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Abstract

The purpose of the Moment-of-Fluid (MoF) technique is reconstruction of the
mixed-cell material interfaces from the moment data: the volumes and centroids
of materials. The governing principle of the MoF interface reconstruction is the
minimization of the first moment defect, subject to preservation of all material
volumes. In the case of two materials this principle allows to find the direction
of the interface normal, and in the case of multiple materials this principle helps
to determine the order, in which the materials should be separated.

Compared to the competitors, the Volume-of-Fluid (VoF) interface reconstruc-
tion techniques, MoF algorithm shows higher accuracy, allows uniform process-
ing of internal and boundary cells, and is truly robust in treating multi-material
mixed-cells.

1 Introduction

We continue the development of the new volume-conservative technique that
constructs material interfaces in a mixed cell from the volumes and centroids (the
first two moments) of the materials. A special two-material case of this Moment-
of-Fluid (MoF) interface reconstruction technique has already been presented in
[7]. The MoF algorithm defines the location of the linear interface in a two-
material mixed cell by minimizing the defect of the first moment over all the volume-
preserving cell partitions. The same governing principle can be used to perform the
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MOoF interface reconstruction in a multi-material mixed cell. The cell partitioning
can be a real problem in the case of multiple materials. In this paper we demon-
strate how the two-material MoF interface reconstruction algorithm can be used
to perform a polygonal partitioning of a mixed cell with M > 3 materials. Basi-
cally, we follow the strategy of the multi-material Volume-of-Fluid (VoF) method
and use the two-material interface reconstruction algorithm for extracting mate-
rials from the mixture one by one. There is an essential difference though: the
MOoF interface reconstruction does not require the user to specify the material or-
der explicitly. The right order is determined automatically by trying all M! possible
material orders and finding the one that results in the minimal defect of the first
moment.

The search of the best mixed-cell partition does not limit the choice of par-
titioning scheme in any way. Therefore, in order to achieve a lower defect of
the first moment, one can expand the family of the trial partitions at will. For
instance, instead of extracting materials from the mixture in series, one can sep-
arate them according to the “divide-and-conquer” principle: choose an arbitrary
m < M, separate the mixture of materials 1, m from m+1, M, and then recursively
apply this algorithm to each submixture containing 2+ materials. This procedure
allows to generate M!(M-1)! B-tree partitions to choose from, which significantly
increases the chances of finding an approximate partition that fits given moment
data best.

In this paper we do not discuss the ways to update the moment data in course
of hydro simulations, we only consider a stand-alone interface reconstruction
problem. After introducing the basic notations and formulating the problem,
we review the multi-material interface reconstruction schemes used in the VoF
context, and then describe and test the Multi-Material MoF algorithm with the
two types of the mixed-cell partitionings: the serial and the B-tree partitionings (4+
materials).

2 Problem formulation
Consider an open polygon 2 that represents a mixed cell containing M > 3 differ-
ent materials. Let w,, be an open subset of 2 that specifies the space occupied by

the m-th material, m = 1, M. Since {wy,, }_, represents a partition:

Q= Wm, wiNw; =0, 1# j,



(a) true partition (b) polygonal approximation

Figure 1. Example of the volume-conservative interface reconstruction.

i.e. the cell fractions (subcells) occupied by different materials do not overlap and

there is no void, then
M
D wml = o], (1)
m=1

where | - | denotes the volume of a measurable subset of R

If all the materials have polygonal shapes, the whole partition is referred to
as polygonal; in this case we equip each subcell symbol with an extra “p” sub-
script: wp m-

Suppose that partition {w},}}_, specifies a true distribution of materials in
the mixed cell. The objective of the volume-conservative interface reconstruction (Fig-
ure[) is to find an approximate polygonal partition {w? .} | of < that preserves the
volumes of all materials:

’ wp, :n ” m = L—M

paml| = @

The first question one would ask is how to measure the proximity of the par-
titions? Clearly, two partition are only as close to each other as their respective
material fractions. In we introduced three different measures of the subcell
proximity:

o the defect of the first moment:

AMy = [[Mi(wp, ) = Mi(wm)l| = [wp] [ %e(whm) = Xe(win)ll;

where
M (w) :/de € R?

w
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is the first moment of a measurable set w C ©,
Xc(w) = Mi(w)/|w]
is the respective centroid (subject |w| > 0), and || - || denotes the Euclidean

vector norm;

e the area of the symmetric difference:
Aw = |wpmBwn| = [(Wpm Uwm) \ (@pm N W)l
e the Hausdorff distance between the subcell boundaries:

AT = dist(Ow? , , Ow? Emax{ max min —vy||; max min — }
( “pim wm) xeawz’;ymyeaw;“nux yH,xeBw;“nyeaw;mHX yH

The partition approximation errors can be defined as the vector-norm combina-
tions of the respective subcell approximation errors:

e the cumulative defect of the first moment:

M 5 1/2
Ay = { 3 M () = M)l 5
m=1

o the cumulative symmetric-difference area:

Aw = { S b}

m=1
o the maximum distance between the boundaries:

AT = max_dist(dwy,, dwy, ,)-
m=1,M ’

Among these three types of the partition approximation error, AM; is the weak-
est, and AT is the strongest one (convergence in AT’ implies convergence in Aw,
and convergence in Aw implies convergence in AM;). By default the reconstruc-
tion error is measured in terms of AT'. Thus, a reconstruction is known to be
k-th-order accurate, if it results in AT = O(h¥) for all sufficiently small i (the
size of the cell). Since both the true and the approximate interfaces are confined
within the cell, an arbitrary partitioning is at least 1st-order accurate.

The second question would be: what kind of approximate mixed-cell parti-
tions are of interest to us? We are looking for the solution {w ,,}7_, in the class

m=1
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of the polygonal partitions that can be obtained from ¢ with a series of successive
dissections (like the one shown on Figure [Ib). The main reason for this choice is
that all known volume-conservative interface reconstruction methods are formu-
lated in terms of two materials, i.e. are able to divide a mixed cell into two part
(most commonly, with a linear interface). Therefore the dissection is the simplest
(and usually the only) basic operation available for constructing a multi-material
partition.

3 Volume-of-fluid legacy

Volume-of-fluid (VoF) methods perform the volume-conservative interface recon-
struction based on the material volume data only. All VoF interface reconstruc-
tion algorithms are designed to separate two materials. The most common inter-
face approximation consists of a single linear interface per mixed cell. Since the
material volumes are preserved by the reconstruction, the location of the inter-
face is uniquely determined by the direction of the interface normal. There are
many different algorithms to derive the normal in the VoF context (i.e. from the
material volumes, for details refer to [5 [11]); all these methods require the ma-
terial volume data from the direct neighbors of the mixed cell. Therefore in the
course of this section we always assume that © is surrounded by other cells that
provide the data for the evaluation of the interface normals.

3.1 The partitioning scheme choices

We were able to identify four different partitioning schemes based of the two-
material interface reconstruction. Since there is no established name convention
for the multi-material interface reconstruction schemes, we took the liberty to
come up with our own.

Partitioning scheme 1 (Independent Dissections (ID), mentioned in [3])). In a
completely independent manner calculate M linear interfaces inside 2, such that the
m-~th interface, m = 1, M, separates the m~th material from the rest.

The m~th material occupies the space w, ., behind the m-th interface, m =1, M.

Since the reconstruction preserves the material volumes, the cell fractions
{ws }M_, obtained with the Independent Dissections inevitably overlap, leav-
ing the room for the void. The resulting material distribution in a mixed cell is
completely unphysical ({w} ,,}2]_; is not a valid partition of ), but still may be
considered acceptable by those who perform the reconstruction in hydro simu-

lations just to decrease the diffusion of the interfaces. This algorithm is always
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1st-order accurate. On the positive side, all M interfaces can be calculated in
parallel.

Partitioning scheme 2 (Parallel Dissections (PD), a.k.a. “onion-skin” model [12|
31). Given a particular material order, in a completely independent manner calculate
M-1 linear interfaces inside <2, such that the m-th interface, m = 1, M-1, separates the
mixture of the first m materials from the rest.

If the m-th interface is located behind the (m+1)-th one for all m = 1, M-2, then the
partitioning can be completed successfully, otherwise the partitioning fails. In the former
case the resulting interfaces do not intersect (are “parallel”), and therefore the materials
can be placed as follows:

1) the 1st material occupies the space wy, ; behind the 1st interface,

2) the 2nd material occupies the space wy, , between the 1st and the 2nd interfaces,

m) the m-th material occupies the space wy, ,, between the (m-1)-th and the m-th in-
terfaces,

M) at last, the M-th material occupies the space wy, , in front of the (M-1)-th interface.

All the PD interfaces can be calculated in parallel, but a posteriori one has
to check whether they define a valid partition, i.e. whether the m-th interface is
actually located behind the (m+1)-th interface, m = 1, M-2.

The Parallel Dissections can successfully resolve the layered material struc-
ture, but it is impossible to guarantee the success of the Parallel Dissections in a
more general case.

Under the assumptions that:

1) the true partition is C?-parallel (i.e. the interfaces do not intersect and are
C?-differentiable),

2) the right material order is given,

3) the (two-material) interface reconstruction algorithm used is 2nd-order ac-
curate,

the Parallel Dissections are 2nd-order accurate. Note that, for any C?-parallel
partition there exist two (mutually reversed) material orders that yield a 2nd-
order accurate result with the Parallel Dissections.

Partitioning scheme 3 (Nested Dissections (ND) [9]). Given a particular material
order, in a completely independent manner calculate the normals of all M-1 Parallel
Dissections interfaces (the actual locations of the PD interfaces are irrelevant).

The materials are separated from the bulk one by one as follows:



1) The 1st material wy, | is separated from the cell 2 with the linear interface that has
the same normal as the 1st PD interface. The remaining part of the cell

_ —%
Wpor =Q\ Wy, 1

is further divided between the materials 2 through M.

2) The 2nd material wy, 5 is separated from wy, 5, with the linear interface that has the
same normal as the 2nd PD interface. The remaining part of wp, >

_ —x%
Wp 3+ = Wp 2+ \ng

is further divided between the materials 3 through M.

m) The m-th material Wy m 18 separated from wy, m. with the linear interface that has
the same normal as the m-th PD interface. The remaining part of wy m+

— —
Wp,(m+1)+ = Wp,m+ \wp,m

is further divided between the materials m+1 through M.

M) Finally, the remaining space wy, \, is intended to the M-th material.

The construction of the interfaces in this case can not be parallelized com-
pletely: although the evaluation of the normals can be carried out in parallel,
their actual locations can be identified only in series.

The Nested Dissections scheme can be viewed as a robust modification of the
Parallel Dissections. Indeed,

e it always results in a valid partition,
e the ND and PD interface normals are always identical, and

e the ND and PD partitions are also identical, unless the Parallel Dissections
fail.

Contrary to the Parallel Dissections, the Nested Dissections scheme does not re-
quire the materials to be layered to get a valid partition. The result of the ND
partitioning can be classified as a polygonal serial partition. A mixed-cell partition
is called C?-serial, if all the materials can be separated from the bulk one by one
with C2-differentiable interfaces. If the separating interfaces are linear, then the
C?-serial partition is polygonal. Parallel partition, introduced above, is a serial
partition with non-intersecting interfaces.

One may guess that it is possible to get a 2nd-order accurate ND reconstruc-
tion of any C?-serial partition. Unfortunately, it is not true: the Nested Dissec-
tions are 2nd-order accurate only under the same conditions as the Parallel Dis-
sections are. The ND approximation to the C?-serial partition with intersecting
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interfaces is only 1st-order accurate. This statement can be explained with a sim-
ple T-junction (Figure[6) example. The true interface bounding the group of the
tirst two materials (the right order is assumed) is non-smooth, and therefore its
PD approximation is only 1st-order accurate, which automatically limits the ac-
curacy of the ND reconstruction to the 1st order.

We couldn’t find any description of the Nested Dissections in literature; our
knowledge of this partitioning scheme comes from R. Garimella [9].

Partitioning scheme 4 (Serial Dissections (SD)). Given a particular material order,
separate materials from the bulk one by one as follows:

1) Construct the linear interface that separates the 1st material wy, | from the cell .
The remaining part of the cell

_ —%
(.{)p72+ = \ wp,l

is further divided between the materials 2 through M.

2) Construct the linear interface that separates the 2nd material from wy, ».. The re-
maining part of wy, 24
wp73+ = Q \w;.;vz

is further divided between the materials 3 through M.

m) Construct the linear interface that separates the m-th material from wy, .. The
remaining part of Wy m+

_ —x
wp,(m+1)+ =Q \ wp,m

is further divided between the materials m+1 through M.

M) Finally, the remaining space wy, ) is intended for the M-th material.

The construction of the individual interfaces by this partitioning scheme is
completely serial. The major difference from the Nested Dissections consists in
evaluation of each interface normal only after the space occupied by all the pre-
ceding materials has already been eliminated from consideration; this gives a
chance to calculate the interface normal with higher accuracy.

In order to get a 2nd-order accurate SD reconstruction of a C?-serial partition,
it is absolutely essential to separate the materials in adjacent multi-material cells
synchronously. This requirement is explained by the need to use the material
volume data from the direct neighbors of the mixed cell for the evaluation of the
interface normal; in order to construct a 2nd-order accurate interface approxima-
tion, it is important to eliminated from consideration the space already occupied
by all the preceding materials not only inside the mixed cell, but also inside its
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direct neighbors. Therefore, a 2nd-order accurate SD reconstruction is feasible
only for an isolated cluster of adjacent multi-material cells that share a common
material order.

When it comes to reconstructing the layered material structure, the Serial Dis-
sections are more tolerant to the material order choice than the Parallel Dissec-
tions: for any C2-serial partition there exist 2"/ ~! different material orders that
yield a 2nd-order accurate result with the Serial Dissections.

The requirement to construct the interfaces in adjacent mixed cells in sync
makes the Serial Dissections implementation in the VoF context cumbersome.
We couldn’t find any description of the Serial Dissections in literature, but there
is an evidence that this partitioning scheme is in use in LLNL [1].

* * *

After reviewing the partitioning schemes used with VoF, one may conclude
that the multi-material interfaces reconstructed from the volume data can be
2nd-order accurate only for the layered and, conditionally, for the serial mate-
rial structure.

3.2 The material ordering choices

All the multi-material partitioning schemes presented (save the Independent Dis-
sections, which is not a valid partitioning scheme per se) rely on the user-defined
material order. Since the right choice of the material order is crucial for the ac-
curate reconstruction, a robust strategy for prioritizing the materials is of high
importance.

A convenient way to avoid this problem is to delegate the responsibility to de-
termine the material order to the end user. Nobody expects the user to intervene
each time a multi-material interface reconstruction routine is called; but the user
can be helpful defining a fixed material order. For many problems in impact and
penetration, where the materials are known to keep the initial layer structure,
the fixed order works well, but there are simple interface configurations (like the
A-junction shown on Figure or the “parquet” configuration from Figure[16),
for which no fixed material order will work.

We are aware of three dynamic priority systems that can be used in static in-
terface reconstruction :

) We discuss here neither the CTH-code priority systems by ].M. McGlaun (mentioned in [3]) and
by R.L. Bell and E.S. Hertel [2], nor the priority system for simulations with background material by
D. Benson [4}[5]: the systems used in the CTH code can not be used in static interface reconstruction,
since their heuristics depend on the direction of the fluid flow, and the background-material priority
system is not entirely dynamic, since the background material is assigned the fixed priority.



2
[

' A
(a) Bailey’s system (b) Bailey’s system
succeeds fails

Figure 2. (a) The Bailey’s system correctly assigns the lowest priority to the filament
material, if the filament is co-aligned with the grid lines; (b) it erroneously as-
signs the highest priority to filament material, if the filament is the dominantly
diagonal. The numerical labels above specify the sequence number (reversed
priority) of the material.

e D. Bailey [1] defines the material priority as the number of the surrounding
cells that include the material. This tactics determines the right sequence of
the Serial Dissections (not the Parallel Dissections!) for a single filament co-
aligned with the grid lines (Figure[2h), but not for a diagonal filament (Fig-
ure2b).

e S.Mosso and S. Clancy developed the system based on the approximate
material centroids. They consider a 3x3 cell block that includes the mixed
cell with all its direct neighbors and calculate the approximate centroids of
the materials inside the block from the volume data; for this purpose the
material in each cell is considered to be concentrated at the cell center. After
all the centroids are evaluated, the materials are arranged in the ascending
order of their centroid distances from the origin; the origin is located at the
north-west corner of the 3x3 block, if the set of the centroids has a domi-
nantly negative slope (Figure[3h), and at the south-west corner otherwise.

The Mosso-Clancy system correctly determines the material order for a sin-
gle filament (Figure [3a), but may give a wrong answer for a T-junction or
for the layered materials of number 4+.

Figure[3b shows an example of the T-junction, for which the Mosso-Clancy
system assigns the priorities incorrectly: the dark material on the right, al-
though has to be separated the first, is assigned the lowest priority. We
would like to point out that there is some ambiguity in the origin location
for this particular configuration. The rule for estimating the slope of the
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origin origin

(a) Mosso-Clancy (b) Mosso-Clancy (c) Mosso-Clancy
priority system succeeds priority system fails priority system fails

Figure 3. (a) The Mosso-Clancy system assigns higher priority to the material, whose
approximate centroid is located closer to the origin (the north-west or the
south-west corner of the 3x3 cluster). (b) An example of the T-junction, for
which the Mosso-Clancy priority system assigns the lowest priority to the
material that has to be separated first. (c) An example of the layered material
structure with coinciding approximate centroids, for which the Mosso-Clancy
system can not assign the priorities correctly.

centroid set is not deterministic in this case, and, depending on the choice
of the centroid to start with, may give the direction to place the origin at
either the north-west or the south-west corner. Neither choice of the origin
location helps the Mosso-Clancy system determine the right material order
for this Tjunction.

Figure [3k shows an example of the 4-material parallel partition, for which
the approximate centroids of two materials coincide. The Mosso-Clancy
system does not have a recipe for this case. To make the situation even
worse, one can break the symmetry of this configuration by rotating the in-
terface between the filaments around the cell center. If the interface rotates
counterclockwise, the approximate centroid of the right filament moves up,
and the approximate centroid of the left filament moves down. For all suf-
ficiently small rotation angles the origin location stays at the north-west
corner, and, according to Mosso and Clancy, the right-filament material has
higher priority over the left-filament material, which is not correct.

o Another priority system that relies on the material centroids was developed
by D. Benson [4]. He does not derive the centroid locations from the volume
data, like S. Mosso and J. Clancy do, but considers the material centroids to
be independent parameters of the system and keeps track of them explicitly;
strictly speaking, this feature prohibits the Benson’s priority system from

11


http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf

(a) (b)

Figure 4. The Benson’s system assigns the priorities according to the order of the mate-
rial centroid projections on the line resulting from the least square fit to the set
of the centroids. There are two different material orders to choose from: the
forward (grey) and reverse (black). When the materials in the true partition
are layered, like on picture (b), it does not pose a problem: both orders are
equivalent for the partitioning purposes and result in the same approximate
partition. Otherwise, if the true interfaces form a junction, like on picture (c),
these two orders are not equivalent, and at least one of them is wrong,.

being classified as volume-based (VoF).

The material order is given by the order of the centroid projections on the
line determined by the least square fit to the set of the centroids. This strat-
egy successfully recovers the order of the layered materials even when their
number is high.

Note that the line to project the centroids on does not have a fixed posi-
tive direction. Depending on the choice of the positive direction (which is
completely arbitrary), one may get either the forward or the reverse mate-
rial order (see Figure[). For the layered material structure (Figure[4h) these
two orders are equivalent: the Parallel Dissections will result in the same
partition anyway. But if the true interfaces form a junction (Figure [db), at
least one of the orders is wrong. Unfortunately, there is no way to distin-
guish between the right and the wrong orders in this case.

* * *

It is true to say that the material order can be confidently determined from
the volume data only for the layered material structure.
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4 Moment-of-fluid perspective

The central idea of the Moment-of-Fluid (MoF) approach is to supplement the VoF
interface reconstruction input data set with the cellwise material centroids. The
material volumes and centroids form a natural input data set for the interface
reconstruction, which contains the essential information about the amount and
the average location of each material in a mixed cell. Since the interface recon-
struction is intended for the multi-material fluid flow simulations, it is important
to have the input composed of the quantities that can be accurately advanced in
time. The fact that the material centroids in the continuous flow move similarly
to Lagrangian particles [7] makes them a perfect choice for the interface recon-
struction input.

Similar to the VOF, the two-material MoF interface reconstruction algorithm [[7]
uses linear interface to separate the materials in a mixed cell. The volume and
centroid, or, equivalently, the first two moments of the material provide suffi-
cient amount of information to construct such a linear interface autonomously,
i.e. without any data from the adjacent cells. The direction of the interface nor-
mal is determined through minimization of the discrepancy between the actual
and the prescribed centroids, subject to matching the prescribed volume exactly.
The results of the MoF reconstruction is the volume-preserving mixed-cell partition
that minimizes the defect of the first moment. If the true interface is C?-differentiable,
the MoF reconstruction is 2nd-order accurate; if the true interface is linear, the re-
construction is exact.

In the multi-material case the MoF interface reconstruction requires the ma-
terial volumes {|w},|}M_, as well as the centroids {x},}_,, where x}, = x.(w},),
m=1,M.

4.1 The partitioning scheme choices

Each of the multi-material partitioning schemes described in the previous section
can be transparently combined with the two-material MoF algorithm. There is an
essential difference though. The MoF reconstruction does not depend on the data
from the adjacent cells. This fact makes the Serial Dissections, so cumbersome
and restrictive with VOF, the most suitable partitioning scheme for MoF: there is
no need to synchronize the construction the interfaces in adjacent multi-material
mixed cells to get a 2nd-order accurate result.

With the right material order, the SD reconstruction of a C%-serial partition is
2nd-order accurate; the SD reconstruction of a polygonal serial partition is exact.

13



true partition SD approximations obtained with different material orders

-

AM;=3.8%-3 || AM;=7.75e-3 AM;=1.14e-2

(a) (b) (c) (d)

Figure 5. As an illustration of the Multi-Material MoF strategy, we present here the C2-
serial partition and its SD approximations obtained with different material
orders; at the bottom of each approximate partition we specify the respective
(cumulative) defect of the first moment. The approximate partition obtained
with the right material order (b) results in the lowest defect.

4.2 Automatic material ordering

The major advantage of the MoF approach over the VoF one is that it can derive
the right material order automatically. The governing principle of the moment-
based interface reconstruction is finding the volume-preserving mixed-cell partition
that minimizes the defect of the first moment. In the two-material case this principle is
used to determine the direction of the interface normal; in the multi-material case,
it can be used to find the right material order for the Serial Dissections. Strictly
speaking, the right material order is determined indirectly by performing the SD
partitioning for each possible material order and choosing the one that results in
the minimal defect of the first moment (see Figure[5).

Algorithm 1 (Multi-Material MoF). Given a partitioning scheme, generate all possible
trial partitions. For every trial partition {wy, ,, }M_, evaluate the cumulative defect of the
first moment

M (fonn i) = {2 MG () — M

Mo 1/2
= {2 ol Ixelopm) = xe(r) I}

Choose the partition {w;

», mdM_ that results in the minimal defect.

Whenever used in combination with the Serial Dissections partitioning scheme,
the Multi-Material MoF algorithm will be referred to as MoF-SD. Such an algo-
rithm has combinatorial complexity in the number of materials: to get the answer,
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one has to try all M! material orders. On the other hand, it is reasonable to ex-
pect only a limited number of the mixed cells in the whole computational grid to
contain 3+ materials. Therefore, for a moderate ), the computational overhead,
associated with the optimal order search, is not likely to be significant. Also, the
various material orders can be effectively tried in parallel.

The Multi-Material MoF algorithms tries to place the materials as close to their
true locations as possible. If the true partition is polygonal serial, then there exists
a material order, for which the Serial Dissections result in the exact reconstruc-
tion. The exact reconstruction has zero defect of the first moment. And, since the
polygonal serial partition is uniquely identified by the set of the material centroids (the
first moments) [6], any other trial serial partition should have a non-zero defect,
i.e. can not be a minimizer. The last observation, along with the fact that the
first moment defect continuously changes with the shape of the subcells, sug-
gests that the MoF-SD algorithm should guess the material order correctly not
only for a polygonal serial partition, but also for any C?-serial partition with the
sufficiently low interface curvature.

We claim that the MoF-SD algorithm results in the 2nd-order-accurate ap-
proximation to any C?-serial partition.

4.2.1 Numerical tests

To support our claim, we tested three different mixed-cell layouts (see Figure [6):

e a filament (no junction),

e a Tqunction,

e and a Y-junction.

The first two configurations are C?-serial partitions, the third one is not. The
examples of the moment-based reconstructions of these interface configurations
for R = h and R = 64h are presented on Figures[7land [§ respectively.

Each of the three setups above is described by two parameters: the size of
the cell & and the curvature 1/R of the interfaces, which allow a unique non-
dimensional combination h/R. The interface reconstruction errors AM;, Aw,
and AT, introduced in Section 2] (page [4), should also be the functions of these

two parameters. It is clear that if the h/R ratio is fixed, then the interface recon-
struction errors scale according to their respective dimensions:

AM; = O(h?),
Aw = O(h?),
AT = O(h);
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filament T-junction Y-junction

Figure 6. Three types of the 3-material cell mixed-cell layouts. The filament and the
T-junction are examples of C?-serial partitions, but the Y-junction is not. The
coordinates of the points are given in & (size of the cell) units. All the interfaces
have the same curvature 1/R.

the expressions above may include the interface curvature only as a part of a
non-dimensional constant:

AM, = O((h/R)*'h3),
Aw = O((h/R)™h2), @)
AT = O((h/R)™h),

where the exponents a1, az, a3 depend only on the type of the junction and can
be identified through the direct error measurements.

To find the exponents o and a» for a particular type of the interface junction,
we fixed the size of the mixed cell h = 1 and measured the dependence of the
AM; and Aw errors on the interface curvature; the results are presented on Fig-
ures 9] and By evaluating the slopes of the error graphs, one may conclude
that for the filament a1 = 2, ap = 1, for the Tjunction a; = a3 = 1, and for the
Y-junction oy = g = 0.

Since the direct measurement of the maximum distance AT between the true
and the reconstructed interfaces is somewhat tricky, we decided to use geometri-
cal considerations to find «3. Let us take a look at the average deviation AT of the
reconstructed interface from the true one, which we define as

AT = Aw/|T],

where |T'| = O(h) is the total length of the true interfaces inside the mixed cell.
Since the true interfaces in our experiments are piecewise-circular and the recon-
structed ones are polygonal, AT and AT are equivalent, i.e. for each particular type
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filament T-junction Y-junction

(I = h)

true partition

MoF-SD
reconstruction

Figure 7. The test partitions (top row, the radius of the interface curvature R = h) and
their MoF reconstructions obtained with the Serial Dissections (bottom row).
The MoF algorithm tries to place the materials as close as possible to their true
locations, even when the structure of the true partition is beyond the scope of
the partitioning scheme (the Y-junction).

of the interface junction there exist constants 0 < ¢; < ¢z independent of both h
and R, such that
1 AT < AT < AT

Therefore
AT = O(AT) = O(Aw/|T|) = O(Aw/h),

which along with (2) results in a3 = as.

Table 1l summarizes the asymptotic behavior of the interface reconstruction
errors. The MoF-SD reconstruction is 2nd-order accurate, as long as the true
partition is C%-serial (the filament or the T-junction); for the Y-junction it is only
1st-order accurate.
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filament

(R = 64h)

true partition

T-junction

Y-junction

MoF-SD
reconstruction

Figure 8. The test partitions (top row, the radius of the interface curvature R = 64h)
and their MoF-SD reconstructions (bottom row). As the interface curvature
vanishes, the MoF-SD reconstructions of the C?-serial layouts (the filament
and the T-junction) converges to their respective true partitions.

Table 1. The asymptotic (h < R) behavior of the interface reconstruction errors.

error || filament | THjunction | Y-junction
AM, | O(h*/R?*) | O(h*/R) O(h?)
Aw | O(h*/R) | O(h*/R) O(h?)
AT | O(R*/R) | O(h*/R) O(h)
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Figure 9. The cumulative defect of the first moment AM; as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).

-15

—— filament
6] ===- T+junction
——  Y-junction
-6.5 I | | | |
1 2 3 4 5 6
logy(R/h)
A M, error

log,(R/h) || filament | Tjunction | Y-junction

1.26e-3 3.89e-3 9.44e-3
4.39e-4 1.86e-3 1.00e-2
1.37e-4 9.22e-4 1.02e-2
3.88e-5 4.60e-4 9.80e-3
1.04e-5 2.30e-4 9.77e-3
2.70e-6 1.15e-4 9.76e-3
6.87e-7 5.75e-5 9.76e-3

AN Ol &= W NN, O
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Figure 10.

The cumulative symmetric-difference area Aw as a function of the interface

curvature 1/R (the size of the mixed cell is fixed h = 1).

—_— filament So
—-——- Tjunction R ~~.
——  Y-junction >
i 2 3 5
log,(R/h)
Aw error
log,(R/h) || filament | T-junction | Y-junction
0 1.35e-1 7.78e-2 1.75e-1
1 8.19e-2 3.68e-2 1.70e-1
2 4.64e-2 1.81e-2 1.66e-1
3 2.50e-2 9.04e-3 1.54e-1
4 1.31e-2 4.51e-3 1.53e-1
5 6.67e-3 2.26e-3 1.53e-1
6 3.36e-3 1.13e-3 1.53e-1
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4.3 Automatic material aggregation

The search of the best approximate mixed-cell partition, performed by the Multi-
Material MoF algorithm, does not limit the choice of partitioning scheme in any
way. Therefore, in order to achieve a lower defect of the first moment, one may
expand the family of trial partitions at will. When a mixed cell contains 4+ ma-
terials, the Serial Dissections partitioning scheme yields a simple but powerful
generalization: instead of separating materials from the mixed cell one by one,
one may recursively separate the groups of materials.

Partitioning scheme 5 (B-Tree Dissections (BTD)). Given a particular material order,
pick an arbitrary m between 1 and M-1 to construct the linear interface that separates
the first m materials from the rest, and then recursively subdivide these two groups until
all the materials are completely separated. The input moments for separating a group of
materials are given by the sum of the respective moments of all the constitutive materials.

This “divide-and-conquer” partitioning algorithm generates (M-1)! different
partitions for a given material order, which comes to the total of M!(M-1)! trial
B-tree partitions, compared to the total of M ! trial serial partitions. With a greater
number of trial partitions available, one can explore a more diverse family of the
interface layouts, and, therefore, has higher chances to attain a lower defect of
the first moment.

The price one have to pay for these virtues is the higher complexity (addi-
tional factor of M-1! compared to the MoF-SD) of the Multi-Material MoF algo-
rithm, which, in combination with the B-Tree Dissections partitioning scheme,
will be referred to as MoF-BTD. Once again we want to point out that it is rea-
sonable to expect only a limited number of mixed cells with 4+ material in the
whole grid. Therefore, the computational overhead, associated with the search
algorithm, is unlikely to be significant. The growth of complexity can be partially
compensated by the parallel implementation: once the two groups are separated,
one can refine them further completely independently.

Note that the B-Tree Dissections partitioning scheme does not make much
sense in the VoF context, since it just complicates the choice of the right dissection
order, which is problematic even with the much simpler Serial Dissections.

The result of the B-Tree Dissections is a polygonal B-tree partition. A mixed-cell
partition of size M is called a C?-differentiable B-tree partition, if all the materials
can be separated from the rest with M-1 C?-differentiable interfaces (the separat-
ing interfaces may form junctions, but may not cross each other). If the separat-
ing interfaces are linear, then the C?-differentiable B-tree partition is polygonal.
Serial partition is a B-tree partition with fixed m = 1 (see the description of the
B-Tree Dissections above).
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X-junction N—junction A-junction

(05,0.8)
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I~ (0.76, 0.35)
[____ (078,035))

(0.24, 0.35)

v B

il

Figure 11. Three types of the 4-material mixed-cell layouts. The coordinates of the
points are given in h (size of the cell) units. All the interfaces have the same
curvature 1/R.

We claim that for any C?-differentiable B-tree partition the MoF-BTD algo-
rithm results in the 2nd-order-accurate approximation; if the B-tree partition is
polygonal, the result is exact.

4.3.1 Numerical tests

To support our claim and compare the accuracy of the MoF-BTD reconstruction
to the accuracy of the MoF-SD reconstruction, we tested three different mixed-
cell layouts (see Figure[11):

e an X-junction,
e an N-junction,
e and a A-junction.

The first two configurations are C2-differentiable B-tree partitions, but the
third one is not. Neither of the three partitions is C'*-serial. The examples of the
moment-based reconstructions of these interface configurations for R = h and
R = 64h are presented on Figures[12/and [13]respectively.

For both algorithms we measured AM; and Aw interface reconstruction er-
rors at various Rs to build the corresponding graphs (Figures 14/ and [15| respec-
tively). By evaluating the slopes of the Aw graphs one can find that the MoF-BTD
reconstruction of the X- and N-junctions is 2nd-order accurate, and the MoF-BTD
reconstruction of the A-junction is only 1st-order accurate. The Serial Dissec-
tions can not reproduce the structure of either of the test layouts and therefore
their MoF-SD reconstructions are only 1st-order accurate. Table [2 summarizes
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Table 2. The asymptotic (h < R) behavior of the interface reconstruction errors.

Serial Dissections

error || X-junction | N-junction | A-junction

AM; || O O(h?) O(h?)
Aw | O(r?) O(h?) O(h?)
AT O(h) O(h) O(h)

B-Tree Dissections

error | X-junction | N-junction | A-junction
AM, | O(R°/R?) | O(h*/R) O(h?)
Aw O(k*/R) | O(h*/R) O(h?)
AT O(h*/R) O(h?/R) O(h)

the asymptotic behavior of the MoF interface reconstruction errors for all three
test layouts.

At the end we would like to present four more configurations that can be
accurately reproduced by the Multi-Material MoF algorithm (Figure [16).
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X-junction N-junction A-junction

(It = h)

true partition

MoF-BTD
reconstruction

MoF-SD
reconstruction

Figure 12. The test partitions (top row, the radius of the interface curvature R = h) and
their MoF reconstructions obtained with the B-Tree Dissections (middle row)
and the Serial Dissections (bottom row). The MoF algorithm tries to put the
materials as close to their true locations as possible, even when the structure
of the true partition is beyond the scope of the partitioning scheme (the A-
junction layout is beyond the scope of the B-Tree Dissections, all three layouts
are beyond the scope of the Serial Dissections).

24


http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf
http://math.lanl.gov/~vdyadechko/doc/2006-mof-multi.pdf

X-junction N-junction A-junction

= 64h)

true partition

(R

MoF-BTD

reconstruction

MoF-SD
reconstruction

Figure 13. The test partitions (top row, the radius of the interface curvature R = 64h),
and their MoF reconstructions obtained with the B-Tree Dissections (middle
row) and the Serial Dissections (bottom row). As the curvature of the true
interfaces vanishes, the MoF-BTD reconstructions of the B-tree layouts (the
X-junction and the N-junction) converge to their respective true partitions.
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Figure 14. The cumulative defect of the first moment AM; as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).

Serial B-Tree
-7 X4unction
--~-- Nyjunction
—— A+junction
5 1 ‘2 é 4‘1 é 6
logy(R/h)
Serial Dissections B-Tree Dissections
AM, error A M, error
log,(R/h) X+junction | N-junction | A-junction log,(£/h) X-junction | N-junction | A-junction
0 1.93e-2 3.29¢-3 1.53e-3 0 7.64e-4 2.72e-3 1.53e-3
1 1.47e-2 4.36e-3 1.45e-3 1 1.39e-4 1.46e-3 1.33e-3
2 1.47e-2 4.78e-3 1.84e-3 2 2.06e-5 7.68e-4 1.53e-3
3 1.31e-2 4.65e-3 2.16e-3 3 4.5%-6 3.94e-4 1.76e-3
4 1.29e-2 4.68e-3 2.35e-3 4 1.37e-6 2.00e-4 1.91e-3
5 1.55e-2 4.6%-3 2.45e-3 5 2.59%-7 1.00e-4 1.99e-3
6 1.39e-2 4.70e-3 2.50e-3 6 6.48e-8 5.04e-5 2.03e-3
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Figure 15. The cumulative symmetric-difference area Aw as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).

-0.5

_all Serial B-Tree v h
X4unction
--—- N-junction
—— A-junction
-35 ; : : : :
0 1 2 3 4 5 6
log,(RR/h)
Serial Dissections B-Tree Dissections
Aw error Aw error
log,(R/h) | X4unction | Njunction | A-junction log,(R/h) | X4unction | Njunction | A-junction
0 3.02e-1 1.06e-1 1.11e-1 0 9.49¢-2 8.85e-2 1.11e-1
1 2.02e-1 1.24e-1 7.73e-2 1 3.78e-2 4.19e-2 7.79e-2
2 1.63e-1 1.36e-1 7.57e-2 2 1.63e-2 2.10e-2 7.70e-2
3 2.16e-1 9.84e-2 7.69e-2 3 7.58e-3 1.03e-2 7.89e-2
4 2.13e-1 9.6%-2 7.80e-2 4 3.68e-3 5.14e-3 8.04e-2
5 2.44e-1 9.63e-2 7.88e-2 5 1.81e-3 2.56e-3 8.13e-2
6 1.57e-1 9.5%-2 7.92e-2 6 8.99¢-4 1.28e-3 8.18e-2
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T T

“patchwork” “CND”

“parquet”

Figure 16. These four examples demonstrate the capabilities of the multi-material MoF
technique. Although the true configurations are not shown here, one can
easily guess them, since their MoF reconstructions are very accurate; the
“patchwork” and “parquet” reconstructions are exact. The top two examples
require the employment of the B-Tree Dissections, while the bottom ones can
be obtained with the Serial Dissections. There is a fixed material order that
can be used for “circles”, but no fixed order will work for the “parquet” con-
figuration. We would also like to emphasize the exceptional resolution of the
MoF method: in case the “patchwork” and “parquet” configurations the size
of the color tiles is comparable to the size of the grid cells.
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5 Concluding remarks

We reviewed the multi-material VoF interface reconstruction strategies and pre-
sented a new Multi-Material MoF algorithm.

Following the VoF strategy, the MoF algorithm can construct a serial mixed-
cell partition by separating materials from the cell one by one. The major ad-
vantage of the MoF approach over the VoF approach is that the former provides
sufficient data to choose the best approximate partition (derive the material or-
der) automatically. Also, the Multi-Material MoF algorithm can go beyond the
traditional serial partitions and reconstruct an arbitrary C*-differentiable B-tree
mixed-cell partition with 2nd-order accuracy, which can hardly be achieved in
the VoF context.

Although our discussion evolved around 2D case, it is clear that all the parti-
tioning and ordering strategies described are dimension-independent and there-
fore are applicable in 3D.
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