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Abstract A procedure has been developed to improve
polygonal surface mesh quality while maintaining the
essential characteristics of the discrete surface. The sur-
face characteristics are preserved by repositioning mesh
vertices so that they remain on the original discrete
surface. The repositioning is performed in a series of
triangular-facet-based local parametric spaces. The
movement of the mesh vertices is driven by a nonlinear
numerical optimization process. Two optimization ap-
proaches are described, one which improves the quality
of elements as much as possible and the other which
improves element quality but also keeps the new mesh as
close as possible to the original mesh.

Keywords Polygonal surface mesh Æ Element quality Æ
Jacobian condition number Æ Reference Jacobian
matrices

1 Introduction

This paper describes a procedure to improve the quality
of polygonal surface meshes by node repositioning while
preserving the essential characteristics of the discrete
surface and keeping the mesh close to the original con-
figuration. The need for improvement of such meshes
arises primarily in finite volume simulations where they
form interior and exterior boundaries of general poly-
hedral meshes.

While previous research has focused on improving
the quality of triangular and quadrilateral meshes [1–7],
little attention has been paid to the improvement of
polygonal meshes. Most of this work is devoted to
smoothing (denoising) of a discrete surface represented

by polygons (e.g., [8, 9]) rather than improving the
quality of the polygonal elements in the surface mesh. In
earlier work [7, 10], the authors presented a method for
improving the quality of triangular and quadrilateral
surface meshes in the absence of an underlying smooth
surface. This paper extends and improves this technique
to allow smoothing of surface meshes with general
polygonal elements.

The rest of the paper is organized as follows. The next
section describes the minimization of an objective
function with respect to local parametric coordinates.
That section discusses the element-based local parame-
terization, line search in local parametric coordinates,
and moving vertices from one parametric space to an-
other. The section titled ‘‘Optimization of surface mesh
quality’’ discusses specific objective functions for opti-
mizing the quality of surface meshes. Finally, the
‘‘Results’’ section presents several examples of optimi-
zation of surface meshes to demonstrate the capabilities
of the methods.

2 Optimization with respect to parametric coordinates

Consider an objective function, Y(x), defined in terms of
the real coordinates, x, of all the vertices of a surface
mesh. The objective function is defined such that its
minimization drives the mesh vertices to locations that
improve the mesh, with respect to some quality measure.
If this objective function is minimized directly, with re-
spect to the real coordinates of the vertices, the search
direction for the minimization may indicate vertex
movement off the original surface mesh. To constrain
the movement of the vertices to the discrete surface, the
optimization must be performed with respect to the
coordinates of the vertices in a 2D parametric space
corresponding to the surface mesh. Assuming that there
is no smooth surface underlying the discrete surface, one
of several methods can be used to derive such a global
parametric space from the surface mesh [11–15]. How-
ever, most of these methods involve substantial cost
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since they require the solution of a large system of
equations that may be nonlinear.

In this work, instead of using a global parametric
space derived from the entire mesh, nodes are reposi-
tioned in a series of local parametric spaces. The local
parametric spaces are derived from a mapping of mesh
edges and triangular facets of mesh faces to canonical
elements in 2D space, as is commonly done in finite
element methods [16, 17]. Vertices on the boundary of
the surface mesh (i.e., on a model edge) move in para-
metric spaces of boundary edges of the original mesh.
The parametric space of each boundary mesh edge is
derived by mapping it to a unit line segment along the
x-axis, giving rise to parametric coordinate 0 £ s0 £ 1.
Vertices in the interior of the surface mesh (i.e., on a
model face) move in parametric spaces derived from
faces of the original mesh. The parametric space for a
mesh triangle is derived using a barycentric mapping
[17], resulting in parametric coordinates 0 £ (s1, s2) £
1 (Fig. 1a). Quadrilaterals and more general polygons
are considered to be made up of triangular facets
(Fig. 1b) and a parametric space is derived for each facet
as before. The facetization of polygons is computed by
choosing a central point and connecting it to the poly-
gon edges. To choose the central point, a full quadric:

Z 0 ¼ aX 02 þ bX 0Y 0 þ cY 02 þ dX 0 þ eY 0 þ f ð1Þ

is first fitted to the polygon’s vertices in a rotated frame
{X¢, Y¢, Z¢} [18, 19] anchored at the centroid of the
polygon. The central point to be connected to the poly-
gon’s edges is chosen as the point (0, 0, f) in the rotated
frame. If the polygon does not have enough points to fit

a full quadric, additional points from the polygon’s
neighborhood are used.

The optimization procedure keeps track of the facet of
the original mesh face that each vertex is moving in. The
triangular facet in which a vertex is moving is referred to
as the base triangle. The procedure also keeps track of the
coordinates of the vertex in the parametric space of
the base triangle. All objective function evaluations are
done after mapping the parametric coordinates of the
vertex in the base triangle to real coordinates. Also, the
line search in the optimization procedure is conducted in
the parametric space of the base triangle. The line search
is used to find a step size, a, along a search direction, d, in
the local parametric space, while respecting parametric
bounds and mesh validity constraints. If an element be-
comes invalid during a line search, then the step size is
scaled back and the optimization is restarted along a new
search direction. If the line search takes the point out of
the parametric bounds of the base triangle, the optimi-
zation is stopped, the adjacent triangular facet is found,
and the optimization is restarted in the parametric
space of the new base triangle. Additional details of the
optimization procedure are given in [7].

3 Optimization of surface mesh quality

3.1 Condition number shape measure
for polygonal mesh faces

The quality measure used for evaluating the shape of
polygonal mesh faces is based on the condition number
shape measure [20]. This measure is derived from the
Jacobian matrix of an element mapping as described
below.

Consider a vertex, Vi, connected to a set of edges,
E Við Þ, and faces, F Við Þ, as shown in Fig. 2. Assume that
one of the faces, Fj 2F Við Þ, has edges Ep 2 E Við Þ and
Eq 2 E Við Þ connected to vertex Vi. The triangle formed
by edges Ep and Eq can always be mapped to a right-
angled triangle in 2D space with Vi mapped to the ori-
gin, a unit vector, e¢p, representing Ep along the x-axis
and a unit vector, e¢q, representing Eq along the y-axis in
2D space. Then, the Jacobian matrix, Jji, of the mapping
of the triangle to the right-angled triangle in 2D space,

Fig. 1 a Barycentric mapping for triangle. b Triangular facetiza-
tion of polygon

Fig. 2 Definition of edge vectors, ep and eq, for calculating the
Jacobian of an element Fj at vertex Vi
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evaluated at vertex Vi, is given by Jji ¼ ep eq½ � where,
ep and eq are 3D edge vectors, of lengths lp and lq, rep-
resenting edges Ep and Eq, respectively. The condition
number of the Jacobian matrix is defined as
j Jji
� �

¼ J�1ji

���
���
F
Jji

�� ��
F , where �j jF is the Frobenius norm

of its matrix operand.
Since Jji is a 3·2 matrix for a triangle in 3D, its

inverse does not exist in the usual sense and a pseudo-
inverse has to be calculated by singular value decom-
position methods. On the other hand, the Jacobian
matrix of a triangle in 2D space is a 2·2 matrix whose
condition number can be calculated more easily as:

j Jji
� �

¼
l2p þ l2q
� �

2Aj
ð2Þ

where Aj is the area of the triangle formed by Ep and Eq

[20, 21]. This condition number is only a function of the
triangle side lengths1; therefore, it is invariant with
rotation of the triangle in the plane. Since there always
exists a coordinate system in which an arbitrarily ori-
ented triangle lies on one of its coordinate planes, it
suggests that the condition number is also useful for
measuring the quality of arbitrarily oriented triangles in
space.

The condition number shape measure, as described
above, measures the deviation of an element corner from
a right-angled corner formed by unit edge vectors. Based
on this property, a quality measure for a polygonal
element may be defined as the sum of the Jacobian
condition numbers at the polygon’s corners. This sum
reaches a minimum when the polygon is regular.

Note that that Jacobian condition number at an
element corner is singular when the area, Aj, of the tri-
angle formed by the corner is zero and is negative if the
area is negative. Therefore, the Jacobian condition
number is not a valid shape measure for polygons with
concave or reentrant corners.

3.2 Condition number based optimization

Consider the minimization of a function defined as the
sum of condition numbers of the face corners incident at
a given vertex, Vi, as given below:

wc
i xið Þ ¼

X

j

j Jji xið Þ
� �

¼
X

j

l2p xið Þ þ l2q xið Þ
Aj xið Þ

; j 2 jjFj 2F Við Þ
� �

ð3Þ

where lp and lq are the lengths of the respective edges, Ep

and Eq, of face Fj connected to vertex Vi, and xi is the
coordinate vector of Vi.

The minimization of wc
i attempts to smooth the dis-

tribution of face angles and edge lengths around a vertex

since all the edge vector pairs are trying to reach equal
length and form a right angle. Based on this property, a
strategy can be formed for improving the quality of a
mesh by minimizing a global condition number based
objective function, Y c, defined as:

wc ¼
X

j

wc
i ; i 2 ijVi 2Vf g ð4Þ

where V is the set of all mesh vertices.
For efficiency reasons, the global function Y c is, in

reality, minimized by minimizing a local function, ~wc
i , at

each vertex. The value of ~wc
i at a vertex Vi is composed

of all terms of Yc that involve the coordinates of Vi.
Therefore, ~wc

i is formed by visiting each element, Fj,
connected to vertex Vi, and adding the Jacobian condi-
tion number of the element at Vi and the Jacobian
condition numbers at both of its edge-connected neigh-
bors in that element (see Fig. 3). Mathematically, this is
written as:

~wc
i ¼

X

j

X

k

j Jjk
� �

; j 2 jjFj 2F Við Þ
� �

;

k 2 kjVk 2V Fj
� �
\V E Við Þð Þ

� �
ð5Þ

Note that the presence ofAj in the denominator acts as
a barrier that discourages vertex movements that make
the triangle formed by Ep and Eq degenerate. However,
for some optimization techniques, it may still be neces-
sary to explicitly check if the optimization process is
forcing the vertices to jump across the degeneracy barrier.

3.3 Reference Jacobian based optimization

3.3.1 Motivation

The global condition number minimization procedure
allows mesh vertices to move along the surface as much
as necessary to minimize the objective function, Yc.
However, in certain situations, it is of interest to keep
the vertices of the original mesh as close as possible
to their original locations while improving the shape of
the mesh elements. Keeping the vertices close to their
original positions facilitates accurate interpolation of

1Aj is a function of the lengths of the triangle sides

Fig. 3 Vertices involved in the local objective function expression,
~wc

i , for Vi. The shaded circles along with the black circle (Vi)
represent the vertices at which the Jacobian is computed for use in
~wc

i . The white circles represent vertices whose real locations do not
contribute to the Jacobian at Vi
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solution data from one mesh to another, and also pre-
serves mesh characteristics, such as refinement and
anisotropy. The reference Jacobian matrix (RJM) based
optimization [7, 10, 21, 22] is used here to achieve the
multiple objectives of improving mesh quality and
minimizing the change to the original mesh.

The RJM mesh improvement is a two-stage proce-
dure, consisting of a series of local condition number
based optimizations and a global RJM optimization, as
described next.

3.3.2 Local condition number based optimization (step I)

This is the first stage of the RJM optimization strategy.
In this step, the locally optimal position of each mesh
vertex is computed with respect to the fixed position of
its neighbors. The objective function for optimization is
the local condition number function, ~wc

i , described in
Eq. 5, in the section titled ‘‘Condition number based
optimization’’. However, in this step, the vertex is not
moved to its locally optimal position. Rather, the opti-
mal position of each vertex, described by a base face and
the parametric coordinates of the vertex in the base face,
is stored as a virtual position for use in the second stage
of the mesh improvement procedure.

3.3.3 Reference positions, reference edges
and the reference Jacobian matrix

The locally optimal position computed and stored for
each vertex in the first stage of the procedure is known as
the reference position for the vertex. After reference
positions are calculated for all mesh vertices, two refer-
ence edge vectors are calculated for each edge in the
mesh; each reference edge vector goes from the reference
position of one vertex of the edge to the original position
of the other. The idea of reference edges is illustrated in
Fig. 4, where Em is an edge with vertices Va and Vb. The
reference positions of Va and Vb are Va

R and Vb
R,

respectively. The two reference edge vectors for Em are
(em

R)a and (em
R)b, where the outer subscript indicates

which of the vertices is at its reference position.
Using the concept of reference edge vectors, it is now

possible to define reference Jacobian matrices (RJMs)
just as Jacobian matrices were defined for a mesh
without reference positions. Therefore, if the edges of
face Fj connected to vertex Vi are Ep and Eq, their
reference edges are Ep

R and Eq
R, and their reference

edge vectors are (ep
R)i and (eq

R)i respectively, then the
reference Jacobian of Fj at Vi is defined as JRji ¼

eRp

� �

i
eRq

� �

i

h i
.

3.3.4 Global optimization based on reference
Jacobian matrix (step II)

The second stage of the mesh improvement procedure is
a global optimization based on the definition of RJMs.
The goal of this step is to find a valid mesh configuration

such that each edge is in a compromise configuration
between its pair of reference edges. It is expected that
such a configuration for the edges will improve mesh
quality since the reference edge vectors were formed by
locally improving mesh quality at each mesh vertex. It is
also expected that the optimized mesh will not deviate
drastically from the base mesh, since each reference edge
vector has one of its vertices at its original position and
the other at the locally optimal position.

The objective function for the global optimization
quantifies the difference between the Jacobian matrices
of the current mesh configuration and the RJMs as
shown below:

wR ¼
X

i

X

j

Jji � JRji

���
���
2

F

Jji

�� ��2Aj
�

AR
ji

; i 2 ijVi 2Vf g;

j 2 jjFj 2F Við Þ
� �

ð6Þ

where V is the set of all mesh vertices and Aji
R is the

area of the triangle formed by edge vectors, (ep
R)i and

(eq
R)i. Note that, similar to the objective function for

local optimization, the objective function includes a
barrier term, Aj, in the denominator in the form of the
triangle area to prevent mesh invalidity. Since the
Jacobian matrix and the RJM are formed from the mesh
edges and the reference edges, respectively, optimization

Fig. 4 Reference positions and reference edge vectors
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of YR makes the edges of the final mesh as close as
possible to their respective reference edge vectors.

As with the condition number based optimization,
the global objective function, YR is minimized by iter-
atively minimizing a local component of the global
function at each mesh vertex. The local component of
the global objective function that involves the real and
reference positions of Vi is given as:

~wR
i ¼

X

j

X

k

Jjk � JRjk

			
			
2

Jjk

�� ��2Aj
�

AR
jk

; j 2 jjFj 2F Við Þ
� �

;

k 2 kjVk 2V Fj
� �
\V E Við Þð Þ

� �

In the above expression, the outer sum is over all faces
connected to the vertex and the inner sum is over all
vertices of a face that include Vi itself, or are edge-con-
nected to Vi.

4 Results

Figure 5 shows a simple example to illustrate the effects
of a condition number optimization (CNO) and

reference Jacobian based optimization (RJO) on a
nonplanar surface mesh. Figure 5a shows the original
pyramid-shaped mesh on which the two optimization
techniques are applied. Figure 5b shows the effect of
optimizing the CN objective function and Figure 5c
shows the effect of optimizing the RJ objective function.
In both cases, the apex vertex lies on the left lateral
surface of the original pyramid. It can be seen that CNO
improves the shapes of the triangles more than RJO. On
the other hand, RJO results in lesser movement of the
apex vertex from its original position.

Figure 6a shows the polygonal mesh of a pig, and
Fig. 6b, c show the results of CNO and RJO on the
mesh, respectively. It is again clear from the example
that CNO improves the shape of mesh elements more
than RJO, but it also causes much more movement of
the vertices. In particular, note that CNO destroys much
of the anisotropy in the midsection of the pig and
smooths away the local refinement around the pig’s
mouth while RJO preserves these characteristics of the
mesh. Table 1 shows the histograms of the normalized
average condition number of elements before and after

Fig. 5 a Original mesh. b Mesh optimized with condition number
objective function, c Optimized with reference Jacobian objective
function. Note that, in both cases, the apex vertex is on the lateral
surface of the original pyramid

Fig. 6 a Mesh of pig with anisotropy and local refinement. b Mesh
optimized with global condition number objective function. cMesh
optimized with reference Jacobian objective function
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the two types of optimization. The normalized average
condition number for an element is defined as the mean
of the condition numbers at the vertices of an element,
normalized so that a regular polygon will produce a
value of 1.

Table 2 shows various quantities computed to mea-
sure the change in the meshes and the discrete surfaces
using the two methods of optimization. In the table, the
normalized Hausdorff distance is computed by finding
the minimum distance from each vertex of the original
mesh to the new mesh, taking the maximum of these
distances [23, 24], and then normalizing it by the prob-
lem size. The problem size is defined as the maximum
length of the domain along the three coordinate direc-
tions. The difference between discrete normals is the
angle between the normal vector of quadrics fitted to the
neighborhood of a vertex at its old and new locations
[18, 19]. The maximum vertex movement is the maxi-
mum distance traveled by any vertex from its original
position and the average vertex movement is the mean of
the distance traveled by all vertices from their original
positions; these are also normalized by the problem size.

Finally, a complex mesh of an ‘‘Moai’’ statue is pre-
sented in Fig. 7 to illustrate the effectiveness of this
procedure on large surface meshes. The original mesh for
this model was obtained from the Web sites of Belyaev
and Ohtake2 and then converted into a polygonal mesh
along with the application of some compression below
the neck and stretching at the chest. The modified mesh
(Fig. 7a) was used to obtain the optimized meshes shown

in the example. CNO resulted in the mesh shown in
Fig. 7b and RJO yielded the mesh shown in Fig. 7c.

As with the pig, it can be seen in the Moai mesh that
the CNO improves the mesh considerably but eliminates
some significant features in the mesh (particularly the
refinement) while the mesh obtained by RJO preserves

Table 1 Histograms of normalized average condition number of
elements in original and optimized polygonal meshes of a pig
(Fig. 6)

�K Original CNO RJO

1.0–1.5 1,100 2,668 1,768
1.5–2.0 1,017 304 855
2.0–3.0 736 49 364
3.0–4.0 113 5 31
4.0–5.0 25 1 7
5.0–7.5 21 0 3
7.5–10.0 11 1 0
10.0–15.0 3 1 1
15.0 3 0 0

Table 2 Quantitative measures of the change in the mesh and
discrete surface characteristics for CNO and RJO for polygonal
mesh of a pig (Fig. 6); all values, except the change in normals, are
presented as a percentage of the problem size

Measure CNO RJO

Average change in normals 10.7� 4.1�
Hausdorff distance 0.3% 0.1%
Maximum vertex movement 7.8% 2.6%
Average vertex movement 1.0% 0.2%

Fig. 7 a Polygonal mesh of the Moai model (courtesy of Belyaev
and Ohtake). b Mesh optimized with CN objective function. c
Mesh optimized with RJ objective function

2http://www.mpi-sb.mpg.de/�belyaev/soft/ply/gallery.html
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these features. The condition number histograms for the
three meshes are presented in Table 3 and the measures
for change in surface characteristics are presented in
Table 4.

With respect to execution time, RJO is normally
faster than CNO since the former causes lesser node
movement. Timing statistics collected for the above test
cases and other examples indicate that CNO takes
10%–50% longer than RJO.

5 Conclusions

A procedure was presented to improve the quality of
complex polygonal surface meshes without an underly-
ing smooth surface using numerical optimization. The
optimization is designed to improve the quality of the
mesh faces without distorting the discrete surface too
much. The vertices are kept on the original surface mesh
using movement in local parametric spaces of mesh fa-
ces. Two methods were proposed for improving the
quality of the surface mesh. The first method improved
the quality of mesh elements as much as possible by
minimizing a global condition number objective func-
tion by local iteration. The second method was the two-
stage reference Jacobian matrix or RJM-based method,
which improved the mesh quality as well as minimized
the movement of vertices from their original locations.

The procedure has been successfully tested on a
number of complex polygonal surface meshes. Several
quantitative measures were presented to show that
both types of optimizations do not distort the surface
much.
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