortex example.

More aggressive refinement is allowed for this long period vortex case.
The result of AMR-MOF computation, with maximum refinement up to
level-4, is displayed in Fig. 28 at various time steps. Each snap shots taken
symmetrically with respect to the maximum stretch for showing the reversing
vortex.

The close up views are also shown in Fig. 29 at three critical time steps,
namely initial (time = 0), at maximum stretch (time = 4), and final time
steps (time = 8). The close up views at the initial and final configuration is
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time = 0.0 time = 8.0
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Figure 28: AMR-MOF computation of reversible vortex problem, T = 8.
Level-0 mesh is 322 covering the domain of [0, 1]2. Adaptive refinement is
performed up to level-4 (maximum effective mesh resolution is 5122).
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focused around upper region of the circle, the material region corresponds to
the tail of the vortex at the maximum stretch.

The difference between the initial and the final configuration cannot be
detected visually even in close up views as displayed in Fig. 29. Hence, we
computed the error by using a series of reference solution. The reference
solution, as displayed in Fig. 30, is prepared by using the front-tracking
technique and mesh generation in leu of the exact solution. First, the in-
terface is tracked by 2,000 equi-distributed points on the circular interface
of the initial configuration. These points advected with 4th-order accurate
Runge-Kutta (RK4) method with time step of ∆t = 1

3200
, which is 1

100
of

the time step used for AMR-MOF advection. At the intermediate time steps
corresponding to those of AMR-MOF computation, unstructured triangular
meshes are generated and used as the reference solution for those particular
time steps. Total 17 meshes are generated for being used as the reference
solution at the time index of it = 0, 8, 16, · · · , 128 for covering the first half of
the period (note the total number of time stepping is nt = 256). The same
meshes are used in the reversing order for the second half of the period.

By using the set of reference material configuration, the error Esd is com-
puted at the intermediate time steps of AMR-MOF computation. The evo-
lution of error is displayed in Fig. 31 for full period computation. The errors
from AMR-MOF computation with different refinement levels are also listed
in Table 6 at three representative time steps: initial (time = 0.0), maximum
stretch (time = 4.0), and final (time = 8.0) time steps. It is interesting to
note that the error is increasing until the maximum stretch (in the first half
of the period) and then decreases in the reversing phases.

The reduction of error Esd with respect to the level of refinement is dis-
played in Fig. 32. This shows that errors at three representative time steps
are converging in second order accuracy. This also suggests that our refer-
ence material configuration, as displayed in Fig. 30 is adequate to be used as
the reference.

4.6.5 Droplet flow

In addition to the more classical test cases, we introduce two new test cases.
The first case is a divergence free nonlinear velocity field, as displayed in
Fig. 33, deforming a circular region to a droplet shape with two sharp edges.
The initial configuration is a circular region of radius r0 = 0.125 center at
the center of [0, 1]2 domain. The velocity field is defined as follows:
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Figure 29: Single vortex flow, T = 8. Level-0 mesh is 322 and maximum 4
level of AMR is allowed (maximum effective mesh resolution is 5122). Etol =
1.e-20 is used as the refinement criterion
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(a)time = 0.0 (b)time = 1.0 (c)time = 4.0

Figure 30: Reference material configuration for the error (Esd), the area of
the symmetric difference, computation. The reference solution is prepared by
front tracking and mesh generation at each time step. Three representative
time steps are chosen for display. Initially 2,000 points are equally distributed
on the circular interface of the initial material configuration. Each points are
tacked with RK4 scheme with time step of ∆ = 1/3200, i.e. 100 time steps
are taken for each time step of AMR-MOF.

max. refinement level time = 0.0 time = 4.0 time = 8.0
Esd Esd Esd / ∆V

0 1.736e-04 3.402e-02 2.342e-02 / 1.423e-13
1 4.061e-05 5.826e-03 3.313e-03 / -1.761e-14
2 1.279e-05 9.722e-04 5.781e-04 / 6.591e-15
3 2.906e-06 1.311e-04 1.224e-04 / -6.591e-15
4 7.129e-07 3.401e-05 2.010e-05 / -5.551e-17

Table 6: Errors computed by the area of symmetric difference between ref-
erence solution and AMR-MOF computation. From the left, the errors at
initial (time = 0.0), maximum stretch (time = 4.0), and finally reversed
(time = 8.0) stages are listed. Total volume gain/loss is also indicated by
∆V = Vfinal−V initial. 322 mesh is used as level-0 and AMR is performed up
to level-4.
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Figure 31: Error Esd computed by the area of symmetric difference between
reference solution (as shown in Fig. 30) and AMR-MOF computation with
refinement up to level-4 (as shown in Fig. 28).

v =

[
1
8
(8x− 4)

1
8
{−(8y − 4)− 4− (1− (8x− 4)2 − (8x− 4)4)}

]
(24)

The final time is T = 0.75, and total number of time steps are nt = 75, i.e.
∆t = 0.01. Since the initially circular material region develops very sharp
edges, it is a very appropriate test case for demonstrating the sharp corner
as well as filaments resolving capability of AMR-MOF method.

The actual computation is displayed in Fig. 34 for different time mo-
ments. For better visualization of final material configuration, the close up
view of the primary material region is compared with the reference material
configuration as shown in Fig. 35.

The reference material configuration is prepared by front tracking of in-
terface points and mesh generation. Since the deformation rate is severe in
this example, 10,000 points are equidistributed along the initial circular in-
terface. Each points are tracked by RK4 scheme with time step ∆t = 0.75

7500

which is 1
100

of the time step used for AMR-MOF advection. At the final
time step, the tracked points are selectively removed so that the minimum
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Figure 32: Reduction of error Esd, as summarized in Table 6, with respect
to the maximum level of refinement allowed. The 322 mesh is used as level-0
and refinement is allowed up to level-4.

Figure 33: Analytical velocity field for droplet deformation problem as de-
scribed by Eq. (24). The velocity vectors are not scaled. 322 level-0 mesh is
colored by the velocity magnitude.
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time=0.00 time=0.25 time=0.50 time=0.75

Figure 34: Droplet flow. Level-0 mesh is 322 covering the domain of [0, 1]2.
Maximum 5 levels of refinement is allowed (maximum effective mesh resolu-
tion is 10242). Etol = 1.e-20 is used as the refinement criterion

Figure 35: Final configuration (time = 0.75) of droplet flow case. Left –
AMR-MOF advection and interface reconstruction. Level-0 mesh is 322, and
maximum effective mesh resolution is 10242 (level-5). Right – Mesh generated
in the domain obtained by front tracking of boundary points.

59



max. refinement level initial (time = 0.00) final (time = 0.75)
Esd Esd / ∆V

0 1.506e-04 1.348e-02 / -1.513e-13
1 4.718e-05 3.352e-03 / -6.559e-14
2 1.010e-05 7.202e-04 / -3.767e-14
3 3.008e-06 1.664e-04 / -2.574e-15
4 7.267e-07 2.660e-05 / 6.931e-15
5 2.211e-07 5.549e-06 / -9.756e-15

Table 7: Droplet case: error computed by the area of symmetric difference
between AMR-MOF computation and reference solution obtained by front
tacking and mesh generation. Total volume gain/loss is also indicated by
∆V = Vfinal − V initial.

distance between the neighboring points are ∆smin = πr0
1000

. This results in
total 6, 036 point on the boundary of final material configuration and also
makes the size of final mesh much smaller.

By using the reference material configuration, the error Esd is computed
at the start and end of the AMR-MOF computation with different refinement
levels and summarized in Table 7. The reduction of the error with successive
refinement is also displayed in Fig. 36.

4.6.6 S-shape flow

The last example problem is character S-shape flow. It is also divergence
free nonlinear velocity field, as shown in Fig. 37, deforming a circular region
to a character S shape. The initial configuration is a circular region of radius
r0 = 0.25 center at the center of [0, 1]2 domain. The velocity field is defined
as follows:

v =

[
1
4
{(4x− 2) + (4y − 2)3}
−1
4
{(4y − 2) + (4x− 2)3}

]
(25)

The final time is T = 3.0, and total number of time steps are nt = 120,
i.e. ∆t = 0.025. Since the initially circular material region develops thin
filament region as well as sharp edges, it is also a very appropriate test case
for demonstrating the capabilities of AMR-MOF method.
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Figure 36: Reduction of error Esd, as summarized in Table 7, with respect
to the maximum level of refinement allowed. The 322 mesh is used as level-0
and refinement is allowed up to level-5.

Figure 37: Analytical velocity field for shape-S case as described by
Eq. (25).The velocity vectors are not scaled. 322 level-0 mesh is colored
by the velocity magnitude.
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time=0.0 time=1.0 time=2.0 time=3.0

Figure 38: Superman flow. Level-0 mesh is 322 covering the domain of
[0, 1]2. Maximum 4 levels of refinement is allowed (maximum effective mesh
resolution is 5122). Etol = 1.e-20 is used as the refinement criterion

The actual AMR-MOF computation is displayed in Fig. 38 for differ-
ent time moments. The refinement is performed up to level-4. For better
visualization of final material configuration, the close up view of the pri-
mary material region is compared with the reference material configuration
as shown in Fig. 39.

The reference material configuration is prepared in the same way as the
previous droplet case. Since the deformation rate is also very severe example
(especially in the central filament region), 10,000 points are equidistributed
along the initial circular interface. Each points are tracked by RK4 scheme
with time step ∆t = 3

12000
which is 1

100
of the time step used for AMR-MOF

advection. At the final time step, the points are selectively removed so that
the minimum distance between the boundary points are ∆smin = πr0

1000
. This

results in total 5, 470 point on the boundary of final material configuration
and also makes the size of final mesh much manageable.

By using the reference material configuration, the error Esd is computed
at the initial and final configuration of the AMR-MOF computation with
different levels of refinement, and it summarized in Table 8. The reduction
of the error with successive refinement is displayed in Fig. 40, and confirms
the second order accuracy both at the initial and final configurations.

5 Conclusion

A new adaptive mesh refinement strategy based on the moment-of-fluid
method was presented. New method uses information about material volume
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Figure 39: Final configuration (time = 3.0) of S-shape flow case. Left –
AMR-MOF advection and interface reconstruction. Level-0 mesh is 322, and
maximum effective mesh resolution is 5122 (level-4). Right – Mesh generated
in the domain obtained by front tracking of boundary points.

max. refinement level initial (time = 0.0) final (time = 3.0)
Esd Esd / ∆V

0 1.887e-04 2.878e-02 / 1.848e-13
1 4.043e-05 2.503e-03 / 5.842e-14
2 1.203e-05 5.403e-04 / 6.783e-14
3 2.907e-06 9.642e-05 / -3.608e-15
4 8.583e-07 2.683e-05 / 1.074e-14

Table 8: S-shape flow case: Error Esd computed by the area of symmetric
difference between reference solution and AMR-MOF computation is listed.
Total volume gain/loss is also indicated by ∆V = Vfinal − V initial.
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Figure 40: Reduction of error Esd, as summarized in Table 8, with respect
to the maximum level of refinement allowed. The 322 mesh is used as level-0
and refinement is allowed up to level-4.

fraction and material centroid position for interface reconstruction. Advec-
tion of these quantities is based on cell-based semi-Lagrangian algorithm. We
have presented new advection algorithm for centroids. AMR-MOF method
uses new refinement criterion based on error in centroid position. Numerical
examples demonstrate that error in the centroid position can correctly detect
not only regions with high curvature of the interface but also regions with
subcell structures like filaments.

We have demonstrated that new AMR-MOF method significantly im-
proves the accuracy of volume-tacking evolving interface computations in
the comparisons with other published results and standard MOF method,
which already gives more accurate result than any published results. The
advantage of AMR-MOF method is also strengthened by its superior effi-
ciency (less computational cost) compared to the standard MOF method
using uniform meshes.

In [5] we have coupled standard MOF without AMR with with incom-
pressible Navier-Stokes solver for two materials. In the future we planning
to couple AMR-MOF with incompressible Navier-Stokes AMR solver for two
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materials. The extensions towards multi-material (i.e. the number of ma-
terial nmat ≥ 3) cases and also coupled simulation of incompressible multi-
material flow is expected in our forthcoming research.

References

[1] M. Aftosmis, M. Berger, J. Melton, and S. Murman. Cart3D.
http://people.nas.nasa.gov/∼aftosmis/cart3d/.

[2] H. T. Ahn and M. Shashkov. Geometric algorithms for 3d interface
reconstruction. In M. L. Brewer and D. Marcum, editors, Proceedings
of the 16th International Meshing Roundtable, pages 405–422. Springer,
2007.

[3] H. T. Ahn and M. Shashkov. Multi-material interface reconstruction on
generalized polyhedral meshes. Technical Report LA-UR-07-0656, Los
Alamos National Laboratory, 2007.

[4] H. T. Ahn and M. Shashkov. Multi-material interface reconstruction
on generalized polyhedral meshes. Journal of Computational Physics,
226:2096–2132, 2007.

[5] H.T Ahn, M. Shashkov, and M.A. Christon. The moment-of-fluid
method in action. Communications in Numerical Methods in Engineer-
ing, to appear. Report of Los Alamos National Laboratory - LA-UR-07-
6854.

[6] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A
conservative adaptive projection method for the variable density incom-
pressible Navier-Stokes equations,. Journal of Computational Physics,
142:1–46, 1998.

[7] R.W. Anderson, N.S. Elliott, and R.B. Pember. An arbitrary
Lagrangian-Eulerian method with adaptive mesh refinement for the solu-
tion of the Euler equations. Journal of Computational Physics, 199:598–
617, 2004.

[8] N. Ashgriz, T. Barbat, and G. Wang. A computational Lagrangian-
Eulerian advection remap fro free surface flow. Int. J. Numer. Meth.
Fluids, 44:1–32, 2003.

65



[9] M.J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64–84, 1989.

[10] M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computational Physics, 53:484–
512, 1984.

[11] G. F. Carey. A perspective on adaptive modeling and meshing (AM &
M). Computer Methods in Applied Mechanics and Engineering, 195:214–
235, 2006.

[12] P. Colella, D. T. Graves, B. J. Keen, and D. Modiano. A cartesian grid
embedded boundary method for hyperbolic conservation laws. Journal
of Computational Physics, 211:347–366, 2006.

[13] M. Dai and D.P. Schmidt. Adaptive tetrahedral meshing in free-surface
flow. Journal of Computational Physics, 208:228–252, 2005.

[14] A.S. Dawes. Prallel multi-dimensional and multi-material Eulerian stag-
gered mesh schemes using localised patched based adaptive mesh re-
finement (AMR) for strong shock wave phenomena. In Tomasz Plewa,
Timur Linde, and V. Gregory Weirs, editors, Adaptive Mesh Refinement
- Theory and Applications, volume 41 of Lecture Notes in Computational
Science and Engineering, pages 295–302. Springer, 2003. Proceedings of
the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept.
3-5, 2003.

[15] J.K. Dukowicz and J.R. Baumgardner. Incremental remapping as trans-
port/advection algorithm. Journal of Computational Physics, 160:318–
335, 2000.

[16] V. Dyadechko and M. Shashkov. Reconstruction of multi-material
interfaces from moment data. Journal of Computational Physics, -
doi:10.1016/j.jcp.2007.12.029,.

[17] V. Dyadechko and M. Shashkov. Moment-of-fluid interface reconstruc-
tion. Technical Report LA-UR-05-7571, Los Alamos National Labora-
tory, 2005.

66



[18] V. Dyadechko and M. Shashkov. Moment-of-fluid interface reconstruc-
tion. Technical Report LA-UR-07-1537, Los Alamos National Labora-
tory, 2005.

[19] V. Dyadechko and M. Shashkov. Multi-material interface reconstruction
from the moment data. Technical Report LA-UR-06-5846, Los Alamos
National Laboratory, 2006.

[20] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite el-
ement mesh generator with built-in pre- and post-processing facilities.
http://www.geuz.org/gmsh/.

[21] I. Ginzburg and G. Wittum. Two-phase flows on interface refined grids
modeled with vof, staggered finite volumes, and spline interpolants.
Journal of Computational Physics, 166:302–335, 2001.

[22] D. Greaves. A quadtree adaptive method for simulating fluid flows with
moving interfaces. Journal of Computational Physics, 194:35–56, 2004.

[23] D. J. E. Harvie and D. F. Fletcher. A new volume of fluid advection algo-
rithm: The stream scheme. Journal of Computational Physics, 162:1–32,
2000.

[24] H. Jourdren. HERA: A Hydrodynamic AMR platform for multi-physics
simulations. In Tomasz Plewa, Timur Linde, and V. Gregory Weirs, ed-
itors, Adaptive Mesh Refinement - Theory and Applications, volume 41
of Lecture Notes in Computational Science and Engineering, pages 284–
294. Springer, 2003. Proceedings of the Chicago Workshop on Adaptive
Mesh Refinement Methods, Sept. 3-5, 2003.

[25] A. Khawaja, T. Minyard, and Y. Kallinderis. Adaptive hybrid grid
methods. Computer Methods in Applied Mechanics and Engineering,
189:1231–1245, 2000.

[26] A.E. Kongies, R.W. Anderson, P. Wang, B.T.N. Gunney, R. Becker,
D.C. Eder, B.J. MacGowan, and M.B. Schneider. Modeling NIF exper-
imental designs with adaptive mesh refinement and Lagrangian hydro-
dynamics. Intertial Fusion Sciences and Applications, 2005, J. Phys.
IV France 133, 2006.

67



[27] M. Kucharick, M. Shashkov, and B. Wendroff. An efficient linearity-
and-bound-preserving remapping methods. Journal of Computational
Physics, 188:462–471, 2003.

[28] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic finite difference meth-
ods for diffusion equations on non-orthogonal non-conformal meshes.
Journal of Computational Physics, 199:589–597, 2004.

[29] F. Losasso, R. Fedkiw, and S. Osher. Spatially adaptive techniques
for level set methods and incompressible flow. Computers and Fluids,
35:995–1010, 2006.

[30] R. Loubere, M. Staley, and B. Wendroff. The repair paradigm: New
algorithms and applications to compressible flow. Journal of Computa-
tional Physics, 211:385–404, 2006.

[31] M. Malik, E. S.-C. Fan, and M. Bussmann. Adaptive vof with curvature-
based refinement. International Journal for Numerical Methods in Flu-
ids, 55:693–712, 2007.

[32] B. Mirtich. Fast and accurate computation of polyhedral mass proper-
ties. Journal of Graphics Tools, 1:31–50, 1996.

[33] J.M. Morrell, P.K. Sweby, and A. Barlow. A cell by cell anisotropic
mesh ale method. Int. J. Numer. Meth. Fluids, DOI:10:1002/fld.1599,
2007.

[34] R.D. Nair and B. Machenhauer. The mass-conservative cell-integrated
semi-Lagrangian advection scheme on the sphere. Monthly Weather Re-
view, 130:649–667, 2002.

[35] R. B. Pember, J. B. Bell, P. Colella, W. Y. Curtchfield, and M. L.
Welcome. An adaptive cartesian grid method for unsteady compressible
flow in irregular regions. Journal of Computational Physics, 120:278–
304, 1995.

[36] Tomasz Plewa, Timur Linde, and V. Gregory Weirs, editors. Adaptive
Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes
in Computational Science and Engineering. Springer, 2003. Proceedings
of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept.
3-5, 2003.

68



[37] S. Popinet. Gerris Flow Solver. http://gfs.sourceforge.net/wiki/index.php/Main Page/.

[38] S. Popinet. Gerris: a tree-based adaptive solver for the incompress-
ible euler equations in complex geometries. Journal of Computational
Physics, 190:572–600, 2003.

[39] S. Popinet. An accurate adaptive solver for surface-tension-driven inter-
facial flows. Technical Report Submitted to Journal of Computational
Physics, Prerint of National Institute of Water and Atmospheric Re-
search, New Zeland, 2008.

[40] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal
of Computational Physics, 141:112–152, 1998.

[41] R. Scardovelli and S. Zaleski. Interface reconstruction with least-square
fit and split eulerian-lagrangian advection. International Journal for
Numerical Methods in Fluids, 41:251–274, 2003.

[42] M. Shashkov and B. Wendroff. The repair paradigm and application
to conservation laws. Journal of Computational Physics, 198:265–277,
2004.

[43] P.K. Smolarkiewicz, , and J.A. Pudykewicz. A class of semi-Lagrangian
approximations for fluids. Journal of the Atmospheric Sciences, 49:2082–
2096, 1992.

[44] A. Staniforth and J. Cote. Semi-Lagrangian integration schemes for
atmospheric models- a review. Monthly Weather Review, 119:2206–2223,
1991.

[45] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and
M. L. Welcome. An adaptive level set approach for incompressible two-
phase flows. Journal of Computational Physics, 148:81–124, 1999.

[46] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and
M. L. Welcome. An adaptive level set approach for incompressible two-
phase flows. Journal of Computational Physics, 148:81–124, 1999.

[47] A. Theodorakakos and G. Bergeles. Simulation of sharp gas-liquid inter-
face using VOF method and adaptive grid local refinement around the
interface. Int. J. Numer. Meth. Fluids, 45:421–439, 2004.

69



[48] S. Vincent and J.-P. Caltagirone. A one-cell local multigrid method for
solving unsteady incompressible multiphase flows. Journal of Computa-
tional Physics, 163:172–215, 2000.

[49] J.P. Wang, A.G.L. Borthwick, and R.E. Taylor. Finite-volume-type vof
method on dynamically adaptive quadtree grids. International Journal
for Numerical Methods in Fluids, 45:485–508, 2004.

[50] Z. Wang and Z.J. Wang. Multi-phase flow computation with semi-
Lagrangian level set method on adaptive Cartesina grids. Technical
Report AIAA-205-1390, AIAA, 2005.

[51] Z.U.A. Warsi. Fluid dynamics. Theoretical and Computational Ap-
proaches. CRC Press, 1993.

[52] S. T. Zalesak. Fully multidimensional flux-corrected transport algo-
rithms for fluids. Journal of Computational Physics, 31:335–362, 1979.

[53] Q. Zhang and P.L.-F. Liu. A new interface tracking method: the
polygonal area mapping method. Journal of Computational Physics,
doi:10.1016/j.jcp.2007.12.014, 2007.

70


