
4.3

Geometric Algorithms for 3D Interface
Reconstruction

Hyung Taek Ahn1 and Mikhail Shashkov2

1 Los Alamos National Laboratory htahn@lanl.gov
2 Los Alamos National Laboratory shashkov@lanl.gov

Summary. We describe geometrical algorithms for interface reconstructions for
3D generalized polyhedral meshes. Three representative piece-wise linear interface
calculation methods are considered, namely gradient based method, least squares
volume-of-fluid interface reconstruction algorithm, and moment-of-fluid method. Ge-
ometric algorithms for the 3D interface reconstructions are described. Algorithm for
the intersection of a convex polyhedron with half-space is presented with degen-
erate cases. Fast iterative methods for volume matching interface computation are
introduced. The numerical optimization method for interface normal computation
is presented, and its super-linearly convergence is demonstrated. Finally, actual re-
construction of complex geometry is demonstrated.

Key words: Interface reconstruction, polyhedral mesh, volume of fluid, mo-
ment of fluid

1 Introduction and Background

There are several well established methods for dealing with interfaces in fluid
flow: the volume of fluid (VoF) method, [8, 16, 2]; the front tracking, [22, 6,
21]; and level set method,[20, 19, 13]. For modeling three-dimensional, high-
speed compressible, multi-material flows, on general meshes with the interface
topology changing in time, and when exact conservation is critical, VoF seems
to be method of choice, [2]. The typical VoF method consists of two steps:
interface reconstruction (using volume fractions) and updating the volume
fractions in time. Excellent reviews of VoF methods and, in particular, general
interface reconstruction methods can be found in the following papers [16,
2, 17]. In this paper we are only interested in the geometric algorithms for
interface reconstruction.

The most common interface representation used by interface reconstruc-
tion methods consists of a single linear interface (a line in 2D and a plane in

406 Hyung Taek Ahn and Mikhail Shashkov

3D) per cell composed of multi-materials. This class of interface representa-
tion is commonly called Piecewise-Linear Interface Calculation (PLIC). The
location of the linear interface, for a given volume at a cell, is uniquely defined
by the interface normal. There are a number of ways to define the direction
of the normal. We will describe three representative methods in Section 3.

Most of the papers related to interface reconstruction deal with the two
dimensional case. There are only several papers which describe interface re-
construction in 3D; almost all of them deal with a cartesian mesh and the case
of two materials, e.g., [11], and references therein. Descriptions of 3D interface
reconstruction methods on distorted and unstructured meshes are very rare
and are usually in unpublished reports related to ALE methods, e.g., [10, 4].

The goal of this paper is to explain geometric algorithms for 3D interface
reconstructions on generalized polyhedral meshes. We consider three repre-
sentative PLIC methods: (i) gradient based method (GRAD), (ii) the least
squares volume-of-fluid interface reconstruction algorithm (LVIRA) [15, 14],
and (iii) most recent moment of fluid (MoF) method [3, 1].

The outline of the rest of this paper is as follows. In Section 2, we describe
the concept of generalized polyhedral mesh. In Section 3, we describe the three
representative interface reconstruction methods. In Section 4, we introduce
the intersection algorithm of convex polyhedron with half-space with degen-
erate cases. In section 5, we introduce two iterative volume matching interface
computation algorithms. In section 6, we describe optimization method for in-
terface normal computation. In section 7, we give a demonstration of interface
reconstruction. Finally, we conclude in Section 8.

2 Multi-material interface representation in generalized
polyhedral meshes

In this paper, we are interested in a mesh that consists of generalized polyhe-
dra - generalized polyhedral mesh - (GPM). A generalized polyhedron can be
thought as a 3D solid obtained from a polyhedron by perturbing positions of
its vertices, which makes its faces non-planar as well as the polyhedron itself
non-convex.

The geometry of a face whose vertices are not all in a single plane, how-
ever, is not unique. Therefore, we adopt a faceted representation to obtain a
consistent definition of its geometry (see [5] for more detail). As illustrated
in Fig. 1, first we define the “face center” by averaging vertex coordinates
associated with the face. Next, the faces of the generalized polyhedral cell
are triangulated by using the face center and two vertices of each edge. In
the second step, the triangulated generalized polyhedral cell is decomposed
into sub-tetrahedra by using triangulated surfaces and one additional vertex
inside the cell, called the “cell center”, defined by averaging coordinates of all
vertices of original polyhedral cell.

4.3 Geometric Algorithms for 3D Interface Reconstruction 407

Fig. 1. Generalized polyhedral representation of a hexahedron with non-planar
faces. The left figure shows the initial hexahedral cell with a non-planar top face
(the wire frame of a cube is overlapped to emphasize the non-planar top face), the
middle figure shows the surface triangulation of the hexahedron, and the right figure
shows a sub-cell decomposition of the hexahedron.

Hence, an m-vertexed polygonal face is divided into m-triangles, and an
n-faced polyhedron is further decomposed into n×m sub-tetrahedra provided
that each face is composed of m vertices. For example, the generalized poly-
hedral representation of a hexahedral cell results in 6 × 4 sub-tetrahedra as
displayed in Fig. 1.

This generalization of polyhedral cells has two advantages. First, the pla-
nar face restriction of a polyhedral cell is relaxed so that it can have vertices
not always in a plane. Second, it allows us to deal with non-convex cells, as
long as the cell can be decomposed into valid sub-cells (that is, the cell center
can “see” all the vertices). These features are advantageous for dealing with
meshes in ALE methods.

Three different types of generalized polyhedral mixed cells are represented
in Fig. 2. Each cell includes three materials (colored red, green, and blue).
Each interface is reconstructed by the intersection of the polyhedral cell with
half-spaces. The sub-cells, initially tetrahedra, evolve to convex polyhedra as
they intersect with their corresponding half-spaces. A wire frame view of these
sub-cells, shown in the bottom row of Fig. 2, reveals these sub-cell structures.

3 Interface reconstruction methods

Three representative piece-wise linear interface calculation (PLIC) methods
are discussed: the gradient based method, the least squares volume-of-fluid
interface reconstruction algorithm, and the moment-of-fluid method.

3.1 Review of representative PLIC methods

In PLIC methods, each mixed cell interface between two materials is rep-
resented by plane. It is convenient to specify this plane in Hessian normal
form

408 Hyung Taek Ahn and Mikhail Shashkov

Fig. 2. Generalized polyhedral cells with multi-materials (red, green, and blue).
The left column shows a hexahedral cell, the middle column shows a non-convex
enneahedron (obtained by subdividing the top face of a hexahedron and disturbing
the vertices on the faces), and the right column represents a truncated icosahedron.
The top row shows the solid view, and the bottom row shows the wire-frame view
of the solid which reveals the sub-cell structure.

n · r + d = 0 , (1)

where r = (x, y, z) is a point in the plane, n = (nx, ny, nz) are components of
the unit normal to the plane, and d is the signed distance from the origin to the
plane. The principal reconstruction constraint is local volume conservation,
i.e. the reconstructed interface must truncate the cell, c, with a volume equal
to the reference volume Vref

c of the material (or equivalently, the volume
fraction fref

c = Vref
c /Vc, where Vc is the volume of the entire cell c).

Since a unique interface configuration does not exist, the interface geome-
try must be inferred based on local data and the assumptions of the particular
algorithm. PLIC methods differ in how the normal n is computed. For a given
normal, d is uniquely defined from the reference volume Vref

c .
In the remainder of this section, we briefly describe the main ideas of

GRAD, LVIRA and MoF methods, give some details relevant to 3D exten-
sions of these methods, and present a summary of algorithms for their imple-
mentation.

3.2 Gradient based interface reconstruction (GRAD)

In the gradient based method, the interface normal, n, is computed by ap-
proximating the gradient of the volume fraction function f as

n ∼ −
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
. (2)

4.3 Geometric Algorithms for 3D Interface Reconstruction 409

In the case of a 3D unstructured mesh consisting of generalized polyhedra,
it is convenient to use a least squares procedure (see, for example, [5]) to
estimate the gradient of the volume fraction.

To define the interface, one needs to find the distance d in Eq. (1) such
that intersection of the corresponding half-space and cell has volume Vref . To
find d we need to solve the equation

V(d) = Vref . (3)

The volume V(d) is a continuous and monotone function of d, which guar-
antees that Eq. (3) always has a unique solution. Let us note that all PLIC
methods require solving Eq. (3) many times. The geometrical algorithms for
the intersection of a half-space and a convex polyhedron, and computation of
the volume of a polyhedron are presented in the following sections.

3.3 Least squares volume-of-fluid interface reconstruction
algorithm (LVIRA)

In the LVIRA interface reconstruction method introduced by Puckett [15, 14],
the interface normal is computed by minimizing the following error functional:

ELV IRA
c (n) =

∑
c′∈C(c)

(fref
c′ − fc′(n))2 (4)

where fref
c′ is the reference volume fraction of neighbor c′, and fc′(n) is the

actual (reconstructed) volume fraction of neighbor c′ taken by extending the
interface of central cell-c, under the constraint that the corresponding plane
exactly reproduces the volume fraction in the cell under consideration.

The stencil for the error computation in LVIRA is illustrated in Fig. 3,
where 2D meshes are employed for simplicity. The neighboring cells around a
central cell-c are referenced with index j. The stencil is composed of immediate
vertex neighbors. The picture on the left of Fig. 3 represents a structured
quadrilateral mesh, and picture on the right shows a stencil on an unstructured
polygonal mesh.

Like the GRAD method, LVIRA also requires information about the vol-
ume fractions from all immediate neighboring cells. In contrast with the
GRAD method, LVIRA requires minimization of the non-linear objective func-
tion, as shown in Eq. (4). In 3D, the normal can be described by polar angles,
and therefore implementation of LVIRA requires an algorithm for the mini-
mization of a non-linear function of two variables.

3.4 Moment-of-fluid interface reconstruction (MoF)

The moment-of-fluid method was introduced by Dyadechko and Shashkov [3,
1] for interface reconstruction in 2D. The MoF method uses information about

410 Hyung Taek Ahn and Mikhail Shashkov

j=1

n

j=2

j=3

j=4

j=5

j=6

c

n

Actual Centroid

Reference Centroid

Fig. 3. Left – stencil for LVIRA error computation. The solid curved line represents
the true interface, and the dashed straight line represents the extension of a piecewise
linear volume fraction matching interface at the central cell-c. Right – stencil for
MoF error computation. The stencil is composed of only the cell under consideration.

the volume fraction, fref
c and centroid, xref

c of the material, but only from
the cell c under consideration. No information from neighboring cells is used,
as illustrated in Fig. 3.

In the MoF method, the computed interface is chosen to match the ref-
erence volume exactly and to provide the best possible approximation to the
reference centroid of the material. That is, in MoF, the interface normal, n,
is computed by minimizing (under the constraint that the corresponding pure
sub-cell has exactly the reference volume fraction in the cell) the following
functional:

EMoF
c (n) =‖ xref

c − xc(n) ‖2 (5)

where xref
c is the reference material centroid and xc(n) is the actual (recon-

structed) material centroid with given interface normal n.
Similar to the LVIRA, the implementation of MoF method requires the

minimization of the non-linear function of two variables. The computation of
EMoF

c (n) requires the following steps. The first step is to find the param-
eter d of the plane such that the volume fraction in cell c exactly matches
fref

c ; this is also performed in the GRAD and LVIRA algorithms. Secondly
we compute the centroid of the resulting polyhedron. This is a simple calcu-
lation, described in [12]. Finally, one computes the distance between actual
and reference centroids.

4 Intersection of convex polyhedron with half-space

Convex polyhedron intersection with a half-space is the base operation for
interface reconstruction in 3D. First the algorithm of intersection is presented
for regular case (no vertices on cutting plane), and later issues and strategies
for degenerate cases (vertices on cutting plane) will be addressed.

4.3 Geometric Algorithms for 3D Interface Reconstruction 411

Fig. 4. Convex polyhedron intersection by clipping and capping. The left shows
an open hexahedron by clipping the hexahedron with a given plane, and the right
shows the closed polyhedron by clipping as well as capping.

4.1 Regular case

Algorithm for intersection of convex polyhedron with a half-space is composed
of two different conceptual stages; clipping and capping [18]. The idea of
clipping and capping is delineated in Fig. 4 with an example of hexahedron
and plane intersection. In clipping stage, each face of polyhedron is visited
and polygonal intersection is performed if the cutting plane passes through it.
Depending on the distance and orientation of the given plane, it may be no
intersection and the face is considered as a pure face, i.e. the face is completely
above or below with respect to the given plane. In the clipping, stage, no
specific order is necessary for visiting polyhedron faces, and each face visit
can be considered as a polygon and plane intersection in 3D.

Pure face

Pure face

above

below

mixed face

Ending
mixed face

Starting

Fig. 5. Unfolded faces of hexahedron. Clipped hexahedron faces are displayed in
gray color, and continuation of slice curve (polylines on unfolded plane) for capping
is illustrated with dashed arrow lines.

In the latter, capping stage, the polygonal slice face has to be constructed.
Without capping, the merely clipped polyhedron will result in an open poly-

412 Hyung Taek Ahn and Mikhail Shashkov

hedron as shown in Fig. 4. The boundary (edges with only single neighbor)
of the open polyhedron represents the slice curve generated by the given cut-
ting plane and original polyhedron. To make the open polyhedron be a closed
polyhedron having all edges two neighbors, the slice face is identified by cap-
ping stage. In contrast to the clipping stage, the capping stage needs a proper
orders of face-visits for slice face construction. The slice face is constructed
by continuation of the slice curve as delineated in Fig. 5. The slice curve can
get started with any given mixed face. The curve is continued by looping
the adjacent mixed faces until it returns back to the initial mixed face and
completing closed slice curve.

−

−
−

+
+

+

n

j=1

j=2

j=3

j=4

j=5

j=6

Fig. 6. Convex polygon intersection with a plane of interface normal (n) in 3D.
Polygon intersection routine returns two sub-polygons indicated by dashed lines:
first sub-polygon which is below to the cutting plane (gray part) and second sub-
polygon above (void part). New vertices are generated by intersection of the plane
and edges with different signs (j = 2, 5).

The convex polyhedron intersection algorithm incorporating both clipping
and capping is illustrated in Algorithm 1. The inputs of the polyhedron in-
tersection routine is initial polyhedron and cutting plane, and the outputs
are two closed sub-polyhedra; phed1 below the given cutting plane and phed2
above the plane. Inside of the loop of mixed faces, polygon intersection is
performed. Intersection of convex polygon with a plane in 3D is illustrated
in Fig. 6. In the convex polygon intersection subroutine as described in Al-
gorithm 2, like polyhedron intersection routine, the inputs are a polygon (a
face of polyhedron) and cutting plane, and the outputs are two closed poly-
gons; pgon1 which is below the plane and pgon2 which is above the plane.
Polygon intersection algorithm is similar to that of polyhedron intersection as
presented in Algorithm 1. The main difference of polygon intersection is edge-
wise loop is carried out instead of face-wise loop in polyhedron intersection.

4.2 Degenerate cases

Cutting plane does not always intersect edges (break the edge into two parts),
and either or both of the vertices can be exactly on the cutting plane. For

4.3 Geometric Algorithms for 3D Interface Reconstruction 413

Input: polyhedron, plane
Output: phed1, phed2
foreach face of polyhedron do

if unvisited face then
if face below to plane then /* pure face */

add this face to phed1 ;
mark this face visited ;

else if face above to plane then /* pure face */
add this face to phed2 ;
mark this face visited ;

else if face gets intersection then /* mixed face */
facestart ← this face ;
repeat

perform polygon/plane intersection ;
add face below to phed1 ;
add face above to phed2 ;
mark this face visited ;
facenext ← next face ;

until facestart = facenext ;

end

end

end
Algorithm 1: Convex polyhedron intersection

Input: polygon, plane
Output: pgon1, pgon2
foreach edge of polygon do

if edge below to plane then /* both vertices (-) */
add this edge to pgon1 ;

else if edge above to plane then /* both vertices (+) */
add this edge to pgon2 ;

else if edge gets intersection then /* vert’s sign mixed */
perform segment/plane intersection ;
add edge below to pgon1 ;
add edge above to pgon2 ;

end

end
Algorithm 2: Convex polygon intersection

example, the vertices of polyhedron can be exactly (or within some tolerance)
on the given plane. This results in degenerate cases, as delineated in Fig. 7.
Degenerate cases requires two additional considerations. First, in polygon in-
tersection routine, additional vertex may not be generated by intersection (of
plane and edge in 3D), instead an existing vertex is used for it. Second, for
the continuation of the slice curve as delineated in Fig. 8, next adjacent face
should be found carefully because not only the mixed faces but also the pure

414 Hyung Taek Ahn and Mikhail Shashkov

Fig. 7. Degenerate cases in polyhedron intersection: vertices on the intersecting
plane (left), and vertices as well as edges on the intersection plane (right).

faces (if an edge is on the cutting plane) can be the candidate for the next
face.

n

Current mixed face

Next mixed face

n
Current mixed face

Pure face

Pure face

Fig. 8. Degenerate cases in polygon intersection: one vertex on the intersecting
plane (left), and two vertices (edge) on the intersection plane (right). Cutting plane
is delineated with dashed line, and vertices on the plane is marked with •.

Fig. 9. Intersection of complex polyhedra. Left shows 32 faced truncated icosahe-
dron, and right shows 725,000 faced bunny mesh. Both surface mesh represents a
polyhedron.

4.3 Geometric Algorithms for 3D Interface Reconstruction 415

4.3 Test cases

The convex polyhedron intersection algorithm is applied for more general cases
in Fig. 9. Two polyhedra intersected by the present algorithms are displayed.
First the intersection of truncated icosahedron (a.k.a soccer ball geometry
with 12 pentagons and 20 hexagons) is presented, and next the polyhedral
representation of bunny (725,000 triangular surface mesh) is intersected. The
bunny geometry is not an example of convex polyhedron, but as long as the
slice face is simply connected and the polyhedron is convex-faced (triangulated
surface here) the current algorithm can be applied.

4.4 Volume and centroid computation

For each polyhedron intersection, volume and centroids of the intersected sub-
cell have to be computed for measuring the error of interface reconstructed.
For this purpose, fast and accurate computation of moment data of general
polyhedron is indispensable, and our implementation is based on [12]. The al-
gorithm is based on multi-step reduction of the volume integral to successively
lower dimensions by using Divergence and Green’s theorems.

5 Volume matching interface computation

In this section, the target volume fraction matching interface calculation, with
given normal, methods are presented. The primary mechanism of volume pre-
serving interface reconstruction requires cutting appropriate volume fraction
of the cell, as expressed in Eq. (3). The equation can also be expressed as
follows

f(d) = fref

where f(d) = V(d)/Vcell is volume fraction defined by d and fref = Vred/Vcell

is reference (target) volume fraction, which are both normalized by cell volume
Vcell. Since the normal (orientation) of cutting plane is given, the volume of
intersection is purely function of distance, d ∈ [dmin, dmax]. For example,
f (dmin) = 0 and f (dmax) = 1.

Several approaches are proposed, but they are mainly described in 2D.
These methods, e.g. analytical method [3] and semi-iterative method [16], re-
quire two pre-processing: first vertex-wise volume fraction evaluation (O(n)
volume fraction evaluation) and then another vertex-wise volume fraction sort-
ing (O(n log n) operations in sorting), where n is number of vertices.

The analytical approach can be extended for tetrahedral cell in 3D [23].
For cells with small number of vertices, such as triangles in 2D and tetrahedra
in 3D, this pre-processing and analytical approach could save CPU time. As
the cells contains more vertices, typical for 3D polyhedral cells, these pre-
processing demand considerable amount of CPU time as well as extra memory
space besides the implementation efforts.

416 Hyung Taek Ahn and Mikhail Shashkov

In order to cut target volume fraction accurately as well as efficiently two
fully iterative schemes are employed, namely secant method and bisection
method. The algorithm for the iterative methods is described in Algorithm 3.

Input: fref , n, dmin, dmax

Output: d
d1 = dmin;
d2 = dmax;
f1 = 0;
f2 = 1;
repeat

if Secant method used then
secant = (f2 − f1)/(d2 − d1);

end
update d by Secant or Bisection method;
intersect cell with defined interface (n, d);
compute f(d);
Δf = |fref − f(d)|;
update d1, d2, f1, f2;

until (Δf < tol) ;
Algorithm 3: Iterative volume fraction matching interface com-
putation

These iterative schemes have too distinctive advantages:

1. no pre-processing: vertex-wise volume fraction evaluation or sorting
2. fixed number of iteration regardless of number of vertices

First, no vertex-wise volume fraction evaluation or sorting is needed. For
the start of the iteration, only the minimum and maximum distances with
respect the the given interface normal are required. This is because of the
monotonically increasing behavior (actually C1 if the cell is convex and C0 if
not) of volume fraction with respect to the distance. Second, both iterative
schemes are converging in almost fixed number of iterations regardless of cell
size. In bisection method, with unit interval of distance [0,1] the number of
iterations required to achieve distance error tolerance of tol = 10−10 is

log2

1
10−10

= 33.2193

regardless of function behavior [7]. Due to monotonicity of the function, the
volume fraction error tolerance of tol = 10−10 is also achieved with approxi-
mately same number of bisection iterations as shown in Fig. 10.

Fig. 10 shows the volume fraction convergence history of the two iterative
methods applied to three polyhedral cells shown in Fig. 2. First, the secant
method shows super linear convergence in volume fraction error. Less than 10

4.3 Geometric Algorithms for 3D Interface Reconstruction 417

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 5 10 15 20 25 30 35 40

vo
lu

m
e

fr
ac

tio
n

er
ro

r

iterations

Hexahedron (nf=6): Secant method
Enneahedron (nf=9): Secant method

Truncated-icosahedron (nf=32): Secant method
Hexahedron (nf=6): Bisection method

Enneahedron (nf=9): Bisection method
Truncated-icosahedron (nf=32): Bisection method

Fig. 10. Volume fraction convergence of secant and bisection methods with three
polyhedral cells shown in Fig. 2.

Fig. 11. Spherical cell containing two materials (blue and red) with successive
refinement. From the coarsest (left) mesh to the finest (right), the numbers of faces
are 80, 320, 1280, and 5120.

iterations are required to achieve the volume fraction error < 10−10. Bisection
method shows linear convergence, but it guarantees that only fixed number
of iteration is required regardless of the number of vertices, n, for the cell.

The efficiency of iterative methods are further demonstrated with large
size spherical cells as displayed in Fig. 11. Four levels of successively refined
spherical surface meshes are used as a single polyhedral cell representation. In
Fig. 12, using the four levels of spherical cells, the number of secant iteration
to achieve err(f) < 1.e− 10 is measured with target volume fraction between
[0,1]. The number of iteration required is irrespective to the size of polyhedral
cell, and the target volume fraction is achieved almost less than 10 iterations.

6 Numerical optimization

The second-order accurate interface reconstruction methods, LVIRA and
MoF, require additional optimization process minimizing the error function-

418 Hyung Taek Ahn and Mikhail Shashkov

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

S
ec

an
t i

te
ra

tio
n

re
qu

ire
d

Target volume fraction

sphere (nf=5120)
sphere (nf=1280)
sphere (nf=320)
sphere (nf=80)

Fig. 12. Number of secant iterations required for appropriate volume fraction cut-
ting measured with four levels of spherical cells displayed in Fig. 11

als. In both case optimization has to be performed with respect to the normal
n in the Eq. (1). In 3D normal n is defined by two polar angles (φ, θ).

Fig. 13. Interface configuration by a sphere, centered at (−0.1,−0.2,−0.3) with
radius r = 1.3, and equispaced 33 hexahedral mesh covering the domain of [0, 1]3.
For visualization purpose, a fraction of transparent sphere and the central cell of
the mesh are displayed.

By using the spherical interface configuration delineated in Fig. 13, typical
behavior of the objective functions are displayed in Fig. 14. For the interface
configuration in Fig. 13, sphere centered at (−0.1,−0.2,−0.3) with radius
r = 1.3 is used and equispaced 3×3×3 hexahedral mesh covering the domain
of [0, 1]× [0, 1]× [0, 1] is used. For visualization purpose, a transparent fraction
of the sphere and the cell centered at (0.5, 0.5, 0.5) are displayed.

The behavior of objective functions for the center cell shown in Fig. 13 are
displayed in the top row of Fig. 14. General trends of these objective functions

4.3 Geometric Algorithms for 3D Interface Reconstruction 419

−1 −0.5 0 0.5 1 1.5 2 2.5

−4

−2

0

2

4

6

0

5

10

15

20

φ

θ

E
rr

o
r

−1 −0.5 0 0.5 1 1.5 2 2.5

−4

−2

0

2

4

6

0

0.02

0.04

0.06

φ

θ

E
rr

o
r

1 2 3 4 5 6 7
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||∇
(E

rr
o

r)
||

1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

Iteration

||∇
(E

rr
o

r)
||

Fig. 14. Behavior of objective function and optimization of it: Left — LVIRA, and
right — MoF. Top row is 3D view of the objective functions, and the bottom row
shows the convergence history of optimization process.

are similar for both LVIRA and MoF. However, the scale of absolute values of
the functions are different. This is because LVIRA uses accumulated volume
fraction difference from neighbors and MoF uses normalized distances between
centroids as the objective function.

For the above multi-dimensional minimization, Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method [9] is used. It is a quasi Newton method, approxi-
mating Hessian matrix with a set previous of gradients. The gradients of the
objective function are computed by finite differences. For each search direc-
tion, a quadratic or cubic polynomial line search is performed for sufficient
decrease in the error with the Armijo rule for step size control. Detailed dis-
cussion of the BFGS method can be found in [9]

For the initial guess of the optimization, the gradient of volume fraction
computed as in GRAD is utilized for LVIRA.

n0(φ0, θ0)LV IRA = −GRAD(f). (6)

For MoF, the unit vector along the given material centroid to the cell centroid
is used as follows

n0(φ0, θ0)MoF =
xcell

c − xref
c

‖ xcell
c − xref

c ‖
(7)

420 Hyung Taek Ahn and Mikhail Shashkov

where xcell
c is cell centroid and xref

c is the reference material centroid. Once
the gradient of the objective function becomes less than a given tolerance,
it is considered that a local minimum is found and the optimization process
terminates.

The convergence history of the LVIRA and MoF are displayed in the bot-
tom row of Fig. 14. Both LVIRA and MoF show super-linear convergence rate,
and ‖ ∇(Error) ‖< 10−6 are achieved with 10 iterations.

The final reconstructed interface for the mixed cell configuration shown
in Fig. 13 is displayed in Fig. 15. Fraction of original spherical interface is
overlapped with transparency. Depending on the reconstruction methods, the
interface normal is different and this results different interface reconstruction
as shown in the figure. The volumes of symmetric difference, between the
original and reconstruction, at the cell are measured as follows: 6.1616e-04
(GRAD), 5.9999e-04 (LVIRA), 5.5676e-04(MoF). This result strengthens that
MoF gives the best accuracy.

Fig. 15. Interface reconstruction of the configuration shown Fig. 13. Left – GRAD,
middle – LVIRA, and right – MoF.

7 Reconstruction of complex interfaces

The effectiveness of the geometric algorithms is demonstrated by reconstruct-
ing complex interfaces, as shown in Fig. 16. The initial geometry of the object
is given by a surface mesh, and then a tetrahedral volume mesh is generated
based on it. Tetrahedron-tetrahedron intersection is performed to compute
the volume fraction and moment data exactly. The reconstructed object by
MoF method is displayed in Fig. 16.

8 Conclusion

We have described geometric algorithms for 3D interface reconstructions with
3D generalized polyhedral meshes. Three different reconstruction methods are

4.3 Geometric Algorithms for 3D Interface Reconstruction 421

Fig. 16. Multi-material (nmat = 3, i.e. bolt, nut, and background) interface re-
construction with MoF. The left represents original material region represented by
tetrahedral volume meshes, and the right shows its reconstruction with the MoF
method on an unstructured tetrahedral mesh.

considered, namely GRAD, LVIRA, and MoF. Intersection algorithm for con-
vex polyhedron with a half-space is presented including degenerate cases. Fast
iterative methods for volume fraction matching interface calculation are pre-
sented. Optimization algorithm for second order accurate interface reconstruc-
tion methods (LVIRA and MoF) is explained and super-linear convergence of
it is demonstrated. Performance of the methods is demonstrated with actual
reconstruction of complex geometry.

Acknowledgement. This work was supported by the Advanced Simulation and Com-
puting (ASC) program at the Los Alamos National Laboratory.

References

1. H. T. Ahn and M. Shashkov. Multi-material interface reconstruction on gener-
alized polyhedral meshes. Journal of Computational Physics, In press, 2007.

2. D. J. Benson. Volume of fluid interface reconstruction methods for multi-
material problems. Applied Mechanics Reviews, 55:151–165, 2002.

3. V. Dyadechko and M. Shashkov. Moment-of-fluid interface reconstruction. Tech-
nical Report LA-UR-05-7571, Los Alamos National Laboratory.

4. D. M. Gao. A three-dimensional hybrid finite element-volume tracking model for
mould filling in casting processes. International Journal for Numerical Methods
in Fluids, 29:877–895, 1999.

5. R. Garimella, M. Kucharik, and M. Shashkov. An efficient linearity and bound
preserving conservative interpolation (remapping) on polyhedral meshes. Com-
puters and Fluids, 36:224–237, 2007.

6. J. Glimm, J. W. Grove, X. L. Li, K. Shyue, Y. Zeng, and Q. Zhang. Three-
dimensional front tracking. SIAM Journal on Scientific Computing, 19:703–727,
1998.

7. Michael T. Heath. Scientific Computing: An Introductory Survey, Second Edi-
tion. McGraw-Hill, New York, 2002.

422 Hyung Taek Ahn and Mikhail Shashkov

8. C. W. Hirt and B. D. Nichols. Volume of fluid (VOF) method for the dynamics
of free boundaries. Journal of Computational Physics, 39:201–225, 1981.

9. C.T. Kelly. Iterative methods for optimization. Society for Industrial and Ap-
plied Mathematics, 1999.

10. D. B. Kothe, M. W. Williams, K. L. Lam, D. R. Korzekwa, P. K. Tubesing, and
E. G. Puckett. A second-order accurate, linearity-preserving volume tracking
algorithm for free surface flows on 3-d unstructured meshes. In Proceedings of
the 3rd ASME/JSME joint fluid engineering conference, San Francisco, CA,
USA, fEDSM99-7109, 1999.

11. P. Liovic, M. Rudman, J.-L. Liow, D. Lakehal, and D. Kothe. A 3d unsplit-
advection volume tracking algorithm with planarity-preserving interface recon-
struction. Computers & Fluids, 35:1011–1032, 2006.

12. B. Mirtich. Fast and accurate computation of polyhedral mass properties. Jour-
nal of Graphics Tools, 1:31–50, 1996.

13. S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent
results. Journal of Computational Physics, 169:463–502, 2001.

14. J. E. Pilliod and E. G. Puckett. Second-order accurate volume-of-fluid al-
gorithms for tracking material interfaces. Journal of Computational Physics,
199:465–502, 2004.

15. E.G. Puckett. A volume-of-fluid interface tracking algorithm with applications
to computing shock wave refraction. In H. Dwyer, editor, Proceedings of the
Fourth International Symposium on Computational Fluid Dynamics, pages 933–
938, 1991.

16. W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal of
Computational Physics, 121:112–152, 1998.

17. R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and
interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999.

18. Michael B. Stephenson and Henry N. Christiansen. A polyhedron clipping and
capping algorithm and a display system for three dimensional finite element
models. ACM SIGGRAPH Computer Graphics, 9:1–16, 1975.

19. M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L.
Welcome. An adaptive level set approach for incompressible two-phase flows.
Journal of Computational Physics, 148:81–124, 1999.

20. M. Sussman, E. Fatemi, P. Smereka, and S. Osher. Improved level set method
for incompressible two-phase flows. Computers & Fluids, 27:663–680, 1998.

21. G. Tryggvasona, B. Bunnerb, A. Esmaeelic, D. Juricd, N. Al-Rawahic,
W. Tauberc, J. Hanc, S. Nase, and Y.-J. Jan. A front-tracking method for the
computations of multiphase flow. Journal of Computational Physics, 169:708–
759, 2001.

22. S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, in-
compressible, multi-fluid flows. Journal of Computational Physics, 100:25–37,
1992.

23. Xiaofeng Yang and Ashley J. James. Analytic relations for reconstructing piece-
wise linear interfaces in triangular and tetrahedral grids. Journal of Computa-
tional Physics, 214:41–54, 2006.

