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Abstract

This thesis focuses on the development of a theoretical approach that relates

the electronic properties of large conjugated molecules directly to the mo-

tions of electron-hole pairs in real space. A physical picture is obtained using

collective electronic oscillators (CEO) which represent the dynamics of the

optically-driven reduced single-electron density matrix. This representation is

displayed using two-dimensional electronic mode matrices. It pinpoints the

origin of each optical transition and identifies spatial coherences and the un-

derlying saturation sizes.

The CEO are calculated using the Time-Dependent Hartree-Fock approx-

imation for the equation of motion for the time-dependent reduced single-

electron density matrix. These electronic normal modes are computed directly

as eigenmodes of K2 ×K2 Liouville operator, K being the basis set size. An

iterative Density-Matrix-Spectral-Moments-Algorithm (DSMA) has been de-

veloped to diagonalize this operator. The DSMA computational time (and

memory) requirements scale very favorably with system size: ∼ N3 (and N2).

Linear and nonlinear optical polarizabilities of large organic molecules with

hundreds of heavy atoms have been calculated with moderate computational

effort. Connection to molecular excited states has been made as well. Simple

expressions have been derived which predict the trends for the off-resonant

optical polarizabilities of polyene chains and reproduce well the magnitudes of

polarizabilities and their scaling with molecular size and bond-length alterna-

tion.

A Fortran 77 code, which calculates molecular electronic spectra using the

DSMA algorithm, was developed. This code interfaces the CEO with stan-

dard quantum chemistry programs, employs the ZINDO package to generate

the INDO/S hamiltonian using ab-initio optimized molecular geometry, exper-

imental X-ray diffraction, or NMR data.
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ABSTRACT vi

Several applications of the CEO are made. These include size-scaling and

crossover to the bulk of the optical nonlinearities of polyacetylene (up to 300 re-

peat units and seventh order response); real-space two-dimensional analysis of

collective optical excitations in Poly(p-phenylene vinylene) (PPV) oligomers,

stilbenoid aggregates, acceptor-substituted carotenoids, porphins, and pheny-

lacetylene dendrimers. The origin, scaling, and saturation of second order

polarizabilities in donor/acceptor polyenes and femtosecond four-wave mixing

in conjugated polyenes are discussed.
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[1.441 × 10−23esu], eÅ3V −2 [4.323 × 10−29esu], and eÅ4V −3
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Chapter 1

Introduction

Investigating the electronic structure of organic materials constitutes an im-

portant fundamental task of modern chemistry. The electronic excitations,

charge-transfer, energy-transfer, and isomerization of such systems have been

thoroughly studied and form the basis for our understanding of the photo-

physics and photochemistry of complex molecules [4–7]. For example, photo-

synthesis and other photochemical biological processes which constitute the

basis of our life on the Earth involve conjugated chromophores such as por-

phyrins and chlorophylls. These fundamental studies are closely connected to

the technological applications. The nonlinear optical properties of large con-

jugated and aggregated polymers have been studied in search for new organic

optical materials with large nonlinear polarizabilities [8–11,1,12–15] with po-

tential applications to light emitting diodes, ultrafast switches, photodetectors

and optical limiting materials [16–22].

One of the most important tools in the study of molecular electronic struc-

tures is optical spectroscopy which allows chemists and physicists to probe the

dynamics of vibrations and electronic excitations within molecules and solids.

Spectroscopic experimental investigations of organic molecules are more diffi-

cult than inorganic semiconductors due to problems related to sample-quality,

controlled synthesis and poor solubility of large molecules [23,24]. The theo-

retical models used for describing molecular spectra versus those for extended

1
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solids are usually quite different, and certain systems, such as clusters and

polymers, are not readily described by either of these limiting cases.

The prediction and interpretation of spectroscopic measurements usually

involves solving the many-electron problem, which requires an extensive nu-

merical effort. The molecular methods can be classified into two major types,

depending on the way they treat the coupling to the optical field. The first is

based on a variational and perturbative treatment of the ground state in the

presence of the electric field. For example, the Coupled-Perturbated Hartree-

Fock (CPHF) procedure computes off-resonant optical polarizabilities by eval-

uating energy derivatives of molecular Hamiltonian perturbed by external

static field. It involves expensive ab initio calculations with basis sets includ-

ing diffuse and polarized functions, that are substantially larger then those

required for computing the ground- state properties [10]. The second type

uses time-dependent perturbation theory, which relates optical response to the

properties of the excited states. For example, the Configuration-Interaction

/ Sum-over-States (CI/SOS) method [11,25] based on the expansion of the

Stark energy of the molecule in powers of electric field, involves the calcu-

lations of both the ground state and excited states wavefunctions and the

transition dipole moments between them [26,27]. Despite straightforward im-

plementation of the procedure and the interpretation of the results in terms of

quantum states (which is common in quantum chemistry), special care needs

to be taken when choosing the right configurations. In addition, this method

is not size-consistent [28,29] i.e. intrinsic interference effects resulting in an

almost cancellation of very large contributions further limit its accuracy. The

CI/SOS approach has been widely applied using semiemperical Hamiltonians

(e.g. simple tight-binding or Hückel, π-electron Pariser-Par-Pople (PPP), Va-

lence Effective Hamiltonians (VEH), Complete Neglect of Differential Overlap

(CNDO), and Intermediate Neglect of Differential Overlap (INDO) models)
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[10,11,30–37].

On the other hand, large polymers can also be treated using semiconductor

band theories that focus on the dynamics of electron-hole pairs as opposed to

the molecular viewpoint [38]. The size-scaling of the optical response, and

the transition between these two regimes has not been fully explored for the

lack of adequate theoretical methods. The global eigenstates carry too much

information about the system, which makes it hard to use them efficiently in

the interpretation of optical response and in the prediction of various trends.

Band theories neglect electronic correlation effects in the G and Si, and because

they are formulated in momentum (k) space they do not lend themselves very

easily to real-space chemical intuition.

To formulate a hybrid formulation that bridges the gap between the chem-

ical and semiconductor points of view we have to define I) an appropriate

amount of information about the many-electronic system necessary to calcu-

late molecular optical response, and II) an approximation which allows to solve

this many-body problem.

I. The reduced single-electron density matrix. The complete infor-

mation on the optical response of a quantum system is contained in its set

of many-electron eigenstates |ν〉, |η〉, . . . and energies εν , εη, . . . [26]. Using the

many-electron wavefunctions it is possible to calculate all n-body quantities

and correlations. Most of this information is, however, rarely used in the calcu-

lation of common observables (energies, dipole moments, spectra, etc.) which

only depend on the expectation values of one- and two- electron quantities. In

addition, since the number of states increases exponentially with the number of

electrons, exact calculations become impractical even for fairy small molecules

with a few atoms. A reduced description which only keeps a small amount of

relevant information is called for. An important example of such a method

is the density-functional theory (DFT) [39–43] which only retains the ground
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state charge density profile:

ρ̄nn = 〈g|c+n cn|g〉 , (1.1)

where |g〉 denotes the ground-state many-electron wavefunction and c+n (cn) is

the Fermi annihilation (creation) operators for the n-th basis set orbital. Ho-

henberg and Kohn’s theorem proves that the ground state energy is a unique

and a universal functional of ρnn [44,45], making it possible to compute self

consistently the charge distribution and the ground state energy. This ap-

proach has been remarkably successful, and extensions to excited states have

been made as well [42,43].

In this thesis a reduced description is built using the single-electron density

matrices [46–51]

ρνη
nm ≡ 〈ν|c+n cm|η〉 . (1.2)

|ν〉 and |η〉 represent the global electronic states of the system, whereas n and

m denote the atomic basis functions. These quantities carry more information

than ρ̄nn ≡ ρgg
nn

1, yet considerably less than the complete set of eigenstates.

ρνν is the reduced single-electron density matrix in the state ν. For ν 6= η ρνη

is the density-matrix associated with the transition between ν and η. When

the system is driven by an optical field, its wavefunction becomes a coherent

superposition of states

Ψ(t) =
∑

ν

aν(t)|ν〉 , (1.3)

and its density matrix is given by

ρnm(t) ≡ 〈Ψ(t)|c+n cm|Ψ(t)〉 =
∑
νη

a∗ν(t)aη(t)ρ
νη
nm . (1.4)

ρνη
nm are thus the building blocks for the time-dependent single-electron density

matrix ρmn(t).

1Abbreviated notation ρ̄ for the ground state density matrix ρgg will be used throughout
this thesis
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The optical response involves only reduced information about the global

eigenstates. This information is contained in the matrices ρνη. To illustrate

this let us consider the frequency-dependent linear polarizability α(ω) which

assumes the form

α(ω) =
∑

ν

2Ωνµgνµ
∗
gν

Ω2
ν − (ω + iΓ)2

(1.5)

where Γ is a relaxation rate, µgν = 〈g|µ|ν〉 are the transition dipoles, and

Ων ≡ εν − εg are the transition frequencies. The molecular dipole µ is a single-

electron operator which may be expanded in the form

µ =
∑
nm

µnmc
+
n cn , (1.6)

and we have

µgν〈g|µ|ν〉 =
∑
nm

µnmρ
gν
nm . (1.7)

Thus the matrices ρgν and the corresponding frequencies Ων contain all neces-

sary information for calculating the linear optical response. Higher order po-

larizabilities and other spectroscopic observables are computed in Chapters 2,

10, and 11.

II. The time-dependent Hartree-Fock approximation. Calculating

ρgν through Eq. (1.2) implies that one first needs to calculate the eigenstates

|ν〉 and |g〉 and then use them to compute the matrix elements. However,

the matrices ρgν and frequencies Ων can be calculated directly using the time-

dependent Hartree-Fock (TDHF) approach which allows us to avoid the tedious

calculations of global eigenstates [52–56]. This approximation assumes that the

many-body wavefunction is given by a single Slater determinant at all times

and can be formulated in terms of closed equations of motion for the single-

electron density matrix (see Chapter 2). These equations suggest an oscillator

(quasiparticle) picture of optical response: the linear part of the equations

describes the oscillators whereas the nonlinear terms represent anharmonicities

that are responsible for the nonlinear optical response. The matrices ρgν ≡ ξν
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2 appear as eigenmodes of the linearized TDHF equation with eigenfrequencies

Ων .

The TDHF equation of motion for the single-electron density matrix

(Eq. (2.21) in Chapter 2) was first derived by Dirac in 1930 [57]. This equa-

tion has been introduced and explicitly applied in nuclear physics by Ferrel

[58]. Since then the TDHF description was widely used in nuclear many-body

physics in 50-60th [52,53]. Sekino and Bartlett derived the TDHF expres-

sions for molecular optical polarizabilities using a density matrix formalism

[54,33,34]. This approach was further successfully applied to conjugated poly-

mer chains. The equations of motion for the time-dependent density matrix of

polyenic chain were first derived and solved in [59]. Then the TDHF approach

based on the Pariser-Par-Pople (PPP) hamiltonian was formulated and applied

to linear and nonlinear optical response of neutral polyenes (up to 40 repeat

units) [60] and PPV (up to 10 repeat units) [61]. The electronic oscillators

3 contributing to the response were identified and the size-scaling of optical

susceptibilities was analyzed. The PPP hamiltonian [62] has K/2 occupied

and K/2 unoccupied orbitals, K being the basis set size. Computations re-

quire calculating K2 electronic oscillators (eigenvectors of a K2 × K2 matrix

representing the linearized TDHF equations) which are linear combination of

all possible pairs of orbitals. It limited the studies to the PPP hamiltonian

parameterized only for carbon and nitrogen, and moderate chain sizes (few

tens of heavy atoms). The development of the classical TDHF representation

and algebra of electronic oscillators [63,56] reduced the number of variables

to K2/4 electron-hole oscillators which only represent occupied-unoccupied

orbital pairs.

2Abbreviated notation ξν for the family of single-electron density matrices ρgν will be
used throughout this thesis

3We shall refer to eigenmodes of the linearized TDHF equation ξν with eigenfrequencies
Ων as electronic oscillators since they represent collective motions of electrons and holes (see
Chapter 2)
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This thesis further advances of the CEO method. In Chapter 2 the Pariser-

Parr-Pople (PPP) and the Intermediate Neglect of Differential Overlap / Spec-

troscopy (INDO/S) semiempirical molecular hamiltonians are introduced. The

solution of the TDHF equations of motion for the reduced single-electron den-

sity matrix is expressed using electronic normal modes. An iterative DSMA

procedure for direct computation of dominant electronic oscillators is further

formulated and the efficiency of the DSMA calculations is illustrated. Fi-

nally, the real-space CEO analysis is outlined and the advantages of the den-

sity matrices versus states for representation of molecular optical response are

discussed. In Chapter 3 the CEO is extended by calculating the response

of the single-electron density matrix of a many-electron system to an exter-

nal field. A Time-Dependent Density-Matrix-Response-Function Algorithm

(DMRF) for inverting the resulting nonlinear response functions to obtain an

effective quantum multilevel system that has the same response is developed.

The number of effective states is gradually increased as higher-order nonlin-

earities are computed. The complete set of matrices ρνη out of computed

electronic modes ρgν and excited state energies can be calculated.

In Chapter 4 the size-scaling and saturation of off-resonant polarizabilities

(up to seventh order) of polyacetylene oligomers with up to 300 carbon atoms is

analyzed in terms of collective electronic oscillators computed using the DSMA

combined with the PPP hamiltonian. Simple analytical expressions for size and

bond-length alternation dependence of off-resonant polarizabilities are derived

using a single-oscillator approximation. Chapter 5 presents the CEO analysis

of absorption spectra of Poly(p-phenylene vinylene) (PPV) oligomers. Collec-

tive electronic normal modes are calculated using the DSMA combined with

the PPP hamiltonian. Spatial coherence displayed in two-dimensional plots

of the five electronic normal modes which dominate the optical response of

PPV oligomers with up to 50 repeat units (398 carbon atoms) in the 1.5 to 8
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eV frequency range suggests a saturation to bulk behavior at about 5 repeat

units. Linear absorption and off-resonant quadratic and cubic polarizabilities

of substituted carotenoids with varying acceptor strength are investigated in

Chapter 6 using CEO combined with the INDO/S hamiltonian. By varying

the polyene chain length we show that the response of symmetric molecules is

controlled by “bulk” delocalized excitations with coherence size ∼ 12 double

bonds whereas the response of short polar molecules is dominated by a local-

ized ”charge-transfer” excitation created at the acceptor end with coherence

and diagonal lengths ∼ 12 and ∼ 17 double bonds respectively. The DMRF

technique is applied to calculate the excited electronic states of carotenoids.

In Chapter 7 the absorption spectra of two families of dendrimers are ana-

lyzed by combining the CEO with the INDO/S hamiltonian. Electron-hole

pairs created upon optical excitation of conjugated dendrimers (fractal an-

tenna macromolecules) are shown to be localized within segments connected

by benzene rings substituted at the meta- position. These results may be used

in the design of artificial Light harvesting antennae with controlled energy

funneling pathways.

In Chapter 8 the CEO analysis of the absorption spectra of Free-Base and

Magnesium Porphins is presented. High frequency (4-6 eV) charge-transfer

type excitations are identified. Electronic spectra of a family of stilbenoid

dimers are calculated using CEO in Chapter 9. Comparison of the electronic

modes of molecular aggregates with the corresponding monomers identifies the

origin of the various optical transitions. The observed trends in absorption,

fluorescence, and radiative lifetime of these molecules are fully accounted for.

In Chapter 10 the size-scaling of polarizabilities of donor/acceptor substituted

elongated polyenes is investigated. Collective electronic normal modes are ob-

tained using the DSMA combined with the INDO/S hamiltonian. The second

order polarizability (β) is shown to originate from localized regions at the
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donor/acceptor ends and therefore saturates to a constant value, independent

on polyene size n, for large n. In contrast, the linear (α) and cubic (γ) polar-

izabilities have contributions from the entire chain and grow linearly with n.

The relevant electronic coherence sizes that control the optical response and

may be valuable in the design of new optical materials are identified.

Equations of motion which describe the nonlinear optical response of con-

jugated polyenes using the CEO representation are derived in Chapter 11.

Specific signatures of electronic correlations which enter as anharmonicities

and scattering between oscillators are predicted in ultrafast resonant four-wave

mixing. Only few resonant oscillators need to be considered explicitly; effects

of the remaining (off resonant) oscillators are introduced via renormalized an-

harmonic coupling coefficients. The connection with inorganic semiconductors

is established. Finally the main results of the thesis are discussed and summa-

rized in Chapter 12.



Chapter 2

Collective Electronic Oscillator
(CEO) Representation of
Optical Response

2.1 The Pariser-Parr-Pople (PPP) and the In-

termediate Neglect of Differential Overlap

/ Spectroscopy (INDO/S) Hamiltonians

Let us consider a general system of N electrons which can occupy K single-

electron states (N ≤ K) and interact with an external field. The Hamiltonian

is most generally is given by [51]

Ĥ =
∑
mnσ

tmnc
+
mσcnσ +

∑
mnkl
σσ′

〈nm|kl〉c+mσc
+
nσ′ckσ′clσ − E(t)

∑
mnσ

µmnc
+
mσcnσ, (2.1)

where subscripts i, j, k, l run over known spatial atomic basis functions {χn}
and σ, σ′ label spin components. These atomic orbitals are assumed to be

orthogonal

〈n|m〉 =

∫
dr1χ

?
n(1)χm(1) = δnm. (2.2)

c+n (cn) are the creation (annihilation) operators which satisfy the Fermi anti-

commutation relations

cmσc
+
nσ′ + c+nσ′cmσ = δmnδσσ′ , (2.3)

10
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and all other anticommutators of c+ and c vanish.

The first term in Eq. (2.1) is the core-hamiltonian describing the kinetic

energy and nuclear attraction of an electron

tnm = 〈n|−1

2
∇2

1−
∑

A

ZA

|r1 −RA| |m〉 ≡
∫
dr1χ

?
n(1)

(
∇2

1 −
∑

A

ZA

|r1 −RA|

)
χm(1),

(2.4)

where RA is the nuclear coordinate of atom A. The second term represents

electron-electron Coulomb interactions where

〈nm|kl〉 =

∫
dr1dr2χ

?
n(1)χ?

m(2)
1

r12
χk(1)χl(2) (2.5)

are the two-electron integrals. The interaction between the electrons and the

external electric field E(t) polarized along the chosen z-axis is given by the last

term in Eq. (2.1), µ being the dipole operator

µnm = 〈n|µz|m〉 ≡
∫
dr1χ

?
n(1)z1χm(1). (2.6)

To solve the Schrödinger equation

ĤΨ = EΨ, (2.7)

for the ground state we assume the simplest antisymmetric wavefunction i.e

a single Slater determinant Ψ = |φ1(1)φ2(2) . . . φN(N) > [51] (Hartree-Fock

approximation). Here {φα} are the molecular orbitals. Following Roothaan’s

procedure [51] they are expanded as linear combinations of spatial atomic basis

functions {χn}
φα =

K∑
i

Cαiχi. (2.8)

The essence of the Hartree-Fock approximation is to replace the complicated

many-body problem by a one-electron problem in which electron-electron re-

pulsion is treated in an average way. By minimizing the ground state energy
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with respect to the choice of molecular orbitals one can derive a Hartree-Fock

eigenvalue equation:

FC = Cε. (2.9)

This equation may be recast in the form

[F (ρ̄), ρ̄] = 0. (2.10)

Hereafter we will focus on closed-shell molecules and exclude spin variables

[51]. Generalization to the unrestricted opened-shell case is straightforward.

For closed-shells the ground-state density matrix is related to the molecular

orbital expansion coefficients (Eq. (2.8)) as

ρ̄nm = 2

N/2∑
a

CnaC
?
ma. (2.11)

F (ρ̄) is the Fock matrix with matrix elements

Fnm(ρ̄) = tnm + Vnm(ρ̄), (2.12)

and the matrix representation of the Coulomb electronic operator V in the

atomic basis set {χn} is

V (ρ̄)mn =
K∑
k,l

ρ̄kl[〈mk|nl〉 − 1

2
〈mn|kl〉]. (2.13)

The Hartree-Fock equation (2.9) is nonlinear and should be solved iteratively

(the self consistent field (SCF) procedure). SCF starts by calculating the

average Coulomb field V from the initial guess of molecular orbitals. Then

the new set of orbitals is obtained solving the eigenvalue problem (2.9). Using

these new orbitals, we can obtain new field V and repeat the procedure until

self-consistency is reached.

In this Chapter we first consider a Pariser-Parr-Pople (PPP) parameteri-

zation of the hamiltonian (2.1):

Ĥ =
∑
mnσ

tmnc
+
mσcnσ +

1

2

∑
mn
σσ′

Vnmc
+
mσc

+
nσ′cnσ′cmσ − E(t)

∑
nσ

µnnc
+
nσcnσ. (2.14)
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Here each carbon atom has a single π orbital [60,55,61,62]. K then coincides

with the number of carbon atoms. PPP hamiltonian reproduces many impor-

tant properties of conjugated polyenes [62]. The first term of Eq. (2.1) is the

Hückel hamiltonian, where tnn =
∑

m Vnm is the Coulomb integral at the n-th

atom and tmn (m 6= n) is the nearest-neighbor transfer integral between the

n-th and m-th atoms: tn,n±1 = β − β′ln and ln is the deviation of the n-th

bond length from the mean bond length along the chain. The second term

(Eq. (2.13) representing electron-electron Coulomb interactions has the form:

V (ρ̄)mn = −Vmnρ̄mn + 2δmn

∑
l

Vmlρ̄ll. (2.15)

The repulsion between the n-th and m-th sites is given by Ohno’s formula:

Vnm =
U√

1 + (rnm/a0)2
(2.16)

where U = U0/ε is the on-site Hubbard repulsion and ε is the static dielectric

constant. The basis set is localized so that the dipole moment is diagonal

µnm = ernδnm. The parameters of the PPP model were adjusted to reproduce

the energy gap for polyacetylene (2.0eV ): U0 = 11.13eV , β0 = −2.4eV , β1 =

−3.5eV Å
−1

, ε = 1.5, a0 = 1.2935Å [60,55]. This hamiltonian was parametrized

only for carbon and nitrogen and, therefore, it allows to treat only a narrow

range of conjugated molecules.

The more rigorous semiemperical (INDO/S) hamiltonian reproduces the

spectra of simple chromophores at the singly excited CI level. The INDO

approximation [64–67] limits the basis set to valence orbitals of Slater type.

The exchange terms in the two-electron interaction are permitted only among

orbitals located on the same atom

〈χA
nχ

B
k |χA

mχ
B
l 〉 =

{ 〈χA
nχ

A
k |χA

mχ
A
l 〉 A = B

〈χA
nχ

B
k |χA

nχ
B
k 〉δnmδkl A 6= B

(2.17)

where χA
n belongs to atom A and χB

n to atom B. The four-dimensional matrix

〈χnχk|χmχl〉 thus becomes block-diagonal in two dimensions. The parame-

ters of the INDO/S hamiltonian are given in [64–67]. INDO/S (Spectroscopy)
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hamiltonian first introduced by Pople [64,65] and parameterized in the original

works of Zerner and collaborators [66–69] gains wide popularity in optical re-

sponse computations. INDO-CI calculations have been previously successfully

applied to studies of electronically excited states in a wide variety of chro-

mophores, including transition metals [66,67,69]. The ZINDO code developed

by Zerner and co-workers serves as a convenient platform for these calculations.

We found that the INDO/S hamiltonian works extremely well without further

reparameterization with the TDHF for a broad range of molecules. This com-

bination made it possible to calculate the optical properties of a broad range

of molecules.

2.2 The Single-Electron Density Matrix and

the TDHF equations

The TDHF approach provides a convenient approximation scheme for calculat-

ing the optical response of large molecules. The reduced single-electron density

matrix Eq. (1.4) representing the molecule driven by an external field is given

by ρ(t) = ρ̄+δρ(t) where the ground-state density matrix ρ̄ is the key input to

this calculations. The diagonal element of ρnm (n = m) represents the charge

at the m’th atomic orbital, and

qA =
∑
n∈A

ρ̄nn − ZA (2.18)

is the net charge on the atom A. The off-diagonal elements (n 6= m) repre-

sent the electronic coherences between atomic orbitals. In particular, ρ̄nAmB

describe the chemical bonding strength (bond-order) between atoms A and

B. The matrix elements of δρnm(t) represent the changes in these quantities

induced by the electric field.

We start with the Heisenberg equation of motion for ρnm(t) = 〈c+n cm〉:

i
∂ρnm

∂t
= 〈[c+n cm, H]〉 , (2.19)
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where hamiltonian H is given by Eq (2.1). Equation (2.19) is exact but not

closed since higher order products (two-electron density matrices ρ(2)
nmn′m′(t) =

〈c+n c+mcn′cm′〉(t)) show up in the right hand side. Writing equations of mo-

tion for these higher products will yield increasingly higher products. This

is the famous hierarchy of many-body dynamics that is common to classical

and quantum mechanics. To overcome this difficulty one need a truncation

procedure. The simplest assumes that the many-body wavefunction is given

by a single Slater determinant at all times. This yields the time dependent

Hartree-Fock factorization [70,55,56,63]

〈c+n c+mcn′cm′〉(t) = 〈c+n cn′〉〈c+mcm′〉(t) + 〈c+n cm′〉〈c+mcn′〉(t). (2.20)

Applying this approximation to Eq. (2.19) we obtain the following closed equa-

tions of motion for the single-electron density matrix ρ(t).

i
∂ρ(t)

∂t
= i

∂δρ(t)

∂t
= [F (ρ), ρ]− E(t) · [µ, ρ]. (2.21)

To zero order in the field we recover the stationary solution Eq. (2.10).

This set of K × K matrix equations may be solved numerically for δρ(t)

either in frequency [60,61] or time [71] domain. We can further restrict the

number of equation to variables which contain only occupied-unoccupied or-

bital pairs and develop an convenient algebra of electronic oscillators [63,56].

To that end we first decompose δρ(t) into two components

δρ(t) = ξ(t) + T (ξ(t)), (2.22)

where ξ represents the particle-hole (interband) and T (ξ) represents the

particle-particle and the hole-hole (intraband) parts. This decomposition is

illustrated by Fig 2.1.

Since the many-electron wavefunction is represented by a single Slater

determinant, the total density matrix ρ(t) must be a projector at all times

[52,72,56]:

(ρ̄+ δρ(t))2 = ρ̄ + δρ(t). (2.23)
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K

N

ρp-h

ρh-p ρh-h

ρp-p

ρ ξ T

Figure 2.1: Decomposition of the single-electron density matrix to the particle-
hole : hole-particle (interband) and particle-particle : hole-hole (intraband)
parts shown in the molecular orbital basis set representation. The dimension-
ality of density matrix ρ defined by the basis set size is K ×K. We assume N
occupied and K − N unoccupied orbitals: the ground-state density matrix ρ̄
is then diagonal in the particle-particle block and zero otherwise in molecular
orbitals. The dimensionality of interband and intraband parts are 2N(K−N)
and N2 + (K − N)2 respectively.

This property of ρ̄ allows us to project any matrix ξ into the particle-hole (p-h)

subspace

ξp−h = [[ξ, ρ̄], ρ̄] , (2.24)

Consequently, not all matrix elements are independent. The number of degrees

of freedom of δρ subject to the condition Eq. (2.23) is precisely the number

of its particle-hole matrix elements [56]. In Appendix 2.7 T (ξ) is expressed in

terms of ξ

T (ξ) =

(
ρ̄− I

2

)(
I −

√
I − 4ξ2

)
, (2.25)

where I is the unit K ×K matrix. Eq. (2.25) can be expanded in powers of ξ

T (ξ) = (I − 2ρ̄)(ξ2 + ξ4 + 2ξ6 + · · ·). (2.26)

An alternative expansion is given in Ref. [56,70]

T (ξ) =
1

2!
[[ξ, ρ̄], ξ] +

1

4!
[[ξ, ρ̄], [[ξ, ρ̄], [[ξ, ρ̄], ξ]]] + · · · . (2.27)

In Eqs (2.26) and (2.27), all ξ are taken at time t, ξ = ξ(t). The expan-

sions (2.26) and (2.27) are identical. For example, to second order in ξ,
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Eq. (2.27) reads 1
2!

[[ξ, ρ̄], ξ] = ξρ̄ξ − 1
2
(ρ̄ξ2 + ξ2ρ̄). The projection property

of ρ̄ [56] implies the following relations for any interband density matrix ξ:

ξ = ρ̄ξ+ ξρ̄ and ρ̄ξ2 = ξ2ρ̄ (note, that ξ2 is an intraband matrix). Using these

identities we recover the second order term in Eq. (2.26).

Projecting Eq. (2.21) to the particle-hole subspace using Eq. (2.24) we

obtain the following closed equations of motion for ξ.

i
∂ξ

∂t
− Lξ = R(ξ)p−h − E(t) · [µ, ρ̄], (2.28)

where L is a linear operator in Liouville space (i.e. superoperator) [73,70,55,56]

given by

Lξ = [F (ρ̄), ξ] + [V (ξ), ρ̄], (2.29)

and

R(ξ) = [F (ξ), ξ + T (ξ)] + [F (T (ξ)), ρ̄+ ξ]− E · [µ, ξ + T (ξ)] (2.30)

is the nonlinear part of the equation projected onto the particle-hole subspace

(Eq. (2.24)). The Fock operator F and the Coulomb operator V are defined

by Eqs (2.12) and (2.13).

The time-dependent polarization which determines all optical properties is

finally given by

P (t) = Tr(µξ(t)) + Tr(µT (ξ(t))). (2.31)

Eqs. (2.28) and (2.25) constitute the basic TDHF equations [56]. They

may be solved by expanding the density matrix in powers of the external field

ξ = ξ(1) + ξ(2) + · · · , T (ξ) = T (2)(ξ) + T (3)(ξ) + · · · , (2.32)

where T (j)(t) is expressed in terms of ξ(j) by comparing Eq. (2.26) (or

Eq. (2.27)) with Eq. (2.32):

T (1)(t) ≡ 0,
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T (2)(t) = (I − 2ρ̄)(ξ(1)(t))2,

T (3)(t) = (I − 2ρ̄)(ξ(2)(t)ξ(1)(t) + ξ(1)(t)ξ(2)(t)), (2.33)

T (4)(t) = (I − 2ρ̄)(ξ(3)(t)ξ(1)(t) + ξ(2)(t)ξ(2)(t) + ξ(1)ξ(3)(t)).

The polarization to j’th order in the external field E(t) is calculated by

taking the expectation value of the dipole operator µ with respect to the time

dependent density matrix

P (j)(t) = Tr(µδρ(j)(t)), (2.34)

with

δρ(j)(t) = ξ(j)(t) + T (j)(t). (2.35)

The original nonlinear equation (2.28) is then transformed into a hierarchy

of linear inhomogeneous equations. To j-th order we have

i
∂ξ(j)(t)

∂t
− Lξ(j)(t) = η(j)(t), (2.36)

where η(j)(t) is given in terms of ρ̄ and lower order ξ(k) k < j,

η(1)(t) = −E(t)[µ, ρ̄],

η(2)(t) = [[
(
[V (δρ(1)(t)), δρ(1)(t)] + [V (T (2)(t)), ρ̄]− E(t)[µ, δρ(1)(t)]

)
, ρ̄], ρ̄],

η(3)(t) = [[
(
[V (δρ(2)(t)), δρ(1)(t)] + [V (δρ(1)(t)), δρ(2)(t)] (2.37)

+ [V (T (3)(t)), ρ̄]− E(t)[µ, δρ(2)(t)]
)
, ρ̄], ρ̄].

The linear and non-linear optical response is calculated by solving

Eq. (2.36) either in the frequency domain or in the time domain. In the fre-

quency domain, the procedure involves diagonalizing the linearized Liouville

operator L which requires a large memory (∼ N4 where N is the total number

of orbitals in the system). Time-domain calculations do not require a large

memory (∼ N2) and may be applied for larger systems. However evaluating
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commutators in Eqs. (2.29) and (2.30) is time consuming. These difficulties

limit the application of the TDHF to basis set size of about 100 functions 1.

2.3 Properties of the Electronic Normal

Modes

Here a few properties of the tetradic linear M0 = N × (K − N) dimensional

space defined by the Liouville operator L [73,70,55,56] are reviewed. A scalar

product of any two interband K ×K matrices ξ and η which are the elements

of this space is defined by [73,70,56]

〈ξ|η〉 ≡ Tr(ρ̄[ξ, η]). (2.38)

We have used the bra (ket) to underline the similarity with Dirac’s Hilbert

space notation. The Liouville operator L is Hermitian with respect to this

scalar product:

〈Lξ, η〉 = 〈ξ, Lη〉 . (2.39)

Eq. (2.38) obeys the following properties:

〈ξ|η〉 = 〈η+|ξ+〉∗ = −〈η|ξ〉 . (2.40)

The eigenmodes ξν and eigenfrequencies Ων of L satisfy the equation.

Lξν = Ωνξν Lξ+
ν = −Ωνξ

+
ν , ν = 1, . . . ,M0. (2.41)

The eigenmodes come in conjugate pairs: Each vector ξν with frequency Ων

has a counterpart ξ−ν = ξ+
ν with frequency −Ων . Since L is real, the electronic

modes can be taken to be real as well. A classical mode picture of the optical

response is obtained by constructing the electronic oscillators defined by the

coordinate-momentum variables

Qν =
ξν + ξ+

ν√
2

, Pν = −iξν − ξ+
ν√

2
. (2.42)

1This estimate is based on a single MIPS R8000 processor on the SGI Power Indigo
workstation.
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P and Q satisfy the relation

LQν = ΩνiPν , LiPν = ΩνQν, ν = 1, . . . ,M0. (2.43)

We shall adopt the following normalization of the electronic modes [56]:

〈ξ+
α |ξβ〉 = δαβ, 〈ξ+

α |ξ+
β 〉 = 0; (2.44)

〈Pα|Qβ〉 = iδαβ, 〈Pα|Pβ〉 = 〈Qα|Qβ〉 = 0. (2.45)

The electronic oscillator is a pair of conjugated electronic modes (K × K

matrices ξν and ξ+
ν or Pν and Qν) with the frequency Ων Any interband K×K

matrix A can be expanded in the basis set of electronic oscillators as

A =
M0∑
ν=1

〈ξ+
ν |A〉ξν − 〈ξν|A〉ξ+

ν =
M0∑
ν=1

〈Qν|A〉iPν − 〈iPν|A〉Qν. (2.46)

2.4 The Density–Matrix–Spectral–Moment

Algorithm (DSMA)

The Density–Matrix–Spectral–Moments Algorithm (DSMA) [74,73,70] is an

approximate scheme for solving the TDHF equations which allows us to cal-

culate ξ(j) from the source (η(j)) by solving Eq. (2.36) without a direct di-

agonalization of L. This is accomplished by computing the set of electronic

oscillators which dominate the expansion of η(j). One can take η(j)(t) to be

real and express it in terms of our momentum variables as [73,70]

η(j) =
M0∑
ν=1

〈ξ+
ν |η(j)〉ξν − 〈ξν|η(j)〉ξ+

ν =
M0∑
ν=1

〈Qν|η(j)〉iPν =
M0∑
ν=1

µ(j)
ν iPν, (2.47)

where η(j) can be viewed either in the frequency or in the time domain, and

µ
(j)
ν =

√
2〈ξν|η(j)〉 = 〈Qν|η(j)〉 are the real frequency (or time) dependent

expansion coefficients. These electronic oscillators provide a convenient proce-

dure for solving Eq. (2.36) [56]. The formal solutions of Eq. (2.36) in the time
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and frequency domain are

ξ(j)(t) =

∫ t

0

dτe−iL(t−τ )η(j)(τ), ξ(j)(ω) =
1

ω − L
η(j)(ω). (2.48)

Substituting the expansion (2.47) for η(j) in these equations and utilizing the

eigenvector properties of the modes

e−iLtξν = e−iΩν tξν, e−iLtξ+
ν = eiΩνtξ+

ν ;

1

ω − L
ξν =

1

ω − Ων
ξν,

1

ω − L
ξ+
ν =

1

ω + Ων
ξ+
ν (2.49)

we obtain the solution of Eq. (2.36) in terms of eigenmodes ξν and ξ+
ν (or Pν

and Qν). For example, the j-th order interband component of the reduced

single-electron density matrix in frequency domain is given by

ξ(j)(ω) =
M0∑
ν=1

µ(j)
ν (ω)

[ Ων

Ω2
ν − ω2

Qν − iω

Ω2
ν − ω2

Pν

]
. (2.50)

Since only few electronic oscillators contribute significantly to the source in the

expansion (2.47), the summation can be truncated at some effective number

of oscillators M �M0 without sacrificing accuracy.

The family of the density-matrix spectral moments is defined as Sn ≡ Lnη

which are the expansion coefficients in the short-time evolution of the density-

matrix response function (see Appendix 2.8). These moments are used to

construct the main DSMA equations [73,70]

S(j)
n =

M∑
ν=1

Ωn
νµ

(j)
ν iPν, n = 0, 2, 4, . . . , 2M − 2, (2.51)

S(j)
n =

M∑
ν=1

Ωn
νµ

(j)
ν Qν, n = 1, 3, 5, . . . , 2M − 1, (2.52)

where S
(j)
0 = η(j) and S

(j)
n = LnS

(j)
0 , n = 1, 2, . . .. In principle, the spectral

moments Sn can be expressed using the electronic normal modes ξν, but the

choice of momentum-coordinate hermitian variables has two advantages: First,
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it allows to separate the total system of equations (2.51, 2.52) into two inde-

pendent subsystems (2.51) and (2.52), which is computationally preferable.

Second, the matrix η, which is the input to the procedure, is hermitian and

expressed through momentum variables (Eq. (2.47)). The higher moments Sn

are, therefore, either momentum or coordinate type.

The scalar products K(j)
n ≡ 〈S(j)

n |S(j)
n+1〉, n = 1, 2, . . . , 2M provide a set of

equations for the frequencies Ων and oscillator strength f
(j)
ν = (µ

(j)
ν )2Ων

2:

M∑
ν=1

f (j)
ν Ω2n

ν = K(j)
n n = 0, 1, 2, . . . , 2M − 1. (2.53)

The set of DSMA equations [(2.51)-(2.53)] is now complete. We start our cal-

culations by computing the moments S
(j)
n and K(j)

n by acting Liouville operator

L (2.29) on the source η(j) and using definition of the scalar product (2.38).

We then solve Eqs. (2.53) for the frequencies Ων and oscillator strengths f
(j)
ν .

These nonlinear equations have a simple analytical solution (Appendix 2.9).

Once we have Ων and µ
(j)
ν , we solve (2.51) and (2.52) for the modes Pν and

Qν. The most time consuming part of the DSMA is the calculation of com-

mutators. Typically only a small number of modes is required and the DSMA

greatly reduces the numerical effort involved in solving the complete TDHF

equations.

The procedure starts with a single mode approximation and by succes-

sively adding new modes improved approximations for frequencies and oscil-

lator strengths of the dominant modes is obtained, until some convergence

criteria are satisfied. The linear response j = 1 is calculated first. The result-

ing first order modes are used to calculate the relevant modes for the second

order response (j = 2) and so forth. Because of truncation atM oscillators, the

resulting electronic modes do not coincide with the TDHF modes. Eqs. (2.43)

2Quantities f
(j)
ν and µ

(j)
ν depend on the external field (Eq. (2.28)). For example, for linear

response we have f
(1)
ν ≡ −E(t)fν and µ

(1)
ν ≡ −E(t)µν . Here fν and µν are the oscillator

strength and the ground state dipole, respectively.
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Figure 2.2: Variation of electronic oscillator frequencies Ων , effective dipole
moments µ

(1)
ν , and first (α,) third (γ), fifth (δ), and seventh (ζ) off-resonant po-

larizabilities with the number of modes used for octateraene (N=8). The polar-
izabilities will be defined later in this Section. Here convergence of the DSMA
to the full TDHF calculation (M = 16 is demonstrated. The magnitudes of
polarizabilities are normalized at their converged values: α = 3.2× 10−23 esu,
γ = 6.6× 10−35 esu, δ = 1.4× 10−46 esu, ζ = 2.3× 10−59 esu.

hold approximately, but the normalization relations (2.45) are satisfied ex-

actly. These effective electronic oscillators give the best approximation for the

spectrum with a given number of features (M).

The following examples show the efficiency of the DSMA for calculations

done with the PPP hamiltonian. Convergence as a function of the number of

modes M , M = 1 − 6 is shown in Fig. 2.2 for octatetraene (N = 8). Only

few (3-4) modes contribute significantly to the response, but to calculate them

accurately we need to include some additional high frequency modes with very

small oscillator strengths. Using six modes we reproduce the frequencies and
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Figure 2.3: Convergence of the linear absorption (the imaginary part of α
(Eq. (1.5))) with the number of modes used for N=40 atom oligomer. The
linewidth is ε = 0.2eV . Note, that the fundamental band at 2.57 eV with
strength 109 eÅ2/V [1.57×10−21 esu] remains basically the same in all panels.

the first order effective dipoles µ
(1)
ν (ω = 0) to 10−8 of the values for the full

TDHF (16-mode) calculation. The figure also shows that the polarizabilities

converge much faster than the frequencies and dipoles of individual modes. The

convergence of the linear absorption (the imaginary part of χ(1) (Eq. (2.55)))

with the number of modes for a N=40 atom oligomers is displayed in Fig. 2.3.

Note that the strong band edge transition is reproduced well even at M=4.

The weaker transitions at higher frequencies require more modes. The con-

vergence of of the lowest three nonvanishing polarizabilities (α, γ, and δ) of

polyacetylene chains with up to 40 carbon atoms as a function of the number

of modes used is shown on Fig. 2.4. The linear response is well represented

by a single mode calculation whereas the 8 modes approximation gives good

values for high hyperpolarizabilities. The DSMA computational time (and

memory) requirements of scale very favorably with system size: ∼ N3 (and
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Figure 2.4: A - C) convergence of the lowest three nonvanishing polarizabilities
(α, γ, and δ) of polyacetylene chains (up to 40 carbon atoms) with the number
of modes used for calculations. The polarizabilities will be defined later in this
Section. Here convergence of the DSMA is demonstrated. The results obtained
with the full TDHF calculations (panel (A) and (B)) and with M = 12 modes
(panel (C) are shown by solid lines. Note that M = 7 modes approximation
gives good values for hyperpolarizabilities γ, and δ

N2) compared with ∼ N6 (and N4) for the TDHF and ∼ N8 (and N6) for the

SOS/CI. Furthermore, the computational time of the j’th order polarizabil-

ity scales only linearly with j. This makes it possible to calculate high order

nonlinearities of very large molecules [3] with modest computational effort.

One advantage of the DSMA is that it immediately gives a global overview

of the entire spectrum. However the number of effective oscillators M cannot

be increased at will to improve the accuracy. High moments scale as (Kn ∼
Ω2n) and are dominated by the high frequency tails. Therefore increasing
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the number of oscillators does not refine the low and middle frequency range.

In practice M is limited to ≤ 10 − 14. Applications of the DSMA using

the PPP hamiltonian which only describes the π-electron system allowed to

calculate accurately spectra of polyens dominating by a few lines. The INDO/S

hamiltonian includes also the valence electrons, therefore the source is not

limited to π−π? molecular excitations but also depends on a manifold of high-

frequency atomic transitions. For molecules with many peaks in the spectra,

the DSMA does not reproduce delicate spectral features such as excitations

with a small oscillator strength.

To improve the accuracy, the DSMA needs to be applied iteratively. The

DSMA automatically generates orthonormal effective oscillators (Eqs. (2.45))

which satisfy the eigenvalue equation (2.43) in an optimal way. Therefore, each

of the effective DSMA modes is a superposition of the exact TDHF modes with

similar frequencies. Thus the entire spectrum is divided into several regions.

Each effective oscillator is responsible for part of spectrum and it is dominated

by fewer exact oscillators than the initial source. This property allows to use

any effective mode Pν as a new fictitious source term η = iPν in the DSMA.

The resulting oscillators are much closer to the exact ones. This procedure

(i.e. using one of the new oscillators as a new fictitious source for the next

DSMA level) can be repeated several times until some convergence criteria are

satisfied. In practice this fictitious source is dominated by a single oscillator

(P1, Q1) which converges to the exact one. To recover the next mode, the

same iterative procedure can be applied with one principal difference: all input

sources must be made orthogonal to the lower modes. Thus by using

η⊥ = η −
recovered∑

k

〈Qk|η〉Pk, (2.54)

all the recovered modes are excluded from the source in the following calcu-

lations. We can continue this iterative process utilizing this orthogonalization
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procedure to refine several electronic modes. This yields an expansion of the

original source and allows us to focus on desirable fine features of the spectrum

at high resolution.

Linear absorption can be calculated using Eq. (1.5) recast in the form

α(ω) =
∑

ν

fν

Ω2
ν − (ω + iΓ)2

, (2.55)

where fν = 2ΩνTr(µξν)
2 is the oscillator-strength of the g to ν transition.

In principle, the frequency(time)-dependent nonlinear polarizabilities can

be calculated by applying the DSMA to the frequency(time)-dependent source

[Eq. (2.28)]. This is difficult because hundreds DSMA runs are needed to scan

accurately all frequency(time) region. In practice the off-resonant response is

calculated first. The expressions for the different orders of static sources η(j) =

η(j)(ω = 0) and intraband components of density matrices T (j) = T (j)(ω = 0)

are given by Eqs. (2.33) and (2.37) for the static electric field E(t) = const. We

run the iterative DSMA for each order of the optical response. Calculations

give the sets of electronic oscillators (Ων, Pν, Qν) which dominate jth order of

responses (j = 1, 2, . . .). The density matrix induced by a static field is given

by

ξ(j) =
M0∑
ν=1

Tr(ρ̄[η
(j)
ν , Qν])

Ων
Qν (2.56)

and

δρ(j) = ξ(j) + T (ξ(j−1), ξ(j−2), . . .). (2.57)

The static polarizabilities are readily obtained using Eq. (2.31)

χ(j) = − 1

Ek
o

Tr(µδρ(j)(ω = 0)), (2.58)

where χ(1) = α(0), χ(2) = β(0), χ(3) = γ(0), etc. The resulting electronic

oscillators need to be used to construct frequency(time)-dependent optical re-

sponse. Frequency-dependent response functions with up to the third order

response are expressed through the electronic modes in [56] [Eqs. (5.6) and
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(E3)]. For example, oscillators dominating the first, second, and third orders

off-resonant responses contributes to the three, two, and one-photon resonances

in the resonant third order polarizability γ(−ω;ω1, ω2, ω3).

The DSMA has a close formal connection with other short-time algorithms

widely used in different contexts. These include the Lanczos algorithm for

computing the eigenvalues of a hermitian matrix [75–77], the Mori-Zwanzig

procedure of reduced dynamics [78–80] and the continued fraction representa-

tion of correlation functions [81]. In particular, we note the analogy with the

analysis of optical lineshapes in terms of spectral moments [82]. The moments

can be easily calculated without going through a complex eigenvalue problem,

and often very few moments provide for an adequate representation of the

lineshape.

In summary, the DSMA calculates the optical response by solving the

TDHF equations for motion of the single-electron density matrix. The al-

gorithm consists of several levels of increasing complexity. First the entire

optical response with low resolution is recovered at extremely low computa-

tional cost. All strong transitions are fully recovered but the fine structure of

spectrum is missing. The iterative DSMA provides more detailed information.

The simplest version of this procedure was implemented to calculate the optical

response of organic molecules. The band edge transition oscillator was calcu-

lated first. The remaining electronic oscillators were recovered sequentially

with increasing frequency and were used to compute optical polarizabilities.

3 This approach allows us to recover accurately the experimentally relevant

low-frequency spectral region (up to ∼ 8 eV).

3A more general (and complex) procedure is to focus on a limited frequency region, and
pick up physically important modes by analyzing all the effective oscillators obtained at
each iteration. The remaining modes are included in the dominant modes and only a few
modes are necessary. In such a case the detailed structure of the chosen spectral region is
investigated, but the algorithms for sorting out the effective electronic oscillators need to be
developed for each particular case.
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2.5 Real-space CEO analysis of electronic re-

sponse.

Each calculated density matrix ρgν ≡ ξν with corresponding frequency Ων

enters to the TDHF equation of motion as an electronic oscillator. It can be

used as powerful tool to establish the relation between electronic structure and

molecular optical response. To introduce the CEO we start with the ground

state density matrix ρ̄mn ≡ 〈g|c+mcn|g〉, which has been widely used for the

analysis of the ground state properties [46,47,83–85]. The diagonal elements

ρ̄nn are used in various population analyses (Löwdin, Milliken) to prescribe a

portion of charge to specific atoms and are commonly visualized using contour

charge density maps. The off-diagonal elements, m 6= n, represent the bonding

structure (i.e. bond orders) associated with a pair of atomic orbitals and

are useful in interpreting the chemical bonding pattern along the molecule

[48–51,83,84].

In complete analogy with the ground state the diagonal elements of ξν

(n = m) represent the net charge induced on the n’th atomic orbital by an

external field, whereas (ξν)mn n 6= m is the dynamical bond-order representing

the joint amplitude of finding an electron on orbital m and a hole on orbital

n. Electronic modes are thus directly related to the motions of optically in-

duced charges and electronic coherences. This is illustrated by Fig. 2.5. The

off-diagonal size Lc of (ξν) which measures the degree of coherence between

electrons and holes at different sites, control the scaling of molecular proper-

ties with size, whereas the diagonal size (Ld) reflects the localization of optical

excitation within the molecule.

We can draw an analogy with the description of vibrational spectroscopy

[86], in which the coherent motion of various atoms with well-defined ampli-

tude and phase relations are represented by collective nuclear coordinates; the

normal modes. The normal modes provide a natural coordinate system and
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hν

Delocalization of optical excitation

|ξmn| > 0
n

m

Coherence size Lc

(1,1)

1 N
2   ...

Lc

|ξmn|

m (electron)

(N,N)

Ld

Diagonal size Ld

Electron-hole
pair (exciton)

|ξmn|~|ξnm|      no charge transfer

|ξmn|>>|ξnm|      electron transfer (m → n)

|ξmn|<<|ξnm|        hole transfer    (m → n)

Figure 2.5: Two-dimensional representation and physical interpretation of elec-
tronic modes. Each mode ξν is an N ×N matrix, N being the molecular size.
By displaying this matrix in two-dimensions we establish a direct real-space
connection between the optical response and motions of charges in the molecule
upon optical excitation. The x axis represents an electron on site n, the y axis
describes a hole on site m. An incident light moves an electron from some occu-
pied to an unoccupied orbitals, creating an electron-hole pair (or exciton). The
state of this pair can be characterized by two lengthscales: First, the distance
between electron and hole (i.e., how far the electron can travel apart from the
hole). This coherence size Lc is the ”width” of the density matrix along the
anti-diagonal direction. The second length Ld describes the exciton center of
mass position (i.e., where the optical excitation resides within the molecule).
Ld is the ”width” of the density matrix along the diagonal direction. Finally
charge transfer processes can be characterized by the asymmetry of mode with
respect to the diagonal. (ξν)mn ∼ (ξν)nm means that there is no preferable
direction of motion for electrons (or holes), whereas (ξν)mn � (ξν)nm shows
the motion of electron from m to n.
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allow an alternative classical real-space interpretation of infrared or Raman

spectra [87,88], instead of a description in terms of transitions among specific

vibrational states. The normal modes of nuclear vibrations are simply super-

positions of the 3N nuclear displacements. In complete analogy, ξν can be

viewed as collective coordinates which represent the displacements of the elec-

tronic density matrix elements from their equilibrium (ground state) values

ρ̄nm.

2.6 Density matrices vs. eigenstates; advan-

tages of the CEO representation.

We will now compare the representation of the molecular optical response

in terms of global many-electron states and single-electron density matrices

calculated using the TDHF method.

Any spectroscopic process includes an optical excitation which moves an

electron from some occupied to unoccupied orbitals, thereby creating an

electron-hole pair. The natural description of the optical response should

therefore be based on following the simultaneous and coupled dynamics of

this pair; the two indices of the density matrix carry precisely this information.

Molecular eigenstates, however, use a single-particle basis set. Correlations are

incorporated through an extensive CI calculation. By working in a space of

higher dimensionality (the pair) the essential physics of the system is captured,

and even the simplest (TDHF) factorization yields an adequate description.

In a single-particle basis, a much more extensive numerical effort is needed. A

real space CEO analysis which pinpoints the origin of each optical transition

is obtained by displaying the electronic mode matrices graphically. The fact

that only few oscillators typically dominate the response greatly simplifies the

theoretical description. The weak anharmonicities which justify the harmonic

picture may be attributed to the large delocalization size. In atoms, on the
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other hand, collective excitations have been found to converge to local modes

rather than to normal modes [89]. In semiconductors, the electron-hole pairs

are loosely bound and form Wannier excitons [38]. In molecular aggregates,

each pair is tightly bound and can be considered as a single particle (Frenkel

exciton) [25,90,91]. Conjugated polymers are intermediate between these two

extremes, and the collective oscillators in conjugated polymers can be viewed

as charge-transfer excitons. The CEO thus offers a unified description of dif-

ferent materials and allows a direct comparison of their optical properties [92].

Also, one can go beyond the semiempirical Hamiltonians and the TDHF ap-

proximation and include additional variables and use a different ansatz for

the wave function [93]. Technically the calculation of optical properties using

summation over states is also unified and universal. However, very different

approximate schemes and terminologies are usually used in the calculation of

the eigenstates of various systems; This prohibits a clear comparison and ob-

scures the origin of differences. The electronic oscillator picture applies to all

materials by simply changing parameters (such as the electron hole mass, the

Coulomb interaction, and the hopping matrix elements) [71].

We next review the computational advantages and limitations of the elec-

tronic oscillator approach. The sum-over-states method becomes rapidly more

complex with molecular size. Both calculating the eigenstates and performing

the necessary summations over them are intractable for large systems. Know-

ing the complete set of eigenstates allows the calculation of any optical response

including to strong fields. This is therefore an ”all or nothing” approach. The

oscillator approach, carries less information but for considerably less effort.

Computational time of CI calculations scales as N6; The CEO/DSMA proce-

dure scales only as N2. Our results allow the interpretation of the most inter-

esting crossover region towards the bulk. The CEO approach can be readily

applied for very large molecules with thousands of atoms. However, there are
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some types of computations to which the CEO/DSMA method may either not

be applied or applied with caution. The problems arise when one need to cal-

culate exact eigenvectors of the Liouville operator in the high-frequency region.

An iterative DSMA calculates electronic modes one by one starting from low

frequency with decreasing accuracy. Some difficulties were found with apply-

ing DSMA in the following cases: Calculation of high frequency weak optical

excitation as a smooth function of given parameters (e.g. weak changes in

molecular geometry along the vibrational normal mode; Computation of fine

structure in the spectrum with many lines (e.g. inorganic semiconductors).

DSMA successfully recovers up to 20 transitions; The DSMA input parame-

ters for computing nonlinear optical properties in weakly assymetric molecules

have to be carefully chosen. Here the problem arises that a weak perturbation

(donor/acceptor or external field) slightly mixes electronic modes with orig-

inal Bu and Ag symmetry. That defines the nonlinear anharmonicities and

the magnitudes of hyperpolarizabilities. In this case electronic modes need to

be computed accurately. To overcome these difficulties new improved algo-

rithms need to be developed. For example, the lack of long-range electronic

coherence allows us to truncate the density matrix and only retain off-diagonal

elements of closely lying atoms [94]. This may result in most favorable linear

N -scaling of computational effort with size, resembling similar developments

in ground-state calculations [95,96].

The merits of the oscillator picture are more pronounced when nonlinear

optical properties are calculated [55,60,73,97]. Interference effects in the sum-

over-states approach result in an almost complete cancellation of large positive

and negative contributions to optical susceptibilities [72,28,29], which limits

the accuracy and makes approximate calculations dangerous (since innocent

approximations may lead to huge errors). One consequence of this is that

individual terms do not have the correct scaling with size. The latter is only
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obtained once all of the terms are carefully combined. In the oscillator picture

these cancellations are built-in from the start and each separate contribution

to the susceptibility scales properly. The real–space approach has been shown

to provide an adequate description of the scaling and saturation of off-resonant

linear and nonlinear polarizabilities (see Sections 5, 4, and 10) [55,60,73,98].

We further note that by treating the electronic degrees of freedom as os-

cillators we can couple them more naturally to nuclear degrees of freedom,

which constitute another set of oscillators. The incorporation of nuclear no-

tions thus becomes much more straightforward compared with the eigenstate

representation, and lends itself more easily to semiclassical approximations.

The time-dependent density-matrix should then allow us to follow the dynam-

ics of coherent intramolecular and intermolecular vibrations, solvent modes,

and isomerization and account for vibronic structure and line broadening [99].

The oscillator approach allows us to develop a natural framework for the

interpretation and the design of molecules with specific properties. Instead of

asking which of the many-electron states are most relevant, we can explore how

do different regions of the molecule couple and affect each other. The nonlocal

character of the response is intimately connected with the electronic coherence

of the induced density matrix. For example, one can then address directly the

effects of donor-acceptor substitutions and geometry (see Section 6). A new

type of chemical intuition which focuses directly on the electronic charges and

coherences and is not based on properties of many-electron eigenstates emerges

naturally (see Sections 9 and 7). The present analysis makes it possible to guide

the design and synthesis of organic molecules with desired optical properties.
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2.7 Appendix A. Relations between the Inter-

and Intraband Components of the Density

Matrix.

The single-electron reduced density matrix in the TDHF approximation sat-

isfies the condition ρ2(t) = ρ(t) at all times [55,56,52]. Using Eq. (2.22) then

results in (
ρ̄ + ξ(t) + T (ξ(t))

)2

= ρ̄+ ξ(t) + T (ξ(t)). (2.59)

To simplify this expression it is possible to use following relations: ρ̄2 = ρ̄,

ξ = ρ̄ξ + ξρ̄, and T ρ̄ = ρ̄T . A simple rule may be applied to separate the

remaining terms: product of two inter- (or two intra-) band matrices gives an

intraband matrix, whereas product of inter- into intra- (or intra- into inter-)

band matrices results in an interband matrix. Finally, the intraband part of

equation (2.59) is

(T (ξ))2 + (2ρ̄ − I)T (ξ) + ξ2 = 0. (2.60)

The formal solution of this quadratic equation, with the condition T (ξ = 0) = 0

yields

T (ξ) = (2ρ̄− 1)
1−

√
1− 4ξ2

2
. (2.61)

A Taylor series expansion of this expression in ξ finally gives

T (ξ) = (2ρ̄− 1)
∞∑

m=1

2m(2m− 3)!!

2m!
ξ2m. (2.62)

When ξ is small, T ≈ (ρ̄ − 1/2)ξ2 is quadratic in ξ.

2.8 Appendix B. Short-time Evolution of the

density-matrix response function.

The interband component of the reduced single-electron density matrix to j’th

order in the field ξ(j)(ω) in the frequency domain can be represented as

ξ(j)(ω) =

∫ +∞

0

dt eiωtS(j)(t, ω), (2.63)
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where we have introduced the matrix S(j)(t, ω)

S(j)(t, ω) ≡ −ie−iLtη(j)(ω). (2.64)

This matrix satisfies the equation

i
∂S(j)(t, ω)

∂t
− LS(j)(t, ω) = 0, (2.65)

with the initial condition

S(j)(0, ω) = −iη(j)(ω). (2.66)

In Eqs. (2.64) and (2.66) the S(j) matrix is viewed as a vector in Liouville

space. We next expand the solution of Eq. (2.65) in a Taylor series

S(j)(t, ω) = −i(S(j)
0 (ω) + (−i)S

(j)
1 (ω)

1!
t+ ...) = −i

∑
n=0

(−i)nS
(j)
n (ω)

n!
tn, (2.67)

where S
(j)
0 (ω) = η(j)(ω) and S

(j)
k (ω) = LkS

(j)
0 (ω), k = 1, 2, ... . This expan-

sion describes the short time evolution of initial vector η(ω) in the subspace

determined by −ie−iLt.

2.9 Appendix C. Solution of Eqs. (2.53)

The system of nonlinear equations (2.53) may be solved as follows. Let us

consider the following system of 2n equations with respect to n “nonlinear”

frequency Ωn and n “linear” oscillator strength fn variables.

K0 = f1 + f2 + f3 + · · ·+ fn

K1 = f1Ω
2
1 + f2Ω

2
2 + · · ·+ fnΩ2

n

K2 = f1Ω
4
1 + f2Ω

4
2 + · · ·+ fnΩ4

n

..............................................

Kn−1 = f1Ω
2(n−1)
1 + f2Ω

2(n−1)
2 + · · ·+ fnΩ2(n−1)

n (2.68)

Kn = f1Ω
2n
1 + f2Ω

2n
2 + · · ·+ fnΩ2n

n

..............................................

K2n−1 = f1Ω
2(2n−1)
1 + f2Ω

2(2n−1)
2 + · · ·+ fnΩ2(2n−1)

n .
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The frequency variables Ω2 = x are the roots of the polynomial

xn − a1x
n−1 − a2x

n−2 − · · · − an−1x− an, (2.69)

where the coefficients ai, i = 1, · · · , n are the solution of system of n linear

equations

Kn = Kn−1an +Kn−2an−1 +Kn−3an−2 + · · ·+K1a2 +K0a1

Kn+1 = Knan +Kn−1an−1 +Kn−2an−2 + · · ·+K2a2 +K1a1

Kn+2 = Kn+1an +Knan−1 +Kn−1an−2 + · · ·+K3a2 +K2a1 (2.70)

.................................................................

K2n−1 = K2n−2an +K2n−3an−1 +K2n−4an−2 + · · ·+Kna2 +Kn−1a1.

To rationalize Eqs. (2.69) and 2.70) we note that Viet’s theorem [100]

establishes the relationship between the polynomial roots and coefficients

a1 = x1 + x2 + · · ·+ xn

a2 = −
∑
i1<i2

xi1xi2

..........................

ak = (−1)(k+1)
∑

i1<i2<···<ik

xi1xi2 · · ·xik (2.71)

..........................

an = (−1)(n+1)x1x2 · · ·xn.

To verify Eqs. (2.70) let simply substitute Eqs. (2.71) in the expression for

Kn (2.70)

Kn = (
∑

i

fix
n−1
i )(

∑
j

xj)− (
∑

i

fix
n−2
i )(

∑
j1<j2

xj1xj2) + . . .

=
∑

i

fix
n
i +

∑
i 6=j

fix
n−1
i xj − (

∑
i

fix
n−2
i )(

∑
j1<j2

xj1xj2) + . . .

= Kn −
∑

i 6=(j1<j2)

fix
n−2
i xj1xj2 + (

∑
i

fix
n−3
i )(

∑
j1<j2<j3

xj1xj2xj3)− . . . = . . .

= Kn + (−1)n
∑

i 6=(j1<···<jn−1)

fixixj1 · · ·xjn−1 + (−1)n+1
∑

i

fix1x2 · · ·xn = Kn.(2.72)
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Thus all terms (except Kn) in the r.h.s. of Eq. (2.72) vanish, leaving the

identity Kn ≡ Kn.

Eqs. (2.70) is known as the Toeplitz linear system. The inversion of the

Toeplitz matrices is straightforward [101] and poses no numerical difficulties.

Once the frequencies are found, the oscillator strengths can be computed

by solving the linear system of the first n-equations of (2.68) for the variables

fn. Thus the solution of the nonlinear system (2.68) is obtained in three steps:

two linear problems, and finding the zeros of a polynomial with real coefficients

(the only nonlinear task).

Since f1 � f2 � f3 � · · · � fn, and Ωn
1 � Ωn

2 � · · · � Ωn
n, the lower

frequency terms are dominant in the first equations of system (2.68) and the

higher frequency terms dominate the higher ones. This allows us to increase

the accuracy of the low frequencies by adding new high frequency modes (and

the necessary higher moments).



Chapter 3

Time-Dependent Density-
Matrix-Response-Functions
(DMRF) Algorithm for
calculating Excited States.

3.1 Density matrix response functions and

material properties

In this Chapter we develop a semiclassical approach for computing the density

matrices ρνη (Eq. (1.2)) out of the electronic modes ρgν . This procedure ex-

tends the TDHF for calculating relevant properties of excited electronic states

and connects the CEO to the molecular states representation.

Our approach starts by coupling the molecule to an external field E(t)

through

Hint = −µE(t) ≡
∑
nm

Enm(t)c+n cm . (3.1)

Where Enm(t) ≡ µnmE(t). The induced density matrix can be then expanded

in powers of the incoming field

ρnm(t) = ρ̄nm +

∫ t

−∞

dτ
∑
n′m′

S
(1)
nm,n′m′(t; τ)En′m′(τ) +

∫ t

−∞

∫ t

−∞

dτ1dτ2∑
n′m′

n′′m′′

S
(2)
nm,n′m′,n′′m′′(t; τ1, τ2)En′m′(τ1)En′′m′′(τ2) + . . . . (3.2)

39
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The j-th order density-matrix response functions (DMRF) S(j) can be cal-

culated using the Time-Dependent Hartree-Fock (TDHF) technique [52,33,34]

described in Chapter 2. Since the DMRF can be alternatively expanded in

terms of the system energies and matrix elements of the single-electron opera-

tors c+mcn, it constitutes a source of information on these quantities. However,

it is not easy to interpret the TDHF response in terms of the global eigen-

states since the structure of the TDHF expressions is very different from their

standard SOS counterparts.

The present Chapter provides an algorithm for inverting the DMRF to

obtain an effective multilevel system which gives the same response functions,

resulting in the eigenvalues and all density matrix elements (Eq. (1.2)). Note

that the DMRF are more general than the optical response functions since the

interaction (Eq. (3.1)) is not limited to the dipole operator. The latter often

has selection rules which limit the information to a few dominant states. The

freedom to use any external field Enm(t) in Eq. (3.1) allows us to calculate

all possible states. The effective multilevel system will be constructed in four

steps (Fig. 3.1).

(i) Starting with the original quantum fermion model QFM (Eq. 3.4) we

build its classical limit by considering the space of single Slater determinants

M (the space of coherent states as its phase space). The Poisson bracket on

M and the classical Hamiltonian have been introduced in [56]. We make use

of the observation [102] that the TDHF approximation can be considered as a

classical limit of the original many-electron system. Hereafter we refer to the

classical limit of the QFM as the classical oscillator model (COM). As shown

in [102] any classical system can be mapped onto a set of classical coupled

oscillators. For example in Section 11 resonant two-pulse four-wave mixing

experiments in conjugated polyenes have been modeled using the electronic-

oscillator representation.
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Original Quantum
 Fermion Model 
      (QFM)

 Quantum Oscillator
   (Boson) Model
          (QOM)

 Classical Canonical
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Figure 3.1: The four steps involved in constructing the effective multilevel
system (EMS) out of the original quantum Fermion Model (QFM).

(ii) In the vicinity of the stationary solution ρ̄ ∈ N of the TDHF equations,

we transform the local variables on M and transform the Poisson bracket

into a canonical form. This establishes the oscillator representation of the

COM. Stated differently, this shows the equivalence of the COM and a classical

canonical oscillator model (CCOM) defined as the COM represented in terms

of the canonical variables.

(iii) We build a quantum oscillator model (QOM) by quantizing the CCOM,

so that the classical limit of the QOM reproduces the CCOM. The classical

system of oscillators can thus be viewed as the classical limit of a system of

quantum coupled oscillators. We thus have two quantum models (QFM and

QOM) which correspond to the original electronic system and the system of



CHAPTER 3. DENSITY-MATRIX-RESPONSE-FUNCTIONS 42

quantum anharmonic oscillators, respectively. Their classical limits COM and

CCOM respectively are equivalent, and the COM describes the QFM within

the TDHF approximation.

(iv) Finally, using a perturbative approach we build an effective multilevel

system EMS whose exact optical response reproduces the classical approxima-

tion of the QOM which is the CCOM and in turn coincides with the TDHF

approximation of the original model QFM. In summary the EMS constitutes a

quantum model whose optical response reproduces the TDHF approximation

of the original model.

In Section 3.2 we carry out steps (i) and (ii) and map the original quantum

fermion model onto a classical canonical oscillator model. Steps (iii) and (iv)

are made in Section 3.3. Details of the calculations are given in the Appen-

dices 3.5-3.7. In Section 6.4 we apply this algorithm to a family of unsub-

stituted and acceptor-substituted carotenoids. The induced density matrices

ρνη
nm for the states which dominate the linear and the quadratic response are

investigated. Finally we discuss and summarize these results in Section 3.4.

3.2 Classical Electronic Oscillators in the

TDHF Approach:

We consider a system described by the molecular electronic Hamiltonian

(Eq. (2.1)). The classical oscillator model is constructed using the proce-

dure for approaching the classical limit outlined in [102]. We start by defining

the phase space of the single Slater determinants M = G(N,K;C), K being

the basis set size and N is the number of electrons. M can be alternatively

represented as the space of hermitian K ×K single-electron reduced density-

matrices with ρ2 = ρ and rank(ρ) = N . The classical Hamiltonian is

H(ρ) = 〈Ω(ρ)|Ĥ|Ω(ρ)〉, (3.3)
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where Ω(ρ) is the Slater determinant corresponding to ρ. Expressions for H(ρ)

in terms of the original parameters of the molecular electronic Hamiltonian

(Eq. (2.1)) and for the Poisson bracket were given in [56]. The TDHF equation

adopts the form of the equation of motion of Hamilton’s classical dynamics

on M. The stationary point of the TDHF equations which corresponds to the

minimum of the energy function H(ρ) on M constitutes the Hartree-Fock (HF)

reduced ground state single-electron density matrix ρ̄ which can be found by

solving the Hartree-Fock (HF) equation (2.10) [51]

To construct the classical oscillators (step (ii)), local coordinates on M rep-

resenting deviations from ρ̄ need to be defined. The restricted TDHF scheme

[56] allows us to reduce the number of variables from K2 to particle-hole vari-

ables N(K−N). To that end we decompose the single-electron density matrix

to the particle-hole ξ and the particle-particle and the hole-hole T (ξ) parts of

the deviation of the reduced single-electron density matrix from the ground

state ρ̄ (see Eq. (2.22)). ρ̄, ξ, and T (ξ) in Eq. (2.22) are K × K matrices. 1

Only the particle-hole components of the density matrix (ξ) need to be calcu-

lated explicitly (see Section 2.2). For computing DMRF not higher than third

order it is sufficient to retain only the lowest (second order) term in Eq. (2.26).

A convenient coordinate system can be obtained by parameterizing the

electron-hole component (ξ) of the density matrix. To introduce variables

close to canonical (as will be explained latter) it is convenient to use the

TDHF equations for ξ(t) (Eq. (2.28)). The oscillator variables (Eqs. (2.41))

are computed as the eigenmodes of the linear part of this equation. zα and

its complex conjugate z−α = z∗α constitute the complex oscillator amplitudes

(Eqs. (11.1)). Eqs. (11.1) and (2.22) define a local coordinate system zα on

M where ρ̄ is the origin. Substitution of Eqs. (11.1) and (2.22) into Eq. (3.3)

yields the classical Hamiltonian for the variables zα. H(zα) can be calculated

1ρ̄ and ξ(t) are matrices of rank N , N < K.
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in a form of an expansion in powers of zα. The expression to fourth-order is

presented in [56]. For the current applications the Hamiltonian up to third-

order is needed

H(z) =
∑
α>0

Ωαz−αzα +
1

3

∑
αβγ

Vα,βγzαzβzγ − E(t)P(z) , (3.4)

with the polarization

P(z) =
∑

α

µαzα +
1

2

∑
αβ

µαβzαzβ , (3.5)

where

µα = Tr([ρ̄, ξα][µ, ρ̄])

µα,β = Tr([ρ̄, ξα][µ, ξβ])

Vα,βγ = Tr([ρ̄, ξα][V (ξβ), ξγ])

+ Tr([ρ̄, ξα][V (
1

2
[[ξβ, ρ̄], ξγ]), ρ̄]). (3.6)

Here ξ, ρ̄, and µ are K×K matrices in the single-electron space, and the trace

is defined in this space.

The Poisson bracket for the zα variables is calculated in [56] and to first-

order in zα it has the canonical form

{zα, zβ} = iδα,−β . (3.7)

It has the following useful properties:

{zα, zβ} = −{zβ, zα} ,
{zα, zβzγ} = {zα, zβ}zγ + zβ{zα, zγ} . (3.8)

The classical Hamilton equation of motion ż = {H, z} obtained using Eqs.

(3.4)-(3.6) can be written as

i
∂

∂t
zα = Ωαzα − Eµ−α − E

∑
β

µ−α,βzβ +
∑
βγ

V−α,βγzβzγ . (3.9)
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These equations are equivalent to Eq. (2.28). The linear and the second

order response functions calculated by solving these equations are given in

Appendix 3.5.

Eqs. (3.4)-(3.9) define the classical oscillator model. The variable zα de-

scribes the αth oscillator, as is clearly seen from the form of the Poisson bracket

[Eq. (3.6)]. Higher-order terms of the Hamiltonian can be calculated order-

by-order. Similarly the Poisson bracket is not strictly canonical and the r.h.s.

of Eq. (3.7) can be expanded in powers of zα. Second order corrections have

been calculated in [102]. These deviations can however be eliminated (since

the Poisson bracket can be always transformed to a canonical form [103]) using

a nonlinear transformation of variables

z′α = zα +
∑
αβγδ

Sα,βγδzβzγzδ + . . . . (3.10)

In practice, the canonical variables can be calculated order-by-order in zα.

Expressing the Hamiltonian in terms of the canonical variable z′α allows us to

define a CCOM to any given order in zα. This accomplishes step (ii) of the

procedure.

3.3 Intrastate and Transition Electronic Den-

sity Matrices for the Effective Multilevel

System

Step (iii) involves the construction of a quantum oscillator model QOM whose

classical limit reproduces the CCOM. To that end we associate with each

classical variable zα an annihilation operator aα (zα = 〈aα〉, α > 0), z−α = z∗α

is associated with a creation operator a+
α (z∗α = 〈aα〉+). These satisfy the boson

commutation relations:

[aα, a
+
β ] = δαβ . (3.11)
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The QOM Hamiltonian H1 is defined by

H1 =: H(aα, a
+
α ) : , (3.12)

where H(aα, a
+
α ) is the classical Hamiltonian of the CCOM, which is given by

Eqs. (3.4) and (3.5) up to third order, and :. . .: stands for normal ordering.

We then have

H1 =
∑

α

Ωαa
+
αaα +

1

3!

(∑
αβγ

Vα,βγaαaβaγ + 3
∑
αβγ

V−α,βγa
+
αaβaγ + h.c.

)
− EP(a+

α , aα) , (3.13)

with

P(a+
α , aα) =

∑
α

µαaα +
1

2!

(∑
αβ

µαβaαaβ +
∑
αβ

µ−αβa
+
αaβ + h.c.

)
, (3.14)

and the summation in Eqs. (3.13) and (3.14) runs over α, β, γ > 0.

The classical limit of the QOM can be obtained by requiring that each

oscillator α remains in a coherent state parameterized by zα at all times. This

amounts to the following factorizations 〈aαaβ〉 = zαzβ and 〈a+
αaβ〉 = z∗αzβ.

Using these factorizations, the Heizenberg equation of motion ȧα = i
~
[H1, aα]

with H1 given by Eq. (3.13) coincides with the classical equation of motion

(Eq. (3.9)). The CCOM is thus the classical limit of the QOM and step (iii)

is accomplished.

We now turn to step (iv), namely constructing the effective multilevel sys-

tem EMS whose response reproduces the classical limit of QOM (which in turn

coincides with the TDHF approximation of the QFM). This will be based on

the picture established in [102] that the semiclassical expansion is a reexpan-

sion of the optical response in the anharmonicities of the Hamiltonian and

nonlinearities of the polarization operator in a and a+. This is carried out

for the response up to second order in Appendix 3.6. In particular, the linear

response in the classical approximation is obtained by setting Vα,βγ = 0 and
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µαβ = 0 (i.e., using the model of a set of linearly driven uncoupled harmonic

oscillators) whereas the second-order response also depends on the terms pro-

portional to Vα,βγ and µαβ.

The QOM is improved successively by incorporating higher-order responses.

We will concentrate on the lower-energy excited states which can be con-

structed using the linear and the second-order responses. For the linear re-

sponse we set Vα,βγ = 0 and µαβ = 0 and obtain a system of harmonic os-

cillators with the polarization linear in a and a+. Since the polarization is

represented by the most general operator given by linear and bilinear combi-

nations c+mcn of fermion operators, we can obtain the matrix elements of c+mcn

between the ground state and single-excited oscillator states involved in the

linear response. The second order response depends on the anharmonicities

to the first order. This leads to first-order corrections to the oscillator wave-

functions whereas the eigenvalues remain the same (since they only contain

higher-order corrections). This implies that in this order of perturbation the-

ory which corresponds to the classical limit, the system remains harmonic and

simply attains new matrix elements of c+mcn.

It follows from Eqs. (2.1) and (3.13) together with Eqs. (3.6) that the

operator c+mcn can be represented in terms of the oscillator operators in the

following form

c+mcn = ρ̄mn +
∑

α

{
(ξ+

α )mna
+
α + (ξα)mnaα

}
+

1

2

∑
αβ

{
([ξ+

α , ρ̄]ξ
+
β ])mna

+
αa

+
β ([ξ+

α , ρ̄]ξβ])mna
+
αaβ

+ ([ξα, ρ̄]ξ
+
β ])mnaαa

+
β + ([ξα, ρ̄]ξβ])mnaαaβ

}
. (3.15)

The EMS is constructed as a system of harmonic oscillators with the eigen-

states |kα, lβ, . . .〉 and eigenenergies E = kΩα + lΩβ + . . ., where the integers

k, l = 0, 1, 2, . . . label the excited states of the various oscillators. The EMS
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are calculated to first-order in V in terms of the oscillator states of QOM in

Appendix 3.6. The contributions to the response functions S(j) can, therefore,

be classified according to the matrix elements of the effective oscillator system

〈kα, . . . |c+mcn|lβ, . . .〉.
The effective level scheme that reproduces the linear response S(1) consists

of the ground state |g〉 and all single excitations |1α〉. The relevant density

matrix elements are

〈g|c+mcn|g〉 = ρ̄mn , (3.16)

〈g|c+mcn|1α〉 = (ξα)mn . (3.17)

Eqs. (3.16) and Eq. (3.17) simply recover our input i.e. the ground state density

matrix and the TDHF electronic modes contributing to the linear response.

The second-order response S(2) is represented by an effective system con-

sisting of the ground state |g〉, single |1α〉, and double |1α1β〉 excited states.

These are given by Eqs. (3.39) to first order in V . The state |2α〉 is the special

case of |1α1β〉 when α = β. The necessary additional matrix elements are

obtained by combining Eqs. (3.39) and (3.15):

〈g|c+mcn|1α1β〉 =
([ξα, ρ̄]ξβ])mn

2

+ 2
∑

γ

{
Vαβ−γ(ξγ)mn

Ωα + Ωβ − Ωγ

− Vαβγ(ξ
+
γ )mn

Ωα + Ωβ + Ωγ

}
, (3.18)

〈1α|c+mcn|1β〉 = ρ̄mnδαβ + ([[ξ+
α , ρ̄]ξβ])mn

+
∑

γ

{
V−α−βγ(ξγ)mn

−Ωα + Ωβ − Ωγ
+

Vαβ−γ(ξ
+
γ )mn

Ωα − Ωβ − Ωγ

}
, (3.19)

〈1α|c+mcn|1β1γ〉 = (ξγ)mnδαβ + (ξβ)mnδαγ , (3.20)

where Vαβγ is given by Eq. (3.6).

Eq. (3.18) gives transition density matrices involving the ground state.

Eq. (3.19) expresses the transition density matrices between singly-excited

states obtained from S(1), and Eq. (3.20) gives the transitions between singly
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and doubly excited states. The first term in Eqs. (3.18) and (3.19) represents

the interband (particle-particle and hole-hole) part of the density matrix, and

involves only two electronic modes. The second (intraband, particle-hole and

hole-particle) term, involves a summation over all electronic modes. These

matrices provide an approximation for the density matrices between states

contributing to the first- and to the second-order optical responses. The cor-

responding energies are

Ω1α = Ωα; Ω1α1β = Ωα + Ωβ . (3.21)

Taking higher order anharmonicities into account will allow us to com-

pute density matrix elements involving new states. For example, the

third-order response S(3) includes higher lying excitations: 〈g|c+mcn|1α1β1γ〉,
〈1α|c+mcn|1β1γ1δ〉, 〈1α1β|c+mcn|1γ1δ1ζ〉, 〈1α1β|c+mcn|1γ1δ〉. In general, S(j) in-

volves all transitions contributing to the lower order responses, j-transitions

from the ground, single, double, ..., (j− 1)th excited states to the j’th excited

state, and transitions between (j − 1)th excited states.

By using an arbitrary single-particle operator µmn in Eqs. (3.18)-(3.20), we

can compute the full density matrix response function, which depends on all

electronic modes. When µmn is taken to be the dipole operator, we only obtain

those modes that dominate the optical response. The ability to focus on the

dominant modes alone has proved to be very useful for calculating the optical

response [70,104,74]. However, in order to compute the excited-state density

matrices all the modes (optically bright and dark) need to be captured.

When only few modes are known, Eqs. (3.18) and (3.19) are dominated by

the interband term ([ξα, ρ̄]ξβ]). The summation over available modes gives a

negligible contribution because, in general, Vαβγ � 1. The resulting transition

matrices (〈1α|c+mcn|1β〉, 〈g|c+mcn|1α1β〉) will, therefore, preserve all localization

properties of the ground state ρ̄ and electronic modes ξα and ξβ. On the

other hand, the summation over all TDHF modes significantly increases the
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contribution of the second term in Eqs. (3.18) and (3.19) yielding the transition

matrices which do not depend on the way the molecule interacts with the

optical field (molecular dipole) but represent intrinsic molecular properties.

3.4 Merits of the DMRF method.

The TDHF uses the single-electron density matrix 〈g|c+mcn|g〉 to calculate

the single-electron transition density matrices (electronic modes) between the

ground state and the excited electronic states 〈g|c+mcn|1α〉 which contribute

to the linear response. Here a further step is made: using the ground-state

density matrix and the electronic modes we calculated additional density ma-

trices: between the ground state and the excited states 〈g|c+mcn|1α1β〉 which

contribute to the second-order response, transition density matrices between

states 〈1α|c+mcn|1β〉 as well as the single-electron density matrices of the excited

states 〈1α|c+mcn|1α〉 which contribute to the linear response.

The TDHF procedure maps the quantum many-electron system onto a

system of classical oscillators. The present approach is based on inverting the

optical response function and mapping the original system onto an effective

set of quantum states. An algorithm is developed for calculating Density-

Matrix-Response-Functions (DMRF) for excited electronic states using the

Time-Dependent Hartree-Fock (TDHF) approximation. The DMRF carries

additional excited-state information about charge distributions and bonding

patterns as well as the dynamical changes induced in these quantities by the

external field.

The present analysis has several advantages. First, it connects the TDHF

representation to the traditional quantum-mechanical treatment of the optical

response in terms of global many-electron eigenstates. The latter may be useful

for representing the properties of optically excited molecule. The procedure is

further numerically inexpensive. The lack of long range electronic coherence
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may be used to reduce the number of density matrix elements from ∼ K2

to ∼ KKc where Kc denotes the number of orbital points of closely lying

atoms [94] which communicate coherently upon optical excitation. Typically

Kc � K results in favorable linear N-scaling of computational effort with

size, resembling similar developments in ground state calculations [95]. The

present approach can be extended to compute vibronic structure of electronic

transitions by including the dependence of the electronic modes on nuclear

coordinates.

3.5 Appendix A. Response Function for the

Classical TDHF approach

To compute the DMRF we recast Eq. (3.9) in the form

i
∂zα(t)

∂t
= Ωzα(t) +

∑
βγ

(
V−α−β−γz

∗
β(t)z∗γ(t) + 2V−α−βγz

∗
β(t)zγ(t)

+ V−αβγzβ(t)zγ(t)
)
−E(t)

[
µ−α +

∑
β

(
µ−α−βz

∗
β(t) + µ−αβzβ(t)

) ]
, (3.22)

where the summation goes over α, β, γ > 0. This nonlinear equation may be

solved by expanding z(t) (z∗(t)) in powers of the external field E(t): z(t) =

z(1)(t) + z(2)(t) + . . .. Using the time-domain Green function

Gα(t) = exp(−iΩαt), (3.23)

the first order solution of Eq. (3.22) is

z(1)
α (t) = i

∫ t

−∞

dτE(τ)µ−αGα(t− τ) . (3.24)

To second order we obtain

z(2)
α (t) =

∫ t

−∞

∫ τ2

−∞

dτ2dτ1E(τ2)E(τ1)
∑

β

(
µ−α−βµβG

∗
β(τ2 − τ1)

− µ−αβµ−βGβ(τ2 − τ1))Gα(t− τ2) + i

∫ t

−∞

∫ t

−∞

dτ2dτ1E(τ2)E(τ1)
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×
∫ t

τ2

dτ
∑
βγ

(
V−α−β−γµβµγG

∗
β(τ − τ2)G

∗
γ(τ − τ1)

− 2V−αβ−γµ−βµγGβ(τ − τ2)G
∗
γ(τ − τ1)

+ V−αβγµ−βµ−γGβ(τ − τ2)Gγ(τ − τ1))Gα(t − τ) . (3.25)

The time-dependent linear and second-order polarizabilities are given by

P(1) =
∑

α

µ−αz
∗(1)
α (t) + µαz

(1)
α (t) , (3.26)

P(2) =
∑

α

µ−αz
∗(2)
α (t) + µαz

(2)
α (t) +

1

2!

∑
αβ

(
µ−α−βz

∗(1)
α (t)z

∗(1)
β (t)

+ 2µα−βz
∗(1)
α (t)z

(1)
β (t) + µαβz

(1)
α (t)z

(1)
β (t)

)
, (3.27)

where z(1)(t)(z∗(1)(t)) and z(2)(t)(z∗(2)(t)) are given by Eqs. (3.24) and (3.25)

and their hermitian conjugates. Linear and second-order time-domain response

functions are defined by

P(1) =

∫
dτE(τ)R(1)(t; τ) , (3.28)

P(2) =

∫
dτ2dτ1E(τ2)E(τ1)R

(2)(t; τ1, τ2) . (3.29)

Comparing Eqs. (3.28) and (3.26) (Eqs. (3.29) and (3.27)) and using

Eqs. (3.24) and (3.25) we obtain for linear and second-order time-domain re-

sponse function

R(1)(t; τ) = −
∑

α

µ−αµα(Gα(t − τ)G∗
α(t− τ)) , (3.30)

R(2)(t; τ1, τ2) = i
∑
αβγ

∫ t

τ2

dτ (V−α−β−γµαµβµγ

× G∗
α(τ − τ2)G

∗
β(τ − τ1)Gγ(t− τ)

− 2Vα−β−γµ−αµβµγGα(τ − τ2)G
∗
β(τ − τ1)Gγ(t− τ)

+ Vαβ−γµ−αµ−βµγGα(τ − τ2)Gβ(τ − τ1)Gγ(t − τ)) + h.c.

+
1

2!

∑
αβ

(2µ−α−βµαµβG
∗
α(τ2 − τ1)
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− µα−βµ−αµβGα(τ2 − τ1))Gβ(t − τ2) + h.c.

− (
µ−α−βµαµβG

∗
α(t− τ1)G

∗
β(t− τ2)

+ µαβµ−αµ−βGα(t− τ1)Gβ(t − τ2)

− 2µα−βµ−αµβGα(t − τ1)G
∗
β(t− τ2)

)
. (3.31)

Applying the Fourier transform

f(ω) =

∫
dtf(t)exp(−iωt) ; f(t) =

1

2π

∫
dωf(ω)exp(iωt) (3.32)

to Eqs. (3.31) and (3.30), we obtain the frequency-dependent linear and second-

order polarizabilities

P (1)(−ωs;ω) =

∫
dω

2π
2πδ(−ωs + ω)α(−ωs;ω)E(ω) , (3.33)

P (2)(−ωs;ω1, ω2) =

∫
dω1

2π

dω2

2π
2πδ(−ωs + ω1 + ω2)

× β(−ωs;ω1, ω2)E(ω1)E(ω2) . (3.34)

The final expressions for the linear and the second order polarizabilities are:

α(ω) =
∑

α

2µ−αµαΩα

Ω2
α − ω2

, (3.35)

β(−ωs = ω1 + ω2;ω1, ω2) = −1

4

∑
αβγ

(Vαβγµ−αµ−βµ−γ + h.c.)

×
(

1

(Ωα − ω1)(Ωβ − ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα + ω1)(Ωβ + ω2)(Ωγ − ω1 − ω2)

)
+ (2Vα−β−γµ−αµβµγ + h.c.)

×
(

1

(Ωα + ω1)(Ωβ − ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα − ω1)(Ωβ + ω2)(Ωγ + ω1 + ω2)

+
1

(Ωα − ω1)(Ωβ + ω2)(Ωγ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ − ω2)(Ωγ − ω1 − ω2)

)
+ (V−αβγµαµ−βµ−γ + h.c.)

×
(

1

(Ωα + ω1)(Ωβ + ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα − ω1)(Ωβ − ω2)(Ωγ − ω1 − ω2)

)
+

1

4

1

2!

∑
αβ

(µαβµ−αµ−β + h.c.)

(
1

(Ωα − ω1)(Ωβ + ω1 + ω2)
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+
1

(Ωα − ω2)(Ωβ + ω1 + ω2)
+

1

(Ωα − ω1)(Ωβ − ω2)
+

1

(Ωα + ω1)(Ωβ − ω1 − ω2)

+
1

(Ωα + ω2)(Ωβ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ + ω2)

)
+ 2µ−αβµαµ−β

(
1

(Ωα + ω1)(Ωβ + ω1 + ω2)
+

1

(Ωα + ω2)(Ωβ + ω1 + ω2)

+
1

(Ωα + ω1)(Ωβ − ω2)
+

1

(Ωα − ω1)(Ωβ − ω1 − ω2)

+
1

(Ωα − ω2)(Ωβ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ − ω2)

)
(3.36)

3.6 Appendix B. Sum-over-States Polarizabil-

ities of the Effective Multilevel System

In this Appendix optical polarizabilities for the quantum model QOM are

calculated using the standard Sum-over-States expressions [26]. The linear

and the quadratic polarizabilities are given by

α(ω) =
∑

n

2ωngrgnrng

ω2
ng − ω2

(3.37)

β(−ωs = ω1 + ω2;ω1, ω2) = −1

4

∑
n,n′

rgnrnn′rn′g

×
(

1

(ωn′g + ω1 + ω2)(ωng + ω1)

1

(ωn′g − ω1 − ω2)(ωng − ω1)

+
1

(ωn′g + ω1 + ω2)(ωng + ω2)
+

1

(ωn′g − ω1 − ω2)(ωng − ω2)

+
1

(ωn′g + ω1)(ωng + ω1 + ω2)
+

1

(ωn′g − ω1)(ωng − ω1 − ω2)

+
1

(ωn′g + ω2)(ωng + ω1 + ω2)
+

1

(ωn′g − ω2)(ωng − ω1 − ω2)

+
1

(ωn′g − ω2)(ωng + ω1)
+

1

(ωn′g + ω2)(ωng − ω1)

+
1

(ωn′g − ω1)(ωng + ω2)
+

1

(ωn′g + ω1)(ωng − ω2)

)
, (3.38)
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where the sum runs over all excited states n and n
′

, and g stands for the

ground state. rkl = 〈k|P|l〉 (rlk = r∗kl) is the transition dipole between k’th

and l’th states.

We start with the Hamiltonian (Eq. (3.13)) representing K - quantum os-

cillators with the electronic polarizability operator P(a+, a) (Eq. (3.14). To

calculate the transition dipoles we first compute the wavefunctions of our os-

cillator system to first order in V :

φ(0) = |g〉0 − 1

3!

∑
αβγ

V−α−β−γ

Ωα + Ωβ + Ωγ
a+

αa
+
β a

+
γ |g〉0

φ(1)
α = a+

α |g〉0 +
1

3!

∑
βγ

Vα−β−γ

Ωα − Ωβ − Ωγ
a+

β a
+
γ |g〉0

φ
(2)
βγ = a+

β a
+
γ |g〉0 −

1

3!

∑
α

2V−αβγ

Ωα − Ωβ − Ωγ

a+
α |g〉0

+
1

3!

∑
δζ

(
V−γ−δζa

+
β

Ωγ − Ωδ − Ωζ

+
V−δ−ζβa

+
γ

Ωβ − Ωδ − Ωζ

)
a+

δ a
+
m|g〉0 (3.39)

where Vαβγ is given by Eq. (3.6) and |g〉0, a+
α |g〉0, a+

αa
+
β |g〉0, and a+

αa
+
β a

+
γ |g〉0

denote the ground, single, double and triple excited states of the uncoupled

system respectively.

The transition dipoles among the ground and the first two excited states

are given by:

〈φ(0)|P|φ(0)〉 = 0 , (3.40)

〈φ(0)|P|φ(1)
α 〉 = µα , (3.41)

〈φ(0)|P|φ(2)
αβ〉 =

1

2!
µαβ + 2

∑
γ

{
Vαβ−γµγ

Ωα + Ωβ − Ωγ

− Vαβγµ−γ

Ωα + Ωβ + Ωγ

}
, (3.42)

〈φ(1)
α |P|φ(1)

β 〉 = µ−αβ +
∑

γ

{
Vαβ−γµ−γ

Ωα − Ωβ − Ωγ

+
V−α−βγµγ

−Ωα + Ωβ − Ωγ

}
, (3.43)

〈φ(1)
α |P|φ(2)

αβ〉 = µβ . (3.44)

Substituting these transitions dipoles in Eqs. (3.37) and (3.38) we obtain ex-

pressions for the linear and the second-order polarizabilities which coincide
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with Eqs. (3.35) and (3.36). This proves the equivalence of the linear and the

second-order polarizabilities of the QOM calculated in the classical limit and

using the Sum-over-States expression.

3.7 Appendix C. Nonlinear response of sys-

tems with Coordinate-dependent anhar-

monicities

When the anharmonicities in Eqs. (3.13) and (3.14) only depend on coordinates

qα = (a+
α + aα)q0α/

√
2 (and not on the momenta pα = (a+

α − aα)p0α/
√

2) the

DMRF are simplified considerably. In this case we have

Vαβγ = V−α−β−γ = V−αβγ = V−α−βγ ≡ V q
αβγ

q0αq0βq0γ(√
2
)3 , (3.45)

µ−α−β = µαβ = µ−αβ ≡ µq
αβ

q0αq0β(√
2
)2 , (3.46)

µα = µα ≡ µq
α

q0α√
2
. (3.47)

The time-domain response (Eq. (3.31)) then becomes

R(t; τ1, τ2) = −
∫ t

τ2

dτ
∑
αβγ

V q
αβγµ

q
αµ

q
βµ

q
γ

(q0αq0βq0γ)
2

8

× Cα(τ − τ2)Cβ(τ − τ1)Cγ(t− τ)

+
∑
αβ

µq
αβµ

q
αµ

q
β

(q0αq0β)2

4
(2Cα(τ2 − τ1)Cβ(t− τ2)

+ Cα(t− τ1)Cβ(t − τ2)) , (3.48)

where

Cα(t) = i(Gα(t)− G∗
α(t)) = 2sin (Ωαt) , (3.49)

is the classical linear response of a harmonic oscillator.

Similarly Eq. (3.36) reduces to

β(−ωs = ω1 + ω2;ω1, ω2) = −
∑
αβγ

V q
αβγµ

q
αµ

q
βµ

q
γ

MαMβMγ
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× 1

(Ω2
α − ω2

1)(Ω
2
β − ω2

2)(Ω
2
γ − (ω1 + ω2)2)

+
∑
αβ

µq
αβµ

q
αµ

q
β

MαMβ

(
1

(Ω2
α − ω2

1)(Ω
2
β − (ω1 + ω2)2)

+
1

(Ω2
α − ω2

2)(Ω
2
β − (ω1 + ω2)2)

+
1

(Ω2
α − ω2

1)(Ω
2
β − ω2

2)

)
. (3.50)



Chapter 4

Chemical Bonding and
Size-Scaling of Off-Resonant
Nonlinear Polarizabilities.

The size-scaling of various optical properties in conjugated polymers has

been studied extensively, both theoretically [105–108] and experimentally

[109–111,13]. Linear absorption of short oligomers with N < 12 − 20 car-

bon atoms shows an Ω ∼ N−µ scaling of the lowest excitation frequency in

linear absorption (optical gap) with µ ∼ 0.4 − 0.6 [109]. The Hückel model

(which neglects Coulomb interactions) yields µ = 1 [108]. An important rela-

tion is the scaling of nonlinear susceptibilities with molecular size. The power

scaling law γ ∼ Nb for the third-order polarizability, where N is the number

of carbon atoms, has been established experimentally in the early 70’th [112],

and supported by theoretical calculations using the free electron model [113].

Numerous subsequent studies showed that for short chains, the exponent b

can vary between 3 and 8, depending on the system and model, and eventu-

ally approaches 1 (saturates) for long molecules. The crossover between these

two behaviors is related to the exciton coherence size [60,74,73,109,111]. Cal-

culations performed using the Hückel model predict saturation at long chains

(N ∼ 50) and b ∼ 5 − 9 [108,114,115], whereas calculations based on the

Pariser-Parr-Pople (PPP) Hamiltonian which includes electronic correlations

58
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predict a shorter saturation size (N ∼ 20 − 30) and b ∼ 4 − 5 [60,59,28,29].

Sum-over-states calculations of γ in short oligomers yield a scaling exponents

b ≈ 8 for symmetric linear cyanites and b ≈ 4 for linear polyenes [116]. Diffi-

culties with the controlled synthesis and poor solubility of polyenic oligomers

restricted early experimental studies to molecules with up to 30-40 carbon

atoms [13,112,117] which showed no saturation. These problems have been

overcome, and the saturation of γ has been observed experimentally at ∼ 200

double bonds [111], which is much larger than early estimates.

Considerable attention has been also paid to the dependencies of nonlinear-

ities on other molecular parameters. It has to be argued that the bond-length

alternation parameter ∆ is related to electron localization [118]. In alternat-

ing chains the Hückel model predicts γ ∼ ∆−6 divergence at small ∆ [108].

Flytzanis and co-workers employed the Hückel model to study the scaling of

off-resonant γ of large oligomers with the saturated optical gap Ω̃ [105,118].

The resulting γ ∼ Ω̃−6 scaling law is in a qualitative good agreement with ex-

perimental data collected for both off-resonant and resonant third-order polar-

izabilities of different conjugated polymers [119]. Recent resonant experiments

show the following relation γ(−3ω;ω, ω, ω)/αmax ∼ Ω̃−10 [109,110], where the

scaling of both γ and αmax (absorption maximum) depends on the concentra-

tion of chromophores in films and the ratio is approximately independent on

dilution.

4.1 Electronic Normal Modes and Size-

Scaling of Optical Polarizabilities of Poly-

acetylene Oligomers

To investigate the size-scaling in unsubstituted polyenes the off-resonant po-

larizabilities up to seventh order, for polyacetylene oligomers with up to 300

carbon atoms were calculated using the DSMA combined with the PPP hamil-
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Figure 4.1: Scaling of linear α third order γ, fifth order δ, and seventh order ζ
polarizabibilities with size. Shown are the magnitudes of polarizability normal-

ized at its saturated value χ(j)(N)

Nχ
(j)
sat

, where χ
(j)
sat = χ(j)(N)

N
at N → ∞, j=1,3,5,7.

The magnitudes of saturated polarizabibilities are: αsat = 1.7 × 10−23 esu,
γsat = 1.1× 10−33 esu, δsat = 1.9× 10−43 esu, ζsat = 5.2× 10−53 esu.
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Figure 4.2: Upper panel: size dependence of mode frequencies, lower panel:
the number of dominant modes, needed to compute susceptibilities with 0.1%
accuracy compared with the full N2/4 modes TDHF calculations.
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Figure 4.3: The effective dipole moments µν vs. Electronic Oscillator Frequen-
cies Ων for an N = 100 polyacetylene chain. Shown are the dominant modes
in first, third, fifth, and seventh orders of nonlinearity.

tonian (see Section 2.1). In all calculations the fixed geometry was used with

unit cell size along the backbone a = 1.22Å and bond-length alternation pa-

rameter ln = ∆ = 0.07Å. The variation of the lowest four nonvanishing polar-

izabilities α, γ, δ, and ζ with the number of carbon atoms N is displayed in the

Fig. 4.1. Since the molecules have an inversion symmetry, antisymmetric (Bu)

modes contribute to the odd order responses (j = 1, 3, 5, 7), whereas the sym-

metric (Ag) oscillators appear only in the even order responses (j = 2, 4, 6).

Only 11 Bu and 10 Ag modes (see Fig. 4.2) were required to obtain a 0.1% ac-

curacy compared with the full (N2/4) modes TDHF calculations (comparisons

were made for chains with up to 40 carbon atoms and up to the third-order
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Figure 4.4: The effective dipole moments µν vs. Electronic Oscillator Frequen-
cies Ων for an N = 100 polyacetylene chain. Shown are the dominant modes
in second, forth, and sixth orders of nonlinearity.

response, where the full TDHF calculations were feasible). Comparison of the

absolute magnitudes of the calculated polarizabilities with ab initio coupled

perturbed Hartree-Fock theory [30,31] show an agreement to within a factor

of 1.5 for linear and 2.5 for third-order static polarizabilities. This agreement

is very encouraging, in particular given that the present calculations did not

employ any geometry optimization.

The effective dipole moments, µ
(j)
ν (Eq. (2.50)) of antisymmetric (Bu) and

symmetric (Ag) oscillators of a N = 100 polyacetylene chain are displayed

vs. mode frequencies Ων in Figs. 4.3 and 4.4 respectively. An important

observation is that the same modes dominate at all orders. These modes
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Figure 4.5: A) Contour plots of ρ̄ (a) and the dominant modes (b-f) that
contribute to the responses up to the seventh order for the system of Figs. 4.3
and 4.4 (N = 30). Shown are the absolute values of the density matrices
smoothed over four points to eliminate fast oscillations and to highlight the
long range behavior. The axes are labeled by the carbon atoms along the chain.
Exciton confinement effects are clearly seen in panels c, d, e, f. Frequencies of
modes b-f are 2.6, 4.0, 4.8, 5.2, and 5.6 eV , respectively. B) Same as A but
for a longer chain (N = 100). Frequencies of b-f modes are 2.4, 3.9, 4.5, 4.7,
and 5.1 eV , respectively.
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manifest themselves in the response with different effective oscillator strengths

at each order. Higher-frequency modes make more significant contributions to

the higher order response. Contour plots of the ground state density matrix

ρ̄(a) as well as the five dominant modes labeled b-f in Figs 4.3 and 4.4 is shown

in Figure 4.5B for N = 100. The delocalization of the off diagonal elements

represents electronic coherence between different atoms. Figure 4.5B clearly

shows how electronic coherence which is very limited for the almost diagonal ρ̄,

increases very rapidly for the higher modes. To illustrate finite size effects the

same quantities for N = 30 are displayed in Figure 4.5A. We note that modes

a and b are hardly affected by reducing the size from 100 to 30. However, the

higher modes which are more delocalized, show significant confinement effects.

Thus the mode size measured by the off-diagonal electronic coherence grows

with its frequency [55,60,74], and, therefore, the coherence size increases for

higher orders nonlinearities. This can be seen in Fig. 4.6 where the variation

of the scaling exponents b ≡ d[lnχ]/d[lnN ], χ = α, γ, δ, and ζ with size is

displayed. The curves shown in Fig. 4.6 attain a maximums bγ = 3.5 at

Nγ = 8; bδ = 5.7 at Nδ = 10; bζ = 7.9 at Nζ = 12.1 b reaches a maximum

and eventually approaches 1 (saturates). This saturation occurs at longer

sizes with increased order of nonlinearity. Measurements of γ in solution as a

function of chain length in long chains (up to 240 double bonds) were reported

in [111]. The experimental b-curve resembles Fig. 4.6 with a maximum bγ =

2.5 for Nγ = 60 double bonds. The size-scaling of optical sucseptibilities of

donor/acceptor substituted molecules are investigated further using advanced

INDO/S hamiltonian in Chapter 10.

The various terms in the effective dipole moment η(i) (Eq. (2.37)) make

different contributions to the effective oscillator strengths and to the nonlinear

response. This allows us to separate the relative contributions of different pro-

1b attains a larger maximum value for calculations with geometry optimization.
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and ζ with size. Note that both the maximum value of b and the size where
the maximum is attained increase with the degree of nonlinearity.

cesses to the response. As an example, the ratio (a ≡ χ(j)
p−h/χ

(j)) of interband

contribution to the total polarizability γ, δ, and ζ for oligomers with up to 150

atoms are depicted in Fig. 4.7. For small chains, the particle-hole contribution

is negative in all cases. With increased chain length this contribution changes

sign, and for chains longer than the exciton coherence size (∼ 30) [60,74,73,98]

the ratio saturates to the values aγ = 0.4; aδ = 0.26; aζ = 0.19.

4.2 Single-Oscillator Approximation for Off-

Resonant Polarizabilities

In addition to its clear numerical advantages, the oscillator representation

may be used to develop simple rules of thumb for the scaling of optical polar-

izabilities with molecular size and chemical bonding. In this Section a simple

analytical expressions for the polyenic off-resonant linear and nonlinear polar-

izabilities are derived and the parameters which affect the magnitude and the

scaling of these optical properties are investigated.

The ground state can be defined through molecular geometry (the average
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Figure 4.7: The ratio of the interband contribution (a = χ
(j)
p−h/χ

(j)) to γ, δ,
and ζ polarizabilities. Note that for small chain lengths the particle-hole con-
tributions to the high order polarizabilities are negative, and the interband
contribution decreases with increased degree of nonlinearity. The ratio satu-
rates to the values aγ = 0.4; aδ = 0.26; aζ = 0.19.

bond length a and the bond length alternation ∆ parameters) and ground

state density matrix (charges and chemical bonding). The chemical bonding

is described by the bond order σn ≡ (ρ̄n,n+1 + ρ̄n+1,n+2)/2 and the bond order

alternation parameters κn ≡ |ρ̄n,n+1 − ρ̄n+1,n+2|. Numerical calculations show

that the bond order parameter σn depends only weakly on the bond length

alternation ∆ in polyacetylene. Since ρ̄nm is a localized function of n − m,

and edge effects are short range, we thus expect both σn and κn to depend

very weakly on n (apart from small edge effects). The average values of σ =

〈σn〉 = 0.31 and κ = 〈κn〈 can be therefore safely used as good measures of the

chemical bonding.

We start with the linear response and renormalized spectral moments which

are independent on the applied static field

f (2k) ≡ − 1

E0
K(1)

k . (4.1)

A family of sum rules for the linear response Eq. (2.53) can then be recasted



CHAPTER 4. SIZE-SCALING OF POLARIZABILITIES 67

as

f (n) =
M∑

ν=1

(Ων)
nfν, n = 0, 2, 4, . . . , (4.2)

f (n) ≡ 0, n = 1, 3, 5, . . . .

By taking the simplest (single-mode) approximation (M = 1) we obtain closed

analytical expressions for the susceptibilities. Making use of sum rule for n =

0, 2 and Eq. (2.55) we obtain for the off-resonant polarizability α ≡ α(ω = 0)

α = [f (0)]2/f (2), Ω = [f (2)/f (0)]1/2 (4.3)

The single mode approximation lumps the contributions of all electronic os-

cillators into a single effective oscillator with frequency Ω. This mode may

not be identified with any of the original TDHF modes; it is rather a natu-

ral collective variable which represents in the best way the contribution of all

electronic oscillators to the zero frequency optical response.

Eqs. (4.3) express the linear polarizability α and the optical gap Ω in terms

of the parameters of the Hamiltonian and its ground state ρ̄mn. This pro-

vides an important structure-polarizability relationship, which allows to pre-

dict the magnitude of the linear response using detailed information regarding

the chemical structure and bonding. The moments contain the global relevant

information about system and are much easier to model and parameterize

compared with individual frequencies Ων and oscillator strengths fν.

To proceed further, the dependence of the spectral moments f(0) and f 2) on

molecular parameters is examined. We expect that for large sizes, f(n) ∼ N

for all n. Numerical results for ρ̄mn show that boundary effects on ρ̄mn are

short range [60,98], and only affect it when the distance of m and n from an

edge is one or two atoms. This suggests that boundary effects on the sum

rules should also be short range, and that f(n) can be written in the form

f (n) = Nf
(n)
1 + f

(n)
0 , where f

(n)
1 is related to the N → ∞ behavior, and f

(n)
0
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represent edge effects in the sum rules. Careful examination of the sum rules

shows that the largest corrections to this form are ∼ N−1 and ∼ N−1lnN ,

which can be safely neglected for N ≥ 10. Expressions for f
(n)
1 and f

(n)
0 can

be obtained by inspecting the behavior of f(n) for large N : f
(n)
1 are expressed

in terms of the saturated components of ρ̄mn, i.e., the values of ρ̄mn for large

N when m and n are far from the edges, while f
(n)
0 involves the values of ρ̄mn

near the edges (note that ρ̄mn is strongly localized in m− n). Neglecting edge

effects we have f(0) = Nf
(0)
1 . For f (2) the N-independent term f

(2)
0 is retained.

This will be rationalized below.

Substituting f (2) and f (0) in Eq (4.3) we obtain

α = χ(1) =
[f

(0)
1 ]2

f
(2)
1

N2

N + L
(4.4)

where L ≡ f
(2)
0 /f

(2)
1 is the effective coherence length.

Having established the size-scaling of α with size N, we turn to its depen-

dence on other molecular parameters. Using the sum rules of [120] for f(0)

we have f
(0)
1 = 4e2a2β0σ. The second moment f(2) is more complicated. The

formal expression for f (2) [120] implies that it vanishes in a translationally

invariant system. There are three mechanisms which break the translational

symmetry with respect to the lattice constant and make f(2) finite: bond order

alternation related to symmetry breaking in ρ̄, bond-length alternation which

causes symmetry breaking in the Hamiltonian, and edge effects. 2 The second

mechanism does not contribute to f
(2)
1 ; this means that f

(2)
1 is small when ∆

is small, that edge effects are important even for large N, and the term f
(2)
0 is

needed.

The moments f (1) and f (2) using the sum rules [120] for different values of

∆ and N were calculated numerically. The results are presented in Fig. 4.8.

The left panel shows f(0) = f
(0)
1 N with f

(0)
1 = 4.4 e3Å2V independent of ∆

2Note that a finite κ in the infinite chain even when ∆ = 0 is a signature to spontaneous
symmetry breaking induced by Coulomb interaction.
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bond-length alternation. Calculations were made using the DSMA algorithm.

as expected. The right panel shows f(2) = f (2)
1 N + f (2)

0 . The dependence

of f
(2)
1 and f

(2)
0 on ∆ are displayed in Fig. 4.9 (upper panels). For 0.02Å ≤

∆ ≤ 0.1Å they can be approximated by the Taylor expansions f
(2)
1 = a1∆,

f
(2)
0 = b0 + b1∆+ b2∆

2. Numerical fits give the following coefficients: a1 = 410

e5ÅV 3; b0 = 350 e5Å2V 3; b1 = −140 e5ÅV 3; b2 = −3900 e5V 3. The ∆-

dependence of Ω and L is then given by

Ω(N,∆) =

(
N + L(∆)

N

) 1
2

Ω̃(∆), (4.5)

with

L(∆) =
b0 + b1∆ + b2∆

2

a1∆
; Ω̃(∆) =

√
a1∆

f
(0)
1

. (4.6)

The coherence length L(∆) and the optical gap for infinite chains Ω̃(∆) are

displayed in Fig. 4.9 (lower panel). Eq. (4.5) gives the Ω ∼ N−ν behavior of

the optical gap with ν = 0.5 for short chains (N < L(∆)) and its saturation

for N > L(∆) (for comparison, the Hückel model [105,108] where Coulomb

interactions are neglected predicts ν = 1). Exponents close to 0.5 has been

observed experimentally in various oligomers [109,110].
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The linear scaling of f
(2)
1 with ∆ yields our final expression for the single-

mode approximation of the linear response α ≡ χ(1)

χ(1) =
(ea)2

8β ′∆
k1

N2

N + L(∆)
. (4.7)

Here 4β′∆ is the Hückel band gap. The dimensionless parameter k1 defined

by Eqs. (4.7) can be estimated using ρ̄mn in a long chain. Eqs. (4.5) and (4.7)

give α(N) ∼ N/Ω2(N) in agreement with the result of Silbey [121] who used

an “average” frequency Ω̄ to perform the sum over states in α. This “average”

frequency is identified as the frequency of our collective electronic oscillator.

The sum rule analysis of χ(1) can be extended to higher order (nonlinear)

polarizabilities. These calculations are more tedious since the number of terms
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in the susceptibilities is much larger, which requires the use of additional sum

rules, and the introduction of a new effective electronic mode at each order

of response. The scaling behavior of all terms contributing to the third order

response have been examined. Upon retaining only the dominant ones and

applying similar arguments for higher order responses we finally obtained

χ(j) = kj
j(ea)j+1

2(4β ′∆)j

N j+1

[N + L(∆)]j
, (4.8)

where j = 1, 3, 5 correspond to the polarizabilities α, γ, δ etc. These expres-

sions are valid only for finite bond-length alternation ∆. ∆ = 0 needs to be

treated separately.

The solid lines of Fig. 4.10 represent the full TDHF calculations of α, γ

and δ for polyacetylene chains with up to 200 carbon atoms for various values

of ∆. The dotted lines were calculated using Eq. (4.8) and show an excellent

agreement. L(∆) ≡ f
(2)
0 /f

(2)
1 were computed using the expressions given in

[120]. kj(∆), j = 1, 3, 5 displayed in Fig. 4.11 were the only fitting parameters.

kj are order 1 and depend only weakly on ∆.

Eq. (4.8) predicts the following relation between the saturated third order

off-resonant susceptibility γ and optical gap Ω̃: γ ∼ ∆−3 ∼ Ω̃−6. In the Hückel

model on the other hand we have γ ∼ ∆−6 ∼ Ω̃−6 [105]. This Ω̃−6 scaling is

in agreement with experiment [119]. Note that these two models predict a

different scaling with ∆.

To examine the χ(j) ∼ N bj power law the scaling exponent bj =

d[lnχ(j)]/d[lnN ] [60,74,73,98] was calculated. This gives bj =
(
1 + jL

N+L

)
. For

small sizes it starts as bj = 1 + j. The convergence of the scaling exponent

b to 1 allows us to introduce an operational definition of the saturation size,

defined as size N? whereby bj = 1 + η, η being a chosen small parameter. We

then get N? = (j/η − 1)L. For η = 0.1 this gives (10j − 1)L. It is clear from

Fig. 4.10 that the effective saturation size increases with j as predicted by this

equation, even though it still depends on a single coherence size. For j = 3,
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Figure 4.10: Scaling of the first third and fifth order polarizabilities (α, γ, and
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η = 0.5, and ∆ = 0.03Å which corresponds to L = 27 we obtain N? = 135, in

good agreement with Fig. 4.9 of [111] where the value of η = 0.5 is reached at

N? ∼ 120.

In summary, expressions for size-dependent off-resonant polarizabilities χ(j)

and the optical gap Ω̃ [Eqs. (4.5) - (4.8)] which predict their variation with

the bond-length alternation parameter ∆ have been derived. The saturated

(N →∞) values of χ(1), χ(3), and χ(5) show strong dependence on bond-length

alternation ∆: α ∼ ∆−1, γ ∼ ∆−3, δ ∼ ∆−5. ∆ can be varied while keeping

β0 fixed (for example by using different solvents or by substitution). Our

expressions predict correctly the experimental scaling Ω ∼ N−0.5 [109,110],

γ ∼ Ω̃−6 [105,119], and provide a good estimate of the saturation length of γ

[111].



Chapter 5

Linear Optical Excitations in
PPV Oligomers

In this Chapter we investigated the electronic excitations of poly(p-phenylene

vinylene) (PPV) oligomers (Fig. 5.1) [61,122–130] and their scaling with size.

Recent interest in this photoluminescent polymer is connected with its possi-

ble use as a photoconductor [131,132]. The possibility of using it for pho-

tonic devices is rapidly becoming reality: High performance photonic de-

vices fabricated from PPV have been made, including light emitting diodes

(LEDs), display panels, light emitting electrochemical cells (LECs), photo-

voltaic cells, photodetectors, and optical switches. These polymer-based de-

vices have reached performance level comparable with their inorganic coun-

terparts. Organic photonic devices rely on the recombination of electrons and

holes photogenerated or injected at the contact. To understand, and possibly

improve, operation of these devices it is necessary a thorough understanding

of the photogeneration and charge transfer processes. Although substantial

amount of experimental [125–129] and theoretical [61,122–124,59] work has

been reported for PPVs, a consistent picture for the overall electronic excita-

tion processes has yet to emerge.

The π molecular orbitals of PPV have been classified as either localized

(l) or delocalized (d) [131,129]. The former have an electron density on

74
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Figure 5.1: Geometry and atom labeling of PPV oligomers. Bond angles are
120o, except α(r6,7, r7,8) = 128o, and the distances are: r1,2 = r2,3 = r3,4 =
r4,5 = r5,6 = r6,1 = 1.39Å, r6,7 = 1.44Å, r7,8 = 1.33Å.

carbon atoms 1,2,4, and 5 (Fig.5.1), while the latter are delocalized over

all carbon atoms. The experimental absorption spectrum of PPV thin film

[123,124] shown in Fig. 5.2A (dashed line) is typical for other PPV-derivatives

[131,123,124,128]. It has a fundamental (d → d?) band at 2.5 eV [496 nm]

(I), two weak peaks at 3.7 eV [335 nm] (d → d?) (II) and 4.8 eV [258 nm]

(l → d? and d → l?) (III), and a strong (l → l?) band at 6.0 eV [207 nm]

(IV). Peak II originates from electron correlations [131,129] and is missed by

HF calculations.

5.1 Electronic Normal Modes and Optical Ab-

sorption (PPP hamiltonian)

Linear absorption of PPV oligomers with up to 50 repeat was calculated us-

ing the DSMA combined with the PPP hamiltonian (see Section 2.1). In

all calculations the experimental geometry [133] has been used (see Fig. 5.1).

The absorption spectra were then calculated using Eq. (2.55). The calculated

spectrum of PPV(10) shown in Fig. 5.2A (solid line) closely resembles the ex-

perimental spectrum and has similar features at 2.83 (I), 3.3 (II), 4.5 (III),

and 5.6 eV (IV) [438, 376, 276, and 221 nm]. In addition, it shows a fifth band

centered at 7.0 eV [177 nm] (V). The oscillator strengths fν of PPV(10) are

shown in Fig. 5.2A.
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Figure 5.2: (A) Absorption spectrum of PPV(10) (the imaginary part of α
Eq.(1)). Dashed line: experimental absorption of a PPV thin film. Solid
and dotted lines: absorption lineshapes of PPV(10) obtained with 12 effective
modes calculations and linewidth Γν = 0.1eV using PPP and INDO/S hamil-
tonians, respectively; The sticks represent oscillator strengths fν, ν = 1, N2/4
of PPV(10) obtained by the full TDHF with PPP hamiltonian. (B) The fre-
quency – dependent participation ratio of the induced density matrix.

By displaying the dominant oscillators in the site representation, a new

picture that relates the optical properties directly to motions of charges in the

system is obtained, without ever introducing electronic eigenstates. The extent

of spatial coherence then provides a view of the underlying coherence sizes. A

two-dimensional plot of ρ̄ of PPV(10) is shown in Fig. 5.3A. The coordinate

axes represent repeat units along the chain and the absolute values of matrix

elements are depicted by different colors. ρ̄ is dominated by the diagonal

and near-diagonal elements, reflecting the bonds between nearest neighbors.

Figure 5.3B shows a single unit of Fig. 5.3A on an expanded scale using the

atom labeling given in Fig. 5.1. It reflects bond strength distribution over the
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benzene ring (1-6 elements), strong double bond (7-8), and weaker single bond

(6-7) of the vinylene group. This bonding pattern is to be expected from the

molecular structure.

The coordinates Qν and momenta Pν of the dominant electronic oscillators

are examined next. Vibrational normal modes represent coherent displace-

ments of various atoms, and these electronic modes represent the displacements

of the electronic density matrix with respect to ρ̄. The diagonal elements reflect

induced charges on various atoms, whereas the off-diagonal elements represent

dynamical fluctuations of interatomic chemical bonding [60,74,104,70,61]. Our

calculations show that the absorption is dominated by five oscillators denoted

I-V. The coordinate and momentum eigenvectors of the oscillator responsi-

ble for the lowest absorption peak (I) of PPV(10) are shown in Fig. 5.3, C

and D. The same quantities for the second oscillator corresponding to peak

(II) are shown in Fig. 5.3, F and G. Despite the different structure of these

electronic modes, the delocalization pattern of the off-diagonal elements rep-

resenting electronic coherence between different atoms is similar. Both modes

are delocalized and can be viewed as d → d? transitions. Qν and Pν clearly

show that the weak coherences between the phenylene ring of the i-th repeat

unit, and the vinylene group of the i+1-st repeat unit are enhanced by optical

excitation. In addition, a weak dynamical coherence develops between the i-th

and the i + 2-nd repeat units. These figures illustrate that finite size effects

are limited to the terminating repeat units and that the momenta are more

delocalized than the coordinates for a single unit. The coherence size, that is

the ’width’ of the momentum density matrix along the coordinate axes, where

the coherences decrease to 10% of their maximum values) is 5 repeat units.

The same modes for a longer chain [(PPV(20))] displayed in Fig. 5.3, E and

H are virtually identical to those of PPV(10). Therefore, 10 repeat units al-

ready resembles the infinite chain as far as the optical spectrum is concerned.
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Figure 5.3: Contour plots of density matrices. (A) ρ̄ of PPV(10); (B) magni-
fied region of (A) representing the single unit of polymer chain and the color
maps; (C) momentum, and (D) coordinate of PPV(10), and (E) coordinate
of PPV(20) of the lowest absorption peak (I); (F), (G), (H) are the same
quantities as in C to E but for the second absorption peak (II). The axis la-
bels represent the repeat units, except in (B) where the axes represents the
individual carbon atoms as numbered in Fig. 5.1.
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The coordinate and momentum of the third peak (III) of PPV(10) are shown

in Fig. 5.4, A and B. This mode is delocalized with a coherence-size similar

to modes (I) and (II), however, its structure along the oligomer chain is very

different: Bonding is weak at the center and strong towards the edges. The

electronic modes are most suitable for investigating charge transfer processes

and photoconductivity [131,132]. The strong local optical dipoles along the

chain can affect charge transfer and electron hopping. Oscillator III, which

has the strongest optical coherences induced at the chain ends (see Fig. 5.4, A

and 5.3, B), should play an important role in effects involving charge separa-

tion.

The coordinates and momenta of the high frequency peaks (IV) and (V)

of PPV(10) (Fig. 5.3, D, E, G, and H) are completely localized on a single

repeat unit. This behavior is drastically different from polyacetylene, where

the electronic coherence-size increases monotonically for the higher frequency

modes (see Fig. 5.2) [74]. The coordinates of these modes for a single PPV unit

on an expanded scale are shown in Fig. 5.4, F and I. For the fourth peak (IV)

the optically induced coherences only involve the phenylene ring carbon atoms

1,2,4, and 5 (Fig. 5.1), in agreement with the results obtained in [131,129].

The oscillator responsible for peak (IV) represents several nearly-degenerate

localized oscillators (see Fig. 5.2A). The high-frequency peak (V) predicted

by our calculations lies beyond the experimentally studied frequency range.

It corresponds to localized and weakly delocalized transitions involving the

vinylene group atoms 7 and 8, and the phenylene ring atoms 3 and 6. A weak

coherence between the vinylene groups of neighboring repeat units is observed

as well.
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Figure 5.4: Contour plots of density matrices. (A) Momentum, and (B) co-
ordinate in the real space, and (C) coordinate in the molecular orbital repre-
sentation of the peak (III) of PPV(10). (D) Momentum, and (E) coordinate
of PPV(10) for the fourth absorption peak (IV), and (F) magnified area of
(E) representing the single unit of polymer chain. (G, H, and I) the same
quantities as in B to F but for the fifth absorption peak (V). The axis of (A),
(B), (D), (E), (G), and (H) are labeled to the repeat units of polymer chain.
The axis of (C) denote the molecular orbitals. Labeling using the number of
carbon atoms according to Fig. 5.1 is used for panels (F) and (I)
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5.2 Electronic Normal Modes and Optical Ab-

sorption (INDO/S hamiltonian)

In Section 2.1 two hamiltonians PPP and INDO/S are introduced. To com-

pare how they work calculations of linear absorption in PPV oligomers were

repeated using INDO/S hamiltonian. The calculated INDO/S spectrum of

PPV(10) shown in Fig. 5.2A (dotted line) better agrees with the experimental

spectrum (dashed line) than the PPP spectrum (solid line). It has spectro-

scopic features at 2.71 (I), 3.08 (Ia), 3.57 (II), 4.6 (IIIa), 5.7 eV (IV) and 7.2

eV (V) (the labeling will be explained latter). Despite on the improvement,

the principal structure of the INDO/S spectrum does not change compare to

the PPP spectrum: the spectra have the same number of peaks with compa-

rable intensity. On the other side, INDO/S hamiltonian has approximately 5

times larger basis set than PPP’s basis set. This increases the computational

memory and time requirements by factors 20-30 and 80-120, respectively. Thus

these hamiltonians are complimentary to each other.

The INDO/S electronic modes corresponding to the absorption peaks are

examined next (see Section 2.5 in Chapter 2). INDO/S hamiltonian assigns

a single s-type basis function to hydrogen atoms and four basis functions

(s,px,py,pz) to all other heavy atoms of these molecules. The orbitals s,py,pz on

the carbons in the chain are sp2 hybridized and form the molecular σ-bonding

skeleton. Qualitatively, only px orbitals perpendicular to the molecular plane

participate in the π-bonding network and are responsible for the lowest optical

excitations. Assuming that σ-electrons do not contribute to the ground state

charge redistribution and to the optical properties, all K × K (K being the

total basis set size) density matrices were sorted out, retaining only elements

corresponding to px orbitals. The resulting k×k matrices (where k < K is the

number of px orbitals of heavy atoms) were displayed as contour plots. The

ground state density matrix elements have the following physical significance:
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the diagonal elements (n = m) represent the π-electron charge at the m’th

atom, whereas the off-diagonal (n 6= m) elements reflect the π-bond-orders

between n and m atoms 1. We thus end up with the same interpretation of

the density matrices as used previously for the simpler PPP hamiltonian.

The DSMA calculations results in the set of electronic oscillators in the

momentum-coordinate (P − Q) representation (see Section 2.4). So far, the

two-dimensional plots of these hermitian variables have been examined. Now

we turn to the equivalent representation of electronic modes in terms of ξ and

ξ+. Even though these variables are not hermitian, two advantages are antici-

pated in analysis of ξ: First, it is enough to display a single matrix ξν instead

of two matrices Qν and Pν (ξ+
ν matrix is simply transpose of ξν if the electronic

modes are chosen to be real (see Section 2.3)), and second, the assymetry of

ξν with respect to the matrix diagonal is a signature of the charge-transfer

character of optical transition (Section 2.5), whereas the absolute values of

Qν and Pν matrix elements are symmetric with respect to the diagonal. The

latter become, for example, extremely important in analysis of donor/acceptor

substitution effects (Chapter 6).

The electronic modes of six transitions appearing in the spectra of PPV(10)

are displayed in Fig. 5.5. All electronic modes are almost symmetric with re-

spect to the diagonal (ξmn ≈ ξnm). This means that there is no preferable

direction of motion for electron (or holes). Panel A which shows the band-

edge transition I is very similar to the coordinate and momentum of mode I

calculated with the PPP hamiltonian. It shows the same off-diagonal delocal-

ization of about 4-5 repeat units. Panel B displays the next Ia transition. This

mode is forbidden in linear absorption and does not show up in the PPP calcu-

lations for a given set of convergence parameters. It has the same off-diagonal

1This interpretation applies for the conjugated chains but not to the atoms, where other
types of hybridizations are formed. Since our goal is to explore the dynamics of the π-electron
system, this interpretation will be used throughout this thesis.
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Figure 5.5: Contour plots of electronic modes ξν dominating the absorption
spectrum of PPV(10). Panels A, B, C, D, E, F represent the modes corre-
sponding to transitions I, Ia, II, IIIa, IV, V, VI in spectrum shown by dotted
line in Fig. 5.2. The axis labels represent the repeat units. The ordinate and
abscissa label electron and hole respectively.
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coherence size as mode I, but a non-uniform diagonal space distribution. The

molecule is effectively broken to the two parts with diagonal size of 5 repeat

units and a very small electronic coherence between them. Two contribu-

tions to the transition dipole cancel each other resulting in vanishing oscillator

strength. The next transition II shown in panel C is very similar to mode

II in the PPP calculations. As shown in Chapter 6, the total contribution

from the ends is approximately zero, and only the middle region contributes

to the oscillator strength of this mode. This mode therefore makes only a weak

contribution to the linear absorption. The molecule is effectively trimer with

weak electronic coherence among monomers. The off-diagonal coherence size is

about 3 repeat units and the diagonal sizes are 3, 4, and 3 repeat units. Mode

IIIa shown in panel D weakly appears in the absorption spectrum. It has five

noninteracting contributions with off-diagonal and diagonal sizes of about 2

repeat units. It is interesting to draw an analogy with mode III in PPP cal-

culations. Even though their diagonal distributions are quite different, these

modes both belong to the same spectral frequency region and the strongest

contributions to the transition dipoles are localized at the molecular ends.

This fact again indicate the charge-transfer and photoconductivity nature of

middle-frequency optical transitions in PPV oligomers. The high frequency

modes IV and V are localized on the phenyl and vinyl groups, respectively.

They are completely analogous to modes IV and V in PPP calculations. Thus

the general trend in evolution of electronic modes with frequency is an effective

aggregation of molecule to the segments with weak electronic coherence among

them. This localization of optical excitations allows to apply the Frenkel ex-

citon model for molecular aggregates, even though the chromophores are not

separated spatially (see Chapter 7). The same optical excitations calculated

with the INDO/S and PPP hamiltonian have very similar electronic modes.

Additional information and modes may be obtained by varying the input set
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of convergence parameters.

5.3 Molecular Orbital Representation of Elec-

tronic Oscillators

Even though the CEO approach is eigenstate-free, it is instructive to estab-

lish its connection to the more traditional eigenstate representation. The

ν’th oscillator represents the optical transition between the ground state ψg

and the ν’th excited state ψν . The matrices representing the coordinate Qν

and momentum Pν are given by (Qν)mn = 〈ψν |c+mcn|ψg〉 + 〈ψg|c+mcn|ψν〉, and

(Pν)mn = 〈ψν |c+mcn|ψg〉 − 〈ψg|c+mcn|ψν〉. Qν and Pν thus carry considerably

reduced information about the global eigenstates |ψν〉. A different perspec-

tive on these modes is obtained by expanding them in the molecular orbital

representation using a basis set of pairs molecular orbitals. Let us denote the

creation (annihilation) operator for i’th molecular orbital c+i (ci).

We then have

Qν =

N2/4∑
i,j

αν
i,j(c

+
i cj + c+j ci), (5.1)

where i runs over initially unoccupied orbitals (particles) whereas j denotes

occupied orbitals (holes) (see Fig. 5.6A). These coefficients, normalized as∑
i,j |αν

i,j| = 1, represent the contribution of the j → i transition to the ν’th

oscillator. Note that the indices n, m used earlier represent localized atomic

orbitals whereas i, j denote delocalized molecular orbitals. To illustrate how

various molecular orbitals contribute to five dominant electronic modes calcu-

lated using the PPP model, the following two quantities have been introduced

Rν(j) =
∑

i

[αν
i,j ]

2, P ν =
1∑

i,j[α
ν
i,j]

2
, (5.2)

where i, j = 1, . . . , N/2, and ν = I, II, . . . , V . Rν(j) represents the total con-

tribution of the j’th molecular orbital to all orbital pairs appearing in the
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Figure 5.6: (A) Origin of the collective electronic oscillators. Each transi-
tion between an occupied and an unoccupied orbital represents an electron-
hole oscillator. In a molecule with Ne occupied (electron) and Nh unoccupied
(hole) orbitals we have altogether Ne × Nh oscillators. For a system with a
filled valence and empty conduction band described by a “minimal basis set”
Ne = Nh = N/2 and the number of oscillators is N2/4. The collective oscil-
lators Qν can be represented as superpositions of the electron-hole oscillators
(see Eq. (5.2)). The participation ratio P ν measures the effective number of
electron-hole pairs contributing to a given collective oscillator. (B) The molec-
ular orbital contributions and the inverse participation ratios of orbital pairs
corresponding to the five dominant modes of PPV(10) absorption.
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ν’th oscillator. Rν(j) for the five dominant oscillators in PPV(10) are dis-

played in Fig. 5.6B. RI(j) is relatively localized in the vicinity of the HOMO-

LUMO transition (between the highest occupied and lowest unoccupied or-

bitals), whereas additional pairs of orbitals contribute to the higher modes.

The inverse participation ratio P ν measures the number of orbital pairs that

contribute significantly to the ν’th oscillator. In the absence of electronic cor-

relations, each oscillator represents a single transition between an occupied

and an unoccupied orbitals (in the quantum chemistry terminology) or a sin-

gle particle-hole pair (in the semiconductor terminology) and Pν = 1. In this

case, the oscillator and molecular orbital pair descriptions coincide. In a corre-

lated electronic structure, each mode becomes a linear combination (that is, a

wavepacket) of orbital pairs as represented by Eq. (5.1), and Pν increases. P ν

is thus a useful measure of electronic correlations. The values of Pν given in

Fig. 5.6B show that the higher oscillators are more collective and contain grad-

ually increasing number of electron-hole pair states. The oscillators III and V

corresponding to d → l? transitions have the most collective character. Such

strongly correlated excitations require an extensive configuration-interaction

calculations in an eigenstates approach. Here they appear naturally through

the modes. The CEO is most attractive when Pν is large because in a very

efficient way it lumps the important effects of correlations directly into the ob-

servables. The collective nature of optical excitations at different frequencies

can be analyzed by expanding the induced density matrix in molecular orbitals

δρ(ω) =

N2/4∑
i,j

αi,j(ω)(c+i cj + c+j ci). (5.3)

A frequency – dependent participation ratio P (ω) can be then defined by re-

placing αν
i,j with αi,j(ω) in Eq.(5.2). (A normalization

∑
i,j |αi,j(ω)| = 1 is

assumed). P (ω) displayed in Fig. 5.2B is a weighted average of the participa-

tion ratios P ν of the contributing electronic oscillators.
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The molecular orbital representation have been used to analyze the nature

of mode III. In Fig. 5.3C its coordinate in the molecular orbital representation

is displayed. The Figure clearly shows that only few molecular orbitals close

to HOMO-LUMO contribute to this transition. The strongest orbitals can be

identified as either delocalized or localized and mode III corresponds to l → d?

and d→ l? transitions. Our calculations further show that the frequencies of

modes I, II, III are red-shifted and gradually saturate with increasing chain

length, whereas the frequencies of modes IV and V are not affected by size.

These findings are consistent with the delocalized and localized nature of the

two groups of modes respectively as displayed in Figs. 5.3 and 5.4.



Chapter 6

Linear Optical Excitations in
Acceptor-substituted
Carotenoids.

Carotenoids form one of the most important groups of natural pigments, and

are found in all families of vegetables and animal kingdoms [134,135]. Among

the innumerable biological molecules, this class attracts a great attention in

biophysics, biochemistry, and photophysics. Many practical applications of

carotenoids in pharmaceutical and food technology have been reported. The

highly polarizable π-electron chain forms the basis for the fundamental pho-

tophysical phenomena of biological relevance. In photosynthetic cells these

molecules appear in antenna complexes that absorb the light and transfer

excitation to the reaction centers [136,137]. In addition they serve as antioxi-

dants by quenching the chlorophyll triplet via energy transfer and preventing

the formation of singlet oxygen. The photoisomerization of the closely re-

lated retinoids plays a role in various physiological functions (e.g. the primary

process of vision) [136,138].

The electronic spectra of a family of acceptor substituted carotenoids

[1,2] were calculated using the collective electronic oscillator (CEO) approach

[55,74,104,70]. Our analysis shows that it is very difficult to disentangle the

effects of donor-acceptor and bridge length on the spectroscopy of molecules

89
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with relatively short bridges. To obtain a clear picture of the optical response

of acceptor-substituted molecules it instructive to study the size-dependence

of optical properties starting with very long bridges. In these systems the ef-

fects of the acceptor and the bridge regions can be clearly separated. Optical

properties of acceptor-substituted molecules with shorter bridges can then be

attributed to quantum confinement, which is important when the bridge size

becomes comparable to the coherence length LI . This analysis is reminiscent

of the description of exciton confinement in semiconductor nanostructures [38]

where LI is given by the Wannier exciton diameter [139–143].

6.1 Size-Scaling of the Ground - State Density

Matrix.

The six carotenoids listed in order of increasing acceptor-strength in Fig. 6.1

were synthesized and their optical electronic spectra measured in [2]. Betac-

arotene (1) is a symmetric nonpolar molecule. In the other molecules one end

was substituted with an acceptor group.

The Hartree-Fock ground-state density matrices were calculated first. Op-

timal ground-state geometries were obtained at the AM1 level using Gaussian-

94. The ZINDO code was used next to generate the INDO/S hamiltonian

(Section 2.1).

The effect of the acceptor on the molecular ground state can be interpreted

by using contour plots of the density matrices. The absolute values of the

reduced single-electron ground-state density matrix elements |ρ̄nm| of betac-

arotene (1) are shown in Fig. 6.2A. The axes represent carbon atoms. (The

bridge atoms are labeled 1-18 as indicated in Fig. 6.2). The parts correspond-

ing to the end structures are marked by rectangles in the corners of matrix.

The chain’s density matrix is dominated by the diagonal and near-diagonal

elements, reflecting the bonds between nearest neighbors. The nine bridge
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Figure 6.1: Six acceptor-substituted carotenoids [1,2] listed in order increasing
acceptor strength. Repeat units numbering used in two-dimensional plots is
given for molecule 1.

double bonds and two double bonds located at the ends are clearly identified.

The ground-state density matrix of molecule 6 (with the strongest acceptor) is

displayed in Fig. 6.2B. The decrease of π-electron density in the bridge (along

the diagonal of the matrix) near the acceptor is clearly seen. Other calculated

ground-state properties of all molecules are displayed in Fig. 6.3. The growth

of ground-state dipole moments (panels A) and the total charge on the acceptor

end (panels B) is commensurate with increasing the acceptor strength.

To explore the acceptor effect the size-scaling of the optical response and
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Figure 6.2: Contour plots of ground state density matrices for (A) neutral
N(10) (compound 1) and (B) polar P (10) (compound 6) molecules. The color
code is shown in the upper panel. The structures at the ends of molecules are
shown by rectangles.

its saturation to the bulk by increasing the polyenic chain length has been

examined.1 The molecular templates shown in Fig. 6.4 represent two extreme

cases: neutral N(n) and polar P(n) molecules. Some ground state properties of

P(40) are displayed in Fig. 6.5. We first consider the bond-length alternation

parameter δlj which denotes the difference between the single (l2j) and the

1During geometry optimization in long molecules, the geometry of the polyenic chain was
constrained to be planar.
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Figure 6.3: Dipole moments (A), total charge on the acceptor (B), frequency
of the lowest transition (C), linear α(0) (D), quadratic β(0) (E), and cubic
γ (F) off-resonant polarizabilities for six carotenoids. The ordinate axes are
labeled by compound number according to Fig. 6.1. α, β, and γ are in the
units of eÅ2V −1 [1.441 × 10−23esu], eÅ3V −2 [4.323 × 10−29esu], and eÅ4V −3

[1.297× 10−34esu].

double (l2j−1) bond lengths in the j’th repeat unit along the bridge

δlj = l2j − l2j−1, j = 1, . . . , n. (6.1)

(Note that the first repeat unit j = 1 is at the acceptor end.) Panel A shows the

variation of the bond-length alternation along the bridge. Panel C represents

the variation of the total atomic charge qA (Eq. (2.18)) along the chain, and
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Figure 6.4: Structures of the neutral N(n) and polar P (n) (substituted by
the strongest acceptor) molecules. Calculations were done for chain lengths of
n =10,15,20,30,40 double bonds.

panel B shows the integral of this quantity

QA = QAcceptor +
A∑

a=1

qa, (6.2)

where QAcceptor = 0.69e is the total electronic charge on the acceptor. These

calculations illustrate the interplay of bulk and boundary (end) effects in elec-

tronic structure of conjugated molecules. The figures show that the acceptor

attracts electronic charge and attempts to invert the chain structure to zwit-

teronic. The π-electronic system in response screens the acceptor influence

by inducing a positive charge at the acceptor end. The electrons completely

neutralize the acceptor at an effective length of about 10 double bonds, and

the other parts of the molecule are unaffected by the acceptor. This leads to

a saturation of the ground - state dipole moment at this molecular size.

The acceptor-strength controls the magnitude of the dipole moment

whereas the electronic mobility determines the effective screening length. Our

analysis is based on following the charge distribution qA and bond-length al-

ternation δln along the chain. The bond-order alternation, which is another

important characteristic of electronic structure, is usually strongly correlated

with the bond-length alternation δln [98], and for the sake of brevity δln has

been used as the measure of both quantities. In the next section the ground-
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state density matrices will be used to calculate and interpret the optical spectra

of these molecules.

6.2 Electronic Normal Modes and Optical Ab-

sorption

The experimental absorption spectra of the family of substituted carotenoids

(Fig. 6.1) are displayed in Fig. 6.6 (dashed lines) [2]. The spectrum of the

unsubstituted molecule (1) is dominated by a single peak a. As the acceptor



CHAPTER 6. ACCEPTOR-SUBSTITUTED CAROTENOIDS 96

0

3

6

9

12

i

1

b

 

a
 

 

α

 

0

2

4

6

i

2

 

 

α

 

2 3 4 5

0

2

4

6

i

3 

α

 ω  (eV)

0

2

4

i

4

 α

 

 

 

0

1

2

αi

5

 

b

a
 

 

 

2 3 4 5
0.0

0.4

0.8i
6

b

a

 α
 

 

 ω  (eV)

Figure 6.6: Calculated (solid lines) and experimental (dashed lines) linear
absorption spectra [1,2] of six carotenoids. Panels are numbered according
to Fig. 6.1. The absolute values of linear polarizability are given in arbitrary
units. Theoretical spectra were calculated with linewidth Γ = 0.2 eV. Peak i at
4.5 eV appearing on all experimental spectra originates from the anti-oxidant
added to samples.

strength is increased, this peak is red shifted and a second, weaker, peak

b appears. An additional impurity peak i, appearing around 4.5 eV on all

experimental spectra (and absent in our calculations), originates from the anti-

oxidant added to samples in order to increase their shelf lifetime. Nonlinear

polarizabilities of these molecules showed a dramatic growth with increasing

acceptor strength.

The absorption spectra were calculated using Eq. (2.55). The TDHF equa-

tions were solved using the ground-state density matrices ρ̄ as an input. The
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electronic modes ξν) were calculated using the DSMA outlined. The six calcu-

lated spectra shown by solid lines in Fig. 6.6 closely resemble the experimental

spectra. The red-shift of the band edge transition (a) with increasing accep-

tor strength is completely reproduced: computed frequencies are within 0.07

eV of experiment, except for compound 4 where the difference is 0.23 eV (see

panel C in Fig. 6.3). The second peak (b) was reproduced in our calculations

with a weaker oscillator strength compared with experiment. This discrepancy

may be attributed to two factors: First, as will be shown later, an acceptor

perturbs the second charge - transfer mode which is dark in the symmetric

molecule, and makes it visible in linear absorption. This influence depends

not only on the acceptor strength, but also on π-electron mobility, which in

turn depends on the bond - length alternation (in non-alternating chains the

electrons move more easily). Calculations performed with slightly different ge-

ometries (obtained from different levels of semiempirical or ab initio geometry

optimizations) showed that the relative oscillator-strengths of these peaks in

molecules with strong acceptors are much more sensitive to the bond - length

alternation than their frequencies (the second peak (b) became comparable and

even stronger than the first peak (a) for some geometries). Therefore, even

small differences between experimental and calculated structures can lead to

the redistribution of intensity of the linear absorption peaks. Second, the ex-

periments, were carried out in films where intermolecular interactions, which

were not taken into account in the present single-molecule calculations, may be

significant. For example, intermolecular charge transfer [144–146] is possible

between the acceptor and the neutral end of an adjacent molecule.

The right column in Fig. 6.3 shows the variation of the off-resonant first,

second, and third order polarizabilities α(0), β(0), and γ(0) with acceptor

strength. We found a steep growth α(0) and γ(0) by factors 2.5 and 15 re-

spectively from neutral to the most polar case. Experimentally the compound
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with the strongest acceptor showed a 45-fold enhancement of resonant γ com-

pare to the neutral betacarotene [1]. To explore this strong acceptor effect on

the polarizabilities the size-scaling and saturation to the bulk of the optical

response in molecules P(n) and N(n) was examined next. We expect the ac-

ceptor’s influence to decrease with increasing molecular size, and in the infinite

chain limit all molecules should have the same linear absorption spectra with

the saturated band-edge transition Ω∞ and bulk scaling of linear polarizabil-

ity α ∼ n [98,60]. Starting with N(40) and P (40), we gradually decreased

the chain length and followed the evolution of the optical response up to 10

double bonds which is the bridge length of carotenes 1 and 6. The electronic

absorption of P (n) (solid lines) and N(n) (dashed lines) are displays in Fig. 6.7

for n=40,30,20, and 10 double bonds. The figure clearly shows that the oscil-

lator - strength of the lowest frequency peak a of the polar molecules does not

change considerably whereas the second peak b grows with increasing chain

length and gradually attains the bulk limit of the band edge a′ transition of

the neutral molecules.

To account for these trends we display in Figures 6.8 and 6.10 the absolute

magnitudes of the electronic modes ξν corresponding to both peaks using the

same format of the ground state calculations (Fig. 6.2). These two-dimensional

plots allow us to gain a clear physical insight into the nature of optical excita-

tions. By displaying the matrices representing the modes in the site represen-

tation the optical properties are related directly to motions of charges in the

system (see Section 2.5 in Chapter 2).

The electronic modes of the two strongest transitions ξa′ and ξb′ appearing

in the spectra of neutral molecules N(40) (panels A and B) N(20) (panels C and

D) and N(10) (panels E and F) are displayed in Fig. 6.8. The electronic modes

of the neutral molecule are almost symmetric with respect to the diagonal

(ξmn ≈ ξnm). This means that there is no preferable direction of motion for
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Figure 6.7: Linear absorption spectra calculated with linewidth Γ = 0.2 eV of
the neutral N(n) (dashed lines) and polar P (n) (solid lines) molecules shown
in Fig. 6.4. The relative values of linear polarizability are given in arbitrary
units.

electron (or holes). The size of the mode along the ‘antidiagonal’ (m − n)

direction reflects the delocalization of the relative motion of the electron-hole

pair (exciton coherence size) whereas the variation along the diagonal reflects

their center of mass motion (i.e. where the optical excitation resides within

the molecule). These are the off-diagonal and diagonal sizes, respectively (see

Section 2.5 in Chapter 2).

A more detailed view of the charge-density-wave i.e. the variation of the

diagonal elements for modes ξa′ and ξb′ are given in panels F and G of Fig. 6.5
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Figure 6.8: Contour plots of density matrices for neutral N(n) molecule. Top
panel: coordinates of the first a′ (A) and second b′ (B) absorption peaks for
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Figure 6.9: Sketch of the dipole moments µ = Tr(µQ) gain for dominant
modes in neutral N(n) and polar P (n) molecules with chain length n = 40
double bonds.

(This is a complementary information to Fig. 6.8 which only gives the absolute

magnitudes of the density matrix elements and does not show their sign).

Optical excitations of a neutral molecule are localized on the polyenic chain,

with no significant change in mode structures as the chain-length is increased.

ξa′ is a bulk mode with an off-diagonal coherence size (i.e. size, where the

amplitudes of coherences decrease to 10% of their maximum values) of about

12 double bonds. The dipole moment µa′ = Tr(µξa′) of this mode is uniformly

distributed along the chain (see Fig. 6.9). Such bulk features were previously

observed in the band-edge transition of polyacetylene oligomers [74,73,98] and

Section 4. The second oscillator ξb′ is very different: It has the same off-

diagonal coherence size, but a non-uniform diagonal space distribution. Three

contributions to the dipole moment are clearly identified µb′ = Tr(µξb′) =

µI + µII + µIII . The distribution of the dipole moment for these three regions

is schematically shown in Fig. 6.9. The strongest electronic coherences are

created at the end regions of the molecule (I and III) with diagonal size of

about 17 double bonds. Weaker bridge coherences are created in the middle

of the chain (II). The total contribution from the ends is approximately zero,
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and only the region II contributes to the oscillator strength of this mode.

This mode therefore makes only a weak contribution to the linear absorption.

However, such charge transfer modes have the potential to dominate spectra

of nonsymmetric structures.

The electronic modes ξa and ξb of the two oscillators contributing to the

linear spectra of the polar molecules P(40), P(20), and P(10) are displayed

in Fig. 6.10. The diagonal elements of modes ξa and ξb in P(40) are shown

in panels D and C of Fig. 6.5. Fig. 6.10A shows that the lowest peak (a) in

P(40) represents a charge-transfer mode, completely localized at the acceptor

end with the same off-diagonal and diagonal sizes (12 and 17 double bonds

respectively) as for the neutral molecule. The principal difference is the ap-

pearance of strong electronic coherences at the acceptor end. The coherences

are more pronounced in the electron (ordinate) direction. This implies that

the created electron-hole pair involves electron transfer from the acceptor to

the chain. The hole resides primarily on the acceptor, whereas the electron

can move also in region I of the bridge. This tends to reduce the chain-to-the

acceptor electron transfer which takes place in the ground state. The dipole

moment of the mode is large and localized (see Fig. 6.9). This mode there-

fore carries a strong oscillator strength in the optical response of small chains,

and saturates (become constant) in larger molecules (n > 17 double bonds).

The second bulk mode (b) (Fig. 6.2B) differs only by the part controlled by

acceptor from the bulk mode of neutral molecule (compared to Fig. 6.8A).

The oscillator - strength of this mode for molecules with n > 12 double bonds

grows linearly. The absorption spectra of small chains are therefore controlled

by the charge-transfer mode (a) whereas the bulk mode (b) becomes domi-

nant with increasing molecular size. The different character of these modes is

lost for chains shorter than effective coherence size of 12 double bonds such as

P(10) displayed in Fig. 6.10(E,F). Quantum confinement [141,142] then dra-
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matically affects the modes and we can no longer classify them as either end or

bridge type. This is clearly evident by starting with large chains and gradually

reducing the size.

6.3 The Ground-State of Long Polyacetylenes:

Solitons

Our study allows us to draw some general conclusions with regard to the ground

state of large molecules. Panels A-C of Fig.6.11 display schematically the

bond-length alternation pattern of several molecules with increasing acceptor

strength. The ground state of an infinitely long molecule is represented by a

bond-order wave which gives qA = 0, δln = ±δl̄. This means that the ground

state is doubly degenerate with either δln = +δl̄ (double-single alternation)

or δln = −δl̄ (single-double alternation). In finite molecules, the ground state

degeneracy may be broken even if the molecules are very long. In neutral

polyens qA = 0 at the ends as well as in the bulk, which implies the formation

of double bonds at the ends, giving δlI > 0 and δlIII > 0. Our calculations

show that δlI = δlIII ≈ δlII . The bond alternation in the bulk can assume

two values, δlII = ±δl̄. However if δlII = −δl̄, two solitons are needed to

transform the boundary values δlI = δlIII ≈ δl̄ to the bulk values δlII = −δl̄
(see Fig.6.11A) which means that the energy of the δlII = −δl̄ configuration

is higher than that of the δlII = δl̄ configuration (Fig.6.11A) by the energy

needed to form two solitons. The ground state is no longer degenerate and

is represented by a homogeneous solution δlII = δl̄. This illustrates that

the nondegeneracy of the ground state of linear conjugated molecules may be

attributed to boundary effects.

By adding an acceptor to one end of a long molecule, we still have qIII = 0,

δlIII ≈ δl̄, however the charge density at the acceptor end is qI 6= 0. This

leads to a decrease in the double chemical bond strength at that end, which
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Figure 6.11: Schematic variation of bond - length alternation pattern in the
long acceptor substituted molecules with increasing acceptor strength (panels
A to C). Two possible configurations corresponding to ground states with
δlII = δl̄ and δlII = −δl̄ are shown by solid and dashed lines respectively.
Panel A. No acceptor, the ground state in non-degenerate and has to δlII = δl̄
(solid line), the state with δlII = −δl̄ (dashed line) has a higher energy needed
to form two solitons. Panel B Intermediate-strength acceptor: the ground
state with δlII = δl̄ is nondegenerate (solid line) and contains a soliton in the
acceptor region. A state with δlII = −δl̄ (dashed line) contains two solitons
and has a higher energy. Panel C. Very strong acceptor; The molecule is
separated into the acceptor with the charge −e and anion with the charge +e
and (N-1) carbon atoms with the ground state representing the charged soliton.
The ground state of an anion may become degenerate since a soliton can be
formed anywhere (this is represented by the dashed line). However Coulomb
interaction between the acceptor and the soliton leads to its localization near
the acceptor (solid line). Panel D: Molecule substituted by a donor and an
acceptor of intermediate strength. Two ground states with δlII = δl̄ (solid
line) and δlII = −δl̄ (dashed line) have the same energy (cyanine like).
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implies that δlI < δl̄. If the acceptor is not very strong, a soliton is needed

to transform δl = δlI to its bulk value, δl = δlII = δl̄, and no soliton is

needed at the other end (solid curve in Fig. 6.11B. This is confirmed by our

calculations (see Fig.6.5A). The soliton is located at the acceptor end of the

molecule to minimize the length of the region where δl is different from its

bulk value. The soliton size represents the length of the region where the

boundary value of δlI transforms to its bulk value. Charge screening occurs

in the same region, as is clearly shown in Fig.6.5B and C. A configuration

with δlII = −δl̄ (dashed lines in Fig.6.11B) involves the formation of solitons

on both ends and has a higher energy. The strong acceptor case is displayed

in Fig.6.11C. In this case we have δlI = −δl̄ and the acceptor attracts an

additional electron and the molecule is separated into two parts: the edge

carbon atom (with charge −e) and a polyacetylene anion which contains an

odd (N − 1) number of carbon atoms and charge +e. The ground state of

an anion (known as a charge soliton) [147,148] is needed to change the sign

of the bond - length alternation δl = ±δl̄ on the ends of the molecule. The

charge +e is concentrated in the region where δl undergoes the change from

−δl̄ to +δl̄. The center of this region, x0, and size of the region, ∆x, are

usually referred to as the soliton position and size respectively. The ground

state is highly degenerate since the soliton can be found anywhere along the

molecule ( a typical situation is represented by the dashed line in Fig. 6.11C).

This leads to the formation of a soliton band in the ground state. The ground

state closely resembles the charged solitons observed in the ground state of

anions of degenerate polymers molecules with odd numbers of carbon atoms

[147]. However the Coulomb interaction between the charged acceptor and the

soliton may lead to localization of the soliton in the vicinity of the edge (solid

line in Fig. 6.11D). Decreasing the acceptor strength leads to a reduction of

the absolute value, q, of charge accepted by the edge atom (qA < e) and to
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the appearance of bonding between the acceptor and the anion, which leads

to −δl̄ < δlI < δl̄. This situation, which has been considered above, can be

qualitatively represented as follows: a charged soliton is located at x0 < ∆x/2

and is cut at x = 0 (the acceptor position) since there are no carbon atoms at

x < 0. If δl(x − x0) is the soliton profile then δlI = δl(x − x0) and qA < e is

the charge in the soliton in the region −x0 < x <∞. Note that x0 can assume

negative values as well. The weaker the acceptor, the smaller is x0: decreasing

x0 leads to the decrease of qA and increase of δlI. In the case of a very weak

acceptor, x0 → −∞ (i.e. qA → 0, δlI → δl̄). An intermediate case represented

in Fig.6.11D corresponds to x0 = 0.

If we add an acceptor to one end (I) and a donor to the other end (III), the

ground state degeneracy should occur at some intermediate donor and acceptor

strength corresponding to δlI ≈ δlIII ≈ 0. Two configurations corresponding

to ground states with δlII = ±δl̄ are shown in Fig.6.11D. However in short

molecules (L < ∆x) the ground state will then be non-alternating with δl = 0.

This is known as the cyanine limit [149,150].

6.4 Excited States Density Matrices of

Acceptor–Substituted Carotenenoids.

To calculate the excited states density matices of carotenoids the DMRF al-

gorithm (see Section 3) was then applied to nonpolar (N) and polar (P ) con-

jugated polyenes whereby one end is substituted with a strong acceptor group

(see Fig. 6.4 for n = 10). The structures and atom labeling are displayed

in Fig. 6.12. Optimal ground-state geometries were obtained at the AM1

level using Gaussian-94. The ZINDO code was utilized to generate INDO/S

[66–68,64,65] hamiltonian and the CEO/DSMA procedure was then applied

to compute the dominant electronic modes and the corresponding dipole mo-

ments µ(j)
ν which contribute to the first and to the second order off-resonant
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Figure 6.12: Structures and atom labeling of the neutral N and polar P (sub-
stituted by the strong acceptor) molecules.

optical response:

ξ(j) =
∑

ν

µ(j)
ν ξν + (µ(j)

ν )∗ξ+
ν , j = 1, 2 . (6.3)

Satisfactory convergence of the response to within ∼ 10−3 was achieved using

10-15 effective electronic modes.

In Figure 6.13 we display the dipole moments (Eq. (6.3)) of the dominant

modes vs. mode frequencies Ων, calculated using the first and the second or-

der response. Since the N molecule has an inversion symmetry, the first order

response depends only on antisymmetric (Bu) oscillators (panel A) whereas

the second order response depends on symmetric (Ag) oscillators (panel B).

The figure shows that the response of the N molecule is dominated by a sin-

gle electronic mode. In contrast, the P molecule shows four major peaks in

each order of the response, and its electronic oscillators do not possess any

symmetry. The same modes (a and b) with different dipoles show up in both

responses.

The single-electron density matrices ρνη
nm for the states corresponding to

peaks a, b, and c in N and a’ b’, c’ and d’ in P are examined next. These

density matrices computed using Eqs. (3.16)-(3.17) and (3.18)-(3.20) repre-

sent the projection of the full matrix which contributes to the first and to the
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cies Ων for the molecules shown in Fig. 6.12. Shown are the dominant modes
in the first two orders of nonlinearity. The dipoles are given in arbitrary units.

second order response, because only the electronic modes which dominate the

linear and the quadratic optical responses were used in the calculations. Other

components of the matrix do not have a dipole moment and, therefore, do not

contribute to the optical response. The effect of the acceptor on the molecular

properties can be illustrated using contour plots of the density matrices. The

absolute value of the reduced ground state density matrix ρgg of N is shown

in the upper left panel of Fig. 6.14. The axes represent carbon atoms. The

ground state density matrix is dominated by diagonal and near-diagonal ele-

ments, reflecting the bonds between nearest neighbors. The (x1) scaling factor

indicates that the largest values of the matrix shown by the blue color are
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equal to 1. The diagonal elements represent the electronic charges on each

carbon atom. The absolute values of the matrix ∆ρaa ≡ ρaa − ρgg (panel N

∆ρaa) is the difference between the density matrix of state a and the ground

state density matrix. The matrix is delocalized over the entire molecule. The

x10 factor implies that the part of the excited state density matrix which con-

tributes to the second-order optical response only changes slightly compared to

the ground state. The difference for the density matrix of state b ∆ρbb (panel

N ∆ρbb) is less delocalized compared with ∆ρaa. In addition it is nonuniform

along the diagonal, which leads to diagonal localization sizes. ∆ρcc correspond-

ing to the electronic mode contributing to the second-order optical response

possesses a delocalization and magnitude similar to ∆ρaa. For all excited state

matrices, the off-diagonal elements are much larger than the diagonal. This

means that upon optical excitation of the unsubstituted molecule the changes

in the bonding pattern are much more significant compared with the charge

redistribution.

The middle and the right columns in Fig. 6.14 show the transition density

matrices. Transitions involving the ground state are described by the electronic

modes (ρga, ρgb, and ρgc) 2. They have delocalization properties very similar

to the corresponding states density matrices, because in the calculations of the

latter these modes make the dominant contribution. Similarly, the transition

density matrices between excited states shown in the right column of Fig. 6.14

are delocalized over the entire molecule and have a symmetric structure. The

strongest coherences appear to be at the center of the matrices because the

density matrices of states a, b, and c have the strongest bonding pattern at

the center.

Fig. 6.15 displays the absolute values of the calculated density matrices of

P. The strong acceptor perturbs the ground state, as shown by the reduction

2ρga and ρgb contributing to the linear response have been analyzed in Section 6.2. They
correspond to the modes a′ and b′ displayed in Fig. 6.8 (bottom row)
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Figure 6.14: Contour plots of ground and excited state density matrices which
dominate the linear absorption of molecules N. The axis labels represent the
individual carbon atoms as labeled in Fig. 6.12. Panel labels indicate the
molecule (Fig. 6.12) and the state corresponding to the peak in Fig. 6.13.
ρgg ground state density matrix; ∆ρνν ≡ ρνν − ρgg the difference between the
density matrices of state ν and the ground state; ρνη the transition density
matrices.
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of the electronic density towards the acceptor in panel P ρgg. The difference

∆ρa′a′ for state a’ is localized in the acceptor end (panel P ∆ρa′a′), whereas

∆ρb′b′ for state b is localized on the neutral end of the molecule (panel P

∆ρb′b′). Note that ∆ρa′a′ has a very large diagonal and off-diagonal elements

implying that excitation to state a changes the charge distribution as well

as the bonding pattern compared to the ground state. In contrast, ∆ρb′b′ is

dominated only by off-diagonal elements which makes it similar to the excited

state density matrices of the unsubstituted molecule. This reflects the funda-

mental difference between states a’ and b’. ∆ρc′c′ and ∆ρd′d′ corresponding to

the electronic mode contributing to the second-order optical response are both

localized at the acceptor end, and are dominated by a few large diagonal and

off-diagonal elements. The former has a stronger bulk contribution.

The transition density matrices between the ground and the excited states

(electronic modes ρga′ and ρgb′) are highly asymmetric and delocalized, reflect-

ing the motions of charges along the molecule upon optical excitation 3. The

x and the y axis label the electron and the hole respectively. The diagonal

elements ρnn show induced charges on various atoms whereas the off-diagonal

elements ρnm represent the probability amplitude of finding an excess electron

at the m-th atomic orbital and a hole on the n-th atomic orbital. ρgc′ and

ρgd′ corresponding to the high frequency excited states and contributing to

the second order response are less asymmetric than the former and delocalized

over the entire molecule (compared with ρc′c′ and ρd′d′). The transition density

matrices shown in the right column of Fig. 6.15 are delocalized over the entire

molecule. The strongest coherences appear where the density matrices of cor-

responding states have the strongest bonding patterns. Note that these density

matrix elements are smaller (x10-12) compared to the other displayed matrices

(x4-9), because the states a, b’, and c’ are localized in different regions.

3ρga′

and ρgb′

contributing to the linear response have been analyzed in Section 6.2. They
correspond to the modes a and b displayed in Fig. 6.10 (bottom row)
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Figure 6.15: Same as in Fig. 6.14 but for the polar molecule P.
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6.5 Quantum Confinement and Coherence

Sizes

The optical response of long acceptor-substituted molecules can be interpreted

by dividing them into three effective regions: the acceptor (I) and the neutral

(III) boundary transition regions at the molecular ends, connected by the

bridge (middle) region (II). (In donor-acceptor substituted molecules, which

were not considered here, region III will represent the donor end.) There is no

charge transfer between these regions, which means that the optical properties

are additive and can be interpreted in the same way as those of molecular

aggregates [72]. Region II has the same properties as the neutral molecule; it

has only odd order responses which scale linearly with size whereas regions I

and III have a fixed size. The ground and the excited states are zwitteronic.

These effective regions are responsible for even-order optical responses which

naturally do not depend on the size of the underlying molecule. They con-

tribute to odd-order response as well, but for long chains these responses are

dominated by the region II contribution which is proportional to the size.

For long chains the influence of the acceptor has a finite range which leads

to the creation of several coherence sizes. The first coherence length, LI , is

related to the size on which the acceptor charge is screened; our calculations

show that the bond-length alternation, δl, is different from its bulk value in

the same region, hereafter referred to as the transition region. The acceptor

may affect the excited states by either modifying an existing delocalized state

in the transition region or creating new localized states at that region. Both

mechanisms affect optical properties, and in particular they lead to a non-zero

second-order polarizability β. We expect that the energy of a delocalized state

should not be affected by the acceptor, whereas the energy of a localized state

should strongly depend on the acceptor strength. This implies that localized

and delocalized states may be readily distinguished by resonant three-wave
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mixing spectroscopies.

Optical properties of short molecules can be interpreted in terms of quan-

tum confinement when the molecular size becomes comparable with the sizes

LI and LIII of the I and III - regions. These constitute additional coherence

diagonal sizes, as opposed to the coherence off-diagonal size of the neutral

molecule, LII , represented by the width of its bulk mode (see Fig.6.2F). In

this case the electronic eigenstates of regions I, II, and III are mixed (see

Fig.6.8C and D) and for smaller sizes the separation into effective subunits is

no longer possible since charge transfer takes place across the entire molecule

(see Fig.6.8A and B). The local excitation created by the acceptor drastically

increases the polarizabilities of polyenic molecules. The π-electronic system

screens the acceptor influence: the acceptor strength controls the magnitude

of the dipole moment whereas the electronic mobility determines the effective

screening length.



Chapter 7

Localized Electronic Excitations
in Phenylacetylene Dendrimers

Dendrimeric molecules with branched tree-like structures are drawing consid-

erable attention [151–157]. The dynamics of photophysical (electronic and vi-

brational energy transfer) as well as photochemical processes has been demon-

strated to be strongly affected by geometric confinement. Theoretical interest

in these ”Cayley trees” arises from their peculiar dimensionality: The connec-

tivity between different sites is one-dimensional (there is only one path to go

between two points), however, the number of atoms grows exponentially with

generation, as in infinite dimensional systems. This leads to unusual transport

and optical properties. Calculating the optical electronic excitations in these

systems is a formidable task, and no simple methods exist for analyzing the

nature of these excitations and predicting their scaling with molecular size.

A collective electronic oscillator (CEO) approach [104,74,70] was applied

for calculating the absorption spectra of two families of dendrimers made up

of phenylacetylene repeat unit in a self-similar fashion around the core (see

Fig. 7.1). These macromolecules have been suggested as a artificial photonic

antenna systems [158,3,159,160]. The spectral frequency profile of family A,

which has the same segment (linear unit) length in the various generations, is

unchanged across the series of molecules (see bottom two panels in Fig. 7.2).
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A

D-94D-46D-22D-10D-4

D-127D-58D-25

B

Figure 7.1: Structures of the two families of phenylacetylene dendrimers [3].
The compact dendrimers (A) are made of the same linear building block P1.
The extended dendrimers (B) have a varying linear unit length which decreases
for higher generations.

Family B has a varying segment length that increase for higher generations.

Here the absorption spectra displayed in the dashed lines in Fig. 7.2 show new

red-shifted features as the molecular size is increased. This energy hierarchy is

shown in Fig. 7.3. Our analysis shows how these trends follow naturally from

the localized electronic excitations in these systems. It is difficult to anticipate

this localization by inspecting the molecular orbitals: The system is conju-

gated and the orbitals are delocalized [25,11]. Nevertheless, it is demonstrated

that the electron-hole pairs which contribute to the elementary optical collec-
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Figure 7.2: Calculated (solid lines) [3] and experimental (dashed lines) absorp-
tion spectra of the dendrimers shown in Fig. 7.1

tive excitations are well localized. Our calculations establish the existence of

localized optical excitations and show how all the observed trends with den-

drimer size and geometry follow directly from this localization. Strategies for

the synthesis of antennae with specified energy funneling to a desired active

site follow directly from our analysis.
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Figure 7.3: The generations (shown by different colors) in the extended den-
drimers have a varying linear segment length. Their absorption frequency is
blue-shifted for higher generations.

7.1 Collective Electronic Excitations in Lin-

ear Oligomers

The dendrimers shown in Fig 7.1 are made out of phenylacetylene oligomer

segments connected through para- or meta- substitutions of the benzene rings,

leading to linear or zigzag chains respectively [3,159,160]. Understanding the

electronic excitations of these segments should be the first step in analyzing the

dendrimer spectra. In this section we examine the linear (para- substituted)

molecules (P-series) with n = 1, 2, 3, 7 repeat units (triple bonds) and the M7

molecule which consists of linear P1, P2, P3 segments connected at the meta-

position with overall n = 7 repeat units (see Fig 7.4.) Molecules P7 and M7 are

made of the same segments, have the same size, and only differ by geometry

(meta- vs. para- substitutions). The notable difference between their spectra

turns out to be the key for our analysis.

The Hartree-Fock ground-state density matrices ρ̄mn were calculated first.

Optimal ground-state geometries were obtained at the AM1 level using
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Figure 7.4: Structures and atom labeling of the linear para- oligomers Pn with
n = 1, 2, 3, 4, 7 repeat units (triple bonds), and the M7 oligomer made of the
P1, P2, P3 units conjugated at meta- position.

Gaussian-94. The ZINDO code was used next to generate the INDO/S hamil-

tonian [64–67] and the CEO/DSMA procedure [74] was finally applied to com-

pute the linear absorption spectra. Satisfactory convergence of the linear ab-

sorption was achieved using 10-15 effective electronic modes.

The calculated linear absorption spectra (Eq. (2.55)) are shown in Fig.

7.5. The P-oligomers have two major absorption lines in the 3-6 eV frequency

range. The band-edge transition (a) is significantly red-shifted with increasing

the chain length, whereas the second peak (b) only shows a small red-shift [104].

The 5.6 eV mode (b) of M7 is similar to P7(b). However, the (a) transition is

markedly different; Instead of a single line it has three low-frequency transitions

(a1, a2, and a3) at the same frequencies as the band-edge transitions in P1,

P2, and P3 oligomers which are the building linear blocks of this molecule.

To explore the nature of the electronic motions underlying the various

peaks and to establish a direct real-space link between the optical response
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Figure 7.5: Calculated linear absorption (oscillator strengths fν vs. transition
frequencies Ων) of the molecules shown in Fig. 7.4. Mode frequencies of P1
(Ωa = 3.90 eV , Ωb = 5.87 eV ); P2 (Ωa = 3.49 eV , Ωb = 5.78 eV ); P3
(Ωa = 3.31 eV , Ωb = 5.71 eV ); P7 (Ωa = 3.11 eV , Ωb = 5.60 eV ); M7
(Ωa1 = 3.86 eV , Ωa2 = 3.48 eV , Ωa3 = 3.31 eV , Ωb = 5.60 eV ).

and the dynamics of charges induced by optical excitation, the collective modes

corresponding to these electronic excitations were examined (see Section 2.5

in Chapter 2). Contour plots of the ground state density matrices are shown

in Fig 7.6. The size of the matrices is equal to the number of carbon atoms in

the molecule, labeled according to Fig. 7.4. Panel P1(ρ) in Fig. 7.6 displays

the ground state density matrix ρ̄ of P1. It is dominated by the diagonal

and near-diagonal elements, reflecting the bonds between nearest neighbors.

The aromatic rings (corners of the matrix) and the acetylenic triple bond at
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Figure 7.6: Contour plots of the ground state density matrices of oligomers P1,
P7, and M7. The axes represent the carbon atoms as labeled in Fig. 7.4. The
panels are labeled the molecule (Fig. 7.4) and the electronic mode (Fig. 7.5)
(e.g. P1(ρ) is the ground state density matrix of molecule P1). The aromatic
ring units are shown by solid rectangles. The color code is given in the top
panel.

the center are clearly visible. Panels P7(ρ) M7(ρ) in Fig. 7.6 show the ground

state density matrices of P7 and M7. The two density matrices are very similar

and may be constructed by repeating the P1 density matrix: para- and meta-

conjugation make a very little difference as far as the ground state is concerned.

This is, however, not the case for the electronic normal modes ξν responsible

for optical excitations, displayed in Fig. 7.7. The ordinate and abscissa now

represent an electron and a hole, respectively.

The right column displays the high-frequency transition (b) in P-oligomers.
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This mode is completely localized on a single repeat unit, and the optically

induced coherences (off-diagonal elements) involve only the arene atoms. Its

localized nature leads to the similar charge and coherences distributions in

M7(b) and P7(b) (and in the high frequency mode in PPV oligomers [104]).

This explains the similarity of peak (b) in the absorption spectra of M7 and

P7.

The middle column shows the lowest frequency (band edge) mode (a) of the

para- oligomers. P1(a) centered at the triple bond shows maximum coherences

and is delocalized over the entire molecule. Carbons 2, 3, 12, and 13, which

are at meta- position, have a vanishing electronic coherences with other car-

bon atoms. This is shown by the ’ring’ around the plot with small coherences.

Analogous patterns can be seen in mode (a) of longer linear oligomers P2, P3,

and P7. The mode saturates with size and is no longer confined by the molec-

ular ends, already in P7. These plots clearly illustrate the two characteristic

length scales corresponding to the variation of the density matrix along the

’antidiagonal’ and the ’diagonal’ directions, respectively. The former reflects

the size of electron-hole pair created upon optical excitation, (i.e. the con-

finements of their relative motion). The latter shows the delocalization size of

the pair’s center of mass motion and represents energy migration across the

molecule. These are the exciton coherence and localization sizes respectively

(see Section 2.5 in Chapter 2). The coherence size (where the coherences de-

crease to 10 % of their maximum values), is 5 repeat units, in agreement with

that found in Chapter 5 for PPV oligomers. The boundary meta- atoms (2, 3,

8n+4, 8n+5) have a vanishing coherences in all P-oligomers.

The left column in Fig. 7.7 displays the electronic modes of M7. Mode

(a3) is localized at the P3 linear segment of M7 and is virtually identical to

mode (a) of the P3 oligomer. Similarly M7(a2) and M7(a1) resemble P2(a) and

P1(a) respectively. Note that a1 is degenerate because M7 has two identical P1
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Figure 7.7: Contour plots of the electronic modes which dominate the absorp-
tion spectra of the oligomers shown in Fig. 7.4. The axes represent the carbon
atoms as labeled in Fig. 7.4. The panels indicate the molecule (Fig. 7.4) and
the electronic mode (Fig. 7.5). The linear units in M7 are shown by solid
rectangles. The color code is given in Fig. 7.6.
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building units. The complete absence of coherence across meta- substitution

shown in this Figure is remarkable. The optical excitations are clearly confined

to the various segments. Meta- conjugation makes a clear barrier for excitonic

motion whereas para- conjugation is transparent to electronic coherences. This

difference does not show up in the ground state, which is very similar in both

cases (see Fig. (7.6)).

It is well established that meta- substituents are much less effective in

changing reaction rates compared with their para- counterparts [5,6]. This can

be understood using resonant structures which show that charges injected into

the system by an nuclophilic or an electrophilic substituent are delocalized only

at the ortho- and para- positions. The present study which establishes the same

trend for electron-hole pairs created by light provides a direct link between

spectroscopy and well-established rules of thumb for chemical reactivity.

7.2 Spectra and Energy funneling in Den-

drimers

Electronic excitations in molecular aggregates made out of chromophores

with nonoverlaping charge distributions may be described as Frenkel excitons

[161,162]. In these systems electron exchange is negligible and each chro-

mophore has its own electrons. Frenkel excitons are tightly bound electron-

hole pairs that hop coherently or incoherently across the aggregate. At first

glance this picture does not apply to dendrimers which have a conjugated elec-

tronic structure and their single-electron states (molecular orbitals) are fully

delocalized along the entire molecule. However, our analysis shows that while

the electron-hole pairs of molecule conjugated at the para- position are delo-

calized, their motions are sharply confined by meta- conjugation. Individual

molecular orbitals are not partially useful in the interpretation of the spectra

which are dominated by the pairs of orbitals. It is the localization of these
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pairs as shown in the electronic normal modes that controls the nature of

optical excitations. An important and very surprising result of the present

study is that the Frenkel exciton picture is not restricted to chromophores

with nonoverlapping charge distributions; It can be safely used as long as the

electronic modes are spatially separated and the quasiparticles of the system

are localized.

The lack of electronic coherence across meta- substitutions suggests that

the optical excitations of dendrimers can be described by dividing them into

weakly-interacting chromophores separated by the meta- substitutions. In

zero-order the interactions among chromophores can be neglected altogether.

The oligomer’s optical spectrum is then simply the sum of the spectra of its

segments which are separated by meta- substitutions. The meta- conjugated

dendimer behaves as a collection of its linear para- conjugated segments which

interact with light independently.

To calculate the absorption spectra of dendrimers [3,159,160] family A was

modeled as a collection of P1 chromophores. The spectra will thus only show

one low frequency peak a1 whose intensity will increase with growing molec-

ular size. Equation (2.55) with the empirical linewidth Γ = 0.02 eV is used

to calculate the modeled spectra of dendrimers. The experimental and the

modeled spectra of D-4 and D-10 members of family A are displayed in Fig.

7.2. The spectra of other generations of this family are very similar [3].

The absorption spectra of the B family have been calculated by simply

adding the spectra of its segments. For example D-58 consist of 3 units of P3, 6

units of P2, and 36 units of P1. We thus multiply the corresponding oscillator

strengths fP3, fP2, and fP1 by the number of absorbing units and use Eq.

(2.55) to calculate the spectrum. The resulting calculated and experimental

spectra of extended dendrimers B are shown in Fig. 7.2. The plots show that

this simple procedure can produce the band edge red-shift trend as well as
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relative peaks intensities in these macromolecules, in complete agreement with

experiment.

The lack of electronic coherence across the meta- positions implies that

electron (and hole) exchange is blocked, in contrast to the para- and ortho-

positions, which allow a significance charge delocalization. However, Coulomb

interactions between segments do allow the transfer of energy through the mi-

gration of electron-hole pairs (excitons). This motion may be either coherent or

incoherent via the Forster-Dexter mechanism [161,162]. The electrostatic inter-

action between electronic modes on neighboring segments chemically bonded

through the meta- positions is estimated to be ∼ 500 cm−1. This value is sup-

ported by direct calculations of absorption spectra in the compact (family A)

dendrimers, which show a weak Davydov-like splitting ∼ 200−600 cm−1 in the

band-edge transition. This is typical value for J aggregates [163], biological

antenna complexes [164], and molecular crystals [161,162]. An important con-

sequence of the present study is the ability to break the electronic excitations

of dendrimers into several chromophores, despite the delocalized nature of the

underlying electronic states. This provides a useful guideline for designing ar-

tificial antennae: by adjusting the lengths of the para- substituted segments

in each generation it should be possible to control the funneling of energy to a

desired site. Antennae such as family B have an energy gradient which favors

the migration of energy towards the center where a reactive site can be placed.



Chapter 8

Charge-Transfer Electronic
Excitations in Free-Base (H2P )
and Magnesium (MgP )
Porphins.

Photosynthesis is the process through which the Earth’s biosphere harvests

the sunlight energy. The primary pigments of photosynthesis are porphyrins

[165]. Because of their fundamental and practical importance, these molecules

have been the subject of extensive studies [166,167]. Considerable experi-

mental and theoretical effort has been devoted to characterize the electronic

structure of porphins (see Fig. 8.1) which are the basic building blocks of

porphyrins [168–179]. The excited states of porphins has been observed

using UV and photoelectron spectroscopy [170–172]. Their theoretical de-

scription was first made using the free-electron model proposed in 1949

[180,181]. The four-orbital model [182,183], and subsequent extensive Pariser-

Par-Pople/CI calculations in 1965 reproduced the absorption spectra [168].

Recent semiempirical INDO/CI [169,174,175] and computationally expensive

ab initio [176,178,179,184] methods were employed to obtain a more accurate

calculation of porphin’s spectra. However the nature of these optical excita-

tions is still under debate [174,178,179,184].

The linear absorption spectra of porphins (Fig. 8.1 and Tables 8.1 and 8.2)
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Figure 8.1: Structures and atom labeling of the Free-Base Porphin (H2P ) (top)
and Magnesium Porphin (MgP (bottom)
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can be divided into three distinct spectral regions. The lowest Q band is weak.

This transition is degenerate in MgP and is split into two lines in H2P where

the D4h symmetry is broken. The higher frequency very strong Soret (B)

band shows up as a sharp peak in both MgP and H2P , whereas the following

(N) transition is broad and weak. The proper assignment of these peaks in

H2P is still controversial [174,178,179]. The traditional interpretation given

by Edwards [172] assigns B‖ and B⊥ to the two almost degenerate transitions

with ∼ 0.03 eV splitting at low temperature [170]. The N transition has a

different nature, and it cannot be described by the 4 orbital model used for

Q and B. The failure of almost all theoretical calculations to predict the weak

splitting of the B transitions in H2P and the oscillator strength of N requires

a different interpretation. The weak splitting in B has been attributed to the

vibrational progression in B‖, whereas N has been assigned as B⊥ and its

electronic state which is similar to B‖, was described by the 4 orbital model.

The weak L and M high frequency transitions are rarely calculated. Theory

usually overestimates their oscillator strengths (see Tables 8.1 and 8.2).

In this Chapter the CEO approach is applied for calculating the absorp-

tion spectra of Free-Base (H2P ) and Magnesium (MgP ) Porphins. The CEO

unambiguously identifies which part of the molecule participates in a given op-

tical excitation, and assess its degree of localization. Our analysis is extended

to the high frequency up to 6 eV region, where the origin of the L and M bands

is traced. In Section 8.1 the linear absorption spectra of porphins is presented.

In Section 8.2 the nature of the relevant electronic modes which dominate the

linear absorption is investigated. Finally we discuss the spectroscopic trends

and summarize our results in Section 8.3.
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8.1 The Linear Absorption Spectra.

Optimal ground-state geometries of the free-base and magnesium porphins

shown in Fig 8.1, were obtained at the 6-31G* level using Gaussian-94. MgP

geometry was optimized with the Mg atom moved to 0.4Å out-of-(xy)plane

as suggested from the X-ray structure of chlorophyll-a [169,185]. H2P has

D2h symmetry, whereas MgP possesses D4h symmetry in the xy-plane. The

ZINDO code was used first to generate the INDO/S hamiltonian [64–67]. The

Hartree-Fock ground-state density matrices [46,47] were calculated next. The

CEO/DSMA procedure [70,74] was finally applied to compute the linear ab-

sorption spectra and the relevant transition density matrices which constitutes

the electronic normal modes ξν. Transition dipoles are then calculated using

the dipole moment operator µmn =
∑

mn µmnc
+
mcn

µν = Tr(µξν), (8.1)

and the oscillator strengths are given

fν =
2

3
Ωνµ

2
ν. (8.2)

Satisfactory convergence of the linear absorption was achieved using 10-

15 effective electronic modes. The CEO focuses only on the optically active

transitions. All calculated electronic excitations appearing in the absorption

spectra of both molecules are of π − π∗ type.

The calculated linear absorption spectra of free-base porphin are presented

and compared with experiment [172] in Table 8.1. The calculated linear

spectrum of magnesium porphin and the experimental spectra of magnesium

etioporphin (MgEtio) and magnesium tetraphenylporphin (MgTPP) [173] are

given in Table 8.2. For comparison, spectra computed with semiempirical

(CIS) [174,169] and ab initio (SAC-CI, STEOM-CCSD) [184,178,179] meth-

ods are presented as well for both molecules. The TDHF coincides with the
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Table 8.1: Calculated and experimental excitation energies of the free base
porphin. Energies are in eV . Oscillator strengths are given in parentheses.

Transition CEO RPAa Exp.b CISa SAC-CIc STEOM-CCSDd

Q‖ 1.54 1.46 1.98 1.70 1.75 1.75
(0.025) (0.020) (0.01) (0.022) (0.0001) (0.0007)

Q⊥ 1.98 1.97 2.42 2.06 2.23 2.40
(0.028) (0.033) (0.06) (0.033) (0.0006) (0.013)

B‖ 2.966 2.986 3.33 3.37 3.56 3.47
(1.122) (1.146) (1.15) (1.616) (1.03) (0.693)

B⊥ 3.011 3.030 3.52 3.75 3.62
(1.272) (1.228) (2.411) (1.73) (1.20)

N‖ 4.03 4.00 3.65 4.09 4.24 4.06
(0.441) (0.424) (<0.1) (1.478) (0.976) (0.931)

L1⊥ 4.53 4.41 4.25 4.42 4.52 4.35
(0.140) (0.115) (∼0.1) (0.366) (0.350) (0.422)

L2⊥ 4.95 4.67 5.31 5.00
(0.236) (∼0.1) (0.280) (0.153)

M‖ 5.41 5.50 5.45 5.17
(0.323) (∼0.1) (0.351) (0.272)

a Reference [174]
b Reference [172]
c Reference [178]
d Reference [179]
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Table 8.2: Calculated excitation energies of the magnesium porphin. Exper-
imental energies are given for Mg etioporphin (MgEtio) and Mg tetraphenyl-
porphin (MgTTP). Energies are in eV . Oscillator strengths are given in paren-
theses.

Trans. CEO MgEtio Exp.a MgTTP Exp.a CISb SAC-CIc

Q 1.79 2.14 2.07 2.02 2.01
(0.058y) (0.07xy) (0.00152)

B 3.09 3.18 3.04 3.63 3.63
(1.223y) (5.13xy) (1.99)

TX 3.93 ) 3.93
(0.037z) (0.04z)

N 4.36 3.82 3.96 4.28 4.15
(0.032y) (0.08xy) (0.069)

L 5.14 4.7 5.16 4.97 4.75
(0.282y) (0.95xy) (0.00446)

M 5.23 6.20 4.89
(0.590)

a Reference [173]
b Reference [169]
c Reference [184]

Random Phase Approximation (RPA) for the linear optical response of many-

electron systems.1 Zerner and co-workers applied the RPA to calculate the

linear absorption of H2P up to 4.5 eV . Our low-frequency calculated spec-

trum is, therefore, very close to that of given in Ref. [174] 2 (see Table 8.1)

and supports all conclusions of its authors. The calculations of MgP at RPA

(or TDHF) level has not been reported yet.

1See, for example, Chapter 8.5 in Ref. [52]. The electronic modes are identical to the
transition densities of the RPA eigenvalue equation.

2Our input geometry is different from that of [174]
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The CEO underestimates the lowest (Q band) excitation energies compared

with experiment and other calculations for both H2P and MgP . However, it

predicts well the Q-band experimental splitting [172] (0.44 eV versus 0.447 eV)

and the oscillator strengths of Q‖ and Q⊥ transitions (0.025 and 0.028 versus

0.01 and 0.06) in H2P . The CIS procedure reproduces these values correctly

as well (0.355 eV , 0.022 and 0.033) [174] whereas ab initio methods failed to

predict the oscillator strengths (see Table 8.1). Both the RPA calculations

[174] and our CEO results slightly underestimate the excitation energies of the

Soret (B) band compare with experiment and ab initio calculations, however,

they reproduce the correct intensities and B splitting. The electronic-oscillator

analysis presented in Sec. 8.2 shows that B‖ and B⊥ have the same electronic

nature whereas N transitions in both MgP and H2P have the same origin,

which is completely different from B. This agrees with recent ab initio results

of Gwaltney and Bartlett [179] and contradicts the calculations of Nakatsuji

et al. [178,184] who suggested that the N peaks in MgP and H2P have a

completely different nature. The CEO frequencies of the N , L and M bands

are in fair agreement with experiment for both molecules. In addition, the

predicted CEO intensities of high frequency (4-6 eV) transitions in H2P are

much better compared with ab initio calculations.

The spectrum of MgP shows an additional charge transfer peak TX. Its

transition dipole lies along the z-axis perpendicular to the molecular plane.

This transition is forbidden for planar geometry and its intensity grows fast as

the Mg atom is displaced out of the molecular plane. CIS level calculations

performed by Zerner and co-workers [169] show that the TX frequency is ex-

tremely sensitive to the Mg position off the molecular plane. Our calculations

(not shown) support this observation.
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8.2 Collective Electronic Excitations.

To explore the nature of the electronic motions underlying the absorption peaks

and to establish a direct real-space link between the optical response and the

underlying dynamics of charges, relevant electronic modes are examined next

(see Section 2.5 in Chapter 2).

Because all the optically allowed transitions in the linear absorption of

MgP and H2P are of π− π∗ type, we focused our analysis on the π-electronic

parts of the density matrices. Contour plots of the ground state density ma-

trices are shown in Fig 8.2. The size of the matrices is equal to the number of

carbon atoms in the molecule, labeled according to Fig. 8.1. The ground state

density matrix ρ̄ of H2P (panel H2P (ρ) in Fig. 8.2) is dominated by diagonal

and near-diagonal elements, reflecting the bonds between nearest neighbors.

The blue dots on the diagonal show that the nitrogen atoms 2, 8, 14, and 20

posses an excess electronic charge, this effect is stronger for atoms 2 and 14

which do not possess a lone electronic pair. The ground state density matrix

of MgP (panel MgP (ρ)) is somewhat different since all nitrogens have the

same electronic charge. The magnesium atom (upper right corner of the panel)

lacks electronic density. This is usually represented as Mg2+ ion in the formal

structures of this molecule. (For a more detailed Milliken analysis [50,51] see,

for example, [169]).

We next turn to the transition density matrices (electronic modes) ξν. Like

ρ̄, these are also N × N matrices, however, unlike ρ̄, these matrices are not

symmetric. The off-diagonal elements (ξν)mn show the amplitude of having an

excess a hole at n and an electron at m. Hole and electron dynamics is thus

shown along the x and y axes, respectively. Panel MgP (TX) in Fig. 8.2 shows

the charge transfer TX mode. The figure shows that the electron is transferred

from the porphin ring to the Mg(25) upon excitation. This transition mostly

involves the pyrrole carbon atoms (e.g. 1,3,4,5 in the ring I).
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Figure 8.2: Contour plots of the ground state density matrices of Free-Base
Porphin (H2P (ρ)), Magnesium Porphin (MgP (ρ)), and charge transfer elec-
tronic mode TX (panel MgP (TX)). The axes represent the carbon atoms
as labeled in Fig. 8.1. The ordinate and abscissa label electron and hole
respectively. The color code is given in the bottom left panel.

Panel H2P (Q‖) in Fig. 8.3 displays the lowest electronic mode of free base

porphin. The mode is delocalized over the entire molecule and is dominated by

the off-diagonal coherences between neighboring bridge carbons 5-7,11-13,17-

19,23-1. The structure of Q⊥ shown in H2P (Q⊥) is similar to Q‖ except

that the largest elements are on the diagonal at the bridge carbons. The Q

mode of MgP shares the features of both Q‖ and Q⊥ and is dominated by the

diagonal as well as near-diagonal elements of the bridge carbons. Note that all

Q electronic modes are almost symmetric with respect to the diagonal. This

reflects the absence of preferable direction of motion for holes or electrons.
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Figure 8.3: Contour plots of the electronic modes which dominate the absorp-
tion spectra of Free-Base and Magnesium Porphin shown in Fig. 8.1. The axes
represent the carbon atoms as labeled in Fig. 8.1. The ordinate and abscissa
label electron and hole respectively. Each panel indicates the molecule (Fig.
8.1) and the electronic mode (Tables 8.1 and 8.2). The color code is given in
Fig. 8.2.
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This is no longer the case for the Soret transition whose electronic modes

are shown in the second row in Fig. 8.3. Here all modes have the same

structure: they are delocalized over the entire molecule and stretched along

the y (electron) direction, reflecting the charge-transfer character of the Soret

band. In addition, each B-transition is dominated by a specific charge transfer

process (blue elements). The preferable process in B⊥ H2P is electron transfer

among bridge carbons: 6 → 12, 12 → 18, 18 → 24, and 24 → 6. B‖ in

H2P describes electron transfer from the nitrogens to the neighboring pyrrole

carbons in the II and IV rings: 8 → 7, 9, 10, 11 and 20 → 19, 21, 22, 23. B‖ in

MgP is dominated by electron transfer from the bridge carbons 6,12,18,24 to

other parts of the molecule.

The N-transitions (panels H2P (N‖) and MgP (N‖) in Fig. 8.3) in both

H2P and MgP are virtually the same and completely different from the low

frequency transitions. The modes are localized on the two vertical ”strips”

and describe electron transfer from the pyrrole rings IV (left strip) and II

(right strip) to the entire molecule. Despite the similarity of these electronic

modes, the oscillator strength of H2P (N‖) is much larger than that of MgP

(N‖). To explain this we display in Fig. 8.4 the diagonal elements of these

modes. It is reasonable to assume that they are primarily responsible for the

transition dipole. The figure shows that the diagonal elements are the same

at the pyrroles II and IV, and differ for I and III. Thus the minor diagonal

delocalization of mode H2P (N‖) to pyrroles I and III leads to a considerable

contribution to the transition dipole. The dotted line in Fig. 8.4) displays the

difference µMgP
n −µH2P

n of atomic contributions to the µN for these molecules. It

clearly shows that the transition dipole ofH2P (N‖) is constructive on the I and

III and destructive on the II and IV rings. Therefore, the internal hydrogens

of H2P which make rings I and III ’special’ compared to MgP , provide a

12-fold increase of oscillator strength of N transition. Possible reason for the
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Figure 8.4: Variation of the diagonal elements of modes H2P (N‖) (solid line)
and MgP (N‖) (dashed line). The X axis represents the carbon atoms as
labeled in Fig. 8.1. The dotted line represents the difference of atomic con-
tributions to the transition dipole of mode N in molecules H2P and MgP :
µMgP

n − µH2P
n , n = 1 . . . 24.

overestimated theoretical intensity of N transition in free-base porphin is that

molecular vibrations restrict the delocalization of H2P (N‖) to the pyrroles I

and III, resulting in a dramatic reduction of the transition dipole.

The higher frequency excitations in porphins have the same charge transfer

character similar to the N-transition. H2P (L1⊥) is virtually the same as H2P

(N‖). It has smaller delocalization to pyrroles I and III and, therefore, a weaker

oscillator strength. Modes H2P (L2⊥), H2P (M⊥), and MgP (L‖) displayed

at the bottom row of Fig. 8.3) are similar to the modes shown at the previous

(third) row of this figure. However, they describe electron delocalization from

pyrroles I and III to the entire molecule with a small participation of II and

IV rings which provide the intensities of these transitions.

Since the modes of MgP are degenerate, we only display the ‖ modes. The
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⊥ modes are obtained by simply rotating the ‖ modes. For example MgP

(N⊥) will describe the electron transfer from pyrroles I and III (as opposed to

II and IV in MgP (N‖)). MgP (L⊥) describes electron transfer from pyrroles

II and IV (rather than I and III in L|). The high frequency modes of free base

porphin may be divided into pairs (N‖, L2⊥) and (M‖, L1⊥) similar to the Q

and B pairs.

8.3 Conclusions.

The absorption spectra of H2P and MgP computed using the CEO method

are in good agreement with experiment. Our calculations support the tra-

ditional interpretation of these spectra [172]. Coupling to vibrations is not

necessary for reproducing the gross features of these spectra. The frequencies

and peak intensities in the UV region up to 6 eV are accounted for as well.

The computational cost is minimal - seconds3 compared to days of extensive

ab initio calculations [179]. In addition the real space electronic modes anal-

ysis presented in Section 8.2 reveals the nature of the corresponding optical

excitations in a direct and unambiguous way. The low frequency Q bands

are delocalized over the entire molecule. The intense Soret (B) transitions are

also delocalized but start to show an electronic transfer character. All high-

frequency excitations have specific electron transfer nature from the pyrroles

to the entire molecule. They are very similar in both MgP and H2P . How-

ever, internal hydrogens in the latter break the symmetry and finally lead to

12-fold increase of intensity of the N-band. Our real-space analysis also shows

that all high-frequency transitions are degenerate in MgP and may be divided

into pairs similar to the Q and B pairs in H2P .

The CEO analysis presented in this paper does not account for Rydberg

states of the molecule. They are not predicted because diffuse functions are

3A single MIPS R10000 175 MHz processor on the SGI Octane workstation has been
used.
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not included in the INDO/S basis set. It has been suggested that low Rydberg

states could participate in photosynthesis [171], and considerable ab initio

effort has been devoted to address their spectroscopic signatures [176,177,179].

Most ab initio calculations find the lowest Rydberg state at ∼ 1 eV above the

Soret band. The CEO is not limited to INDO/S parameterization and could be

combined with any hamiltonian which includes diffuse functions. This should

allows to address Rydberg and ionized states.



Chapter 9

Linear Electronic Excitations in
Stilbenoid Aggregates

The optical response of chromophore aggregates provides an important tool

in the studies of intermolecular interactions and bonding. Extensive exper-

imental and theoretical attention has been devoted to studies of clusters in

supersonic beams [186–190], J-aggregates of cyanine dyes [24], supramolecu-

lar structures [191–193], and biological complexes (photosynthetic antennae

and reaction centers) [194,195]. It is possible to treat the aggregates as giant

molecules and employ methods of quantum chemistry to calculate their elec-

tronic structure. These approaches are limited to small aggregates [196–200].

An important challenging goal is to relate the electronic states and spectra of

aggregates to those of their basic building blocks - the monomers. By doing so

it should become possible to get a better microscopic insight into the nature

of their electronic excitations and to predict qualitative features of complex

large systems using simple, readily available information.

The problem is simplified considerably when the chromophores are well

separated in space, and their interactions are purely Coulombic (electron ex-

change is negligible). Each chromophore then retains its own electrons and

the system may be described using the Frenkel exciton hamiltonian [161,162].

This allows the perturbative treatment of intermolecular interactions. The

142
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situation is much more complex when electronic states are delocalized among

the chromophores. No obvious perturbative theory exists in this case. The

calculations of optical excitations are tedious and provide no simple rules of

thumb for predicting spectroscopic trends.

The CEO approach can be effectively used to calculate and analyze the

electronic spectra of molecular aggregates. The present study is focused on a

family of stilbenoid chromophore dimers with well defined geometry synthe-

sized recently [201,202]. In Section 9.1 the electronic modes of the monomers

and the paracyclophane unit of these aggregates are analyzed. In Section 9.2 we

investigate the linear absorption and relevant electronic modes of the dimers,

and link their properties to the corresponding modes of the monomers and to

aggregate geometry. Finally we discuss the trends in fluorescence spectra and

radiative rates and summarize our results in Section 9.3.

9.1 Electronic modes of the monomeric build-

ing blocks

The molecules studied in the present article along with their atomic labeling are

displayed in the Fig. 9.1. We considered the dimer structures 1a, 1b, 2a, 2b, the

monomer units 1c, 2c, as well as [2,2]paracyclophane Pc, which is the central

piece of all dimers studied. Ground state geometries were obtained using the

crystal X-ray diffraction data given in [202] 1. The ZINDO code was utilized

to generate INDO/S [66,67] hamiltonian and the CEO/DSMA procedure was

then applied to compute the linear absorption spectra. In all calculations the

empirical linewidth Γ = 0.2 eV was used, and satisfactory convergence of the

linear absorption was achieved using 10-15 effective electronic modes.

1The geometries were experimentally measured for molecules 1a and 1b; The geometries
of Pc and 1c were extracted from 1a X-ray data; The geometries of 2a, 2b, and 2c were
assembled from 1a and 1b X-ray data by elongating the stilbene units.
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Figure 9.1: Structures and atom labeling of [2,2]paracyclophane (Pc), stil-
benoid monomers (1c, 2c) and dimers (1a, 2a, 1b, 2b).
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Figure 9.2: Calculated (solid lines) and experimental (dashed lines) absorption
spectra and experimental (dotted lines) fluorescence spectra of the molecules
presented in Fig. 9.1.
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The calculated spectra of the monomers 1c and 2c are displayed in Fig. 9.2

(solid lines). Experimental absorption and fluorescence spectra [201] are shown

by dashed and dotted lines respectively. The lowest strong absorption peak of

1c and 2c is denoted as II (The reason of this notation will become clear in the

next section where the dimers spectra are considered). No geometry optimiza-

tion was carried out and no parameters were tuned or rescaled. Nevertheless

the theoretical spectra are in excellent agreement with experiment 2.

To explore the origin of the various peaks the collective modes correspond-

ing to these electronic excitations were examined. The size of the matrix is

equal to the number of carbon atoms in the molecule, labeled according to Fig.

9.1; the ordinate and abscissa represent an electron and a hole respectively (see

Section 2.5 in Chapter 2).

Panel 1c(ρ) in Fig. 9.3 displays the ground state density matrix ρ̄ of

molecule 1c. The density matrix is dominated by the diagonal and near-

diagonal elements, reflecting the bonds between nearest neighbors. The aro-

matic rings (corners of the matrix) and the vinylic double bond (center of the

matrix) are clearly identified. 1c(II) shows the electronic mode of peak II in 1c.

This mode is completely delocalized over the entire molecule with the strongest

coherences (off-diagonal elements) in the double bond of the vinylic group. The

following two modes of stilbene (1c(IIIA) and 1c(IIIB)) are localized on the

first and the second arene rings respectively.

The second column in Fig. 9.3 shows the dominant electronic modes of

2c. They have basically the same properties as the corresponding modes of

the shorter molecule 1c. The delocalized mode II is significantly red shifted.

Our calculations lumped all localized transitions III to a single effective mode

localized at the phenyls.

2In experimental measurements 1c and 2c were substituted at 2, 5 by methyl groups; 2c
was substituted at 22 by tert-butyl group; 2a and 2b were substituted at 1, 48 by tert-butyl
groups.
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Figure 9.3: Contour plots of ground state density matrices and the electronic
modes which dominate the optical absorption of monomers 1c and 2c. The
axis labels represent the individual carbon atoms as labeled in Fig. 9.1. The
panels indicate the molecule (Fig. 9.1) and the electronic mode (Fig. 9.2)
(e.g. 1c(ρ) is the ground state density matrix of molecule 1c; Pc(III) is mode
III of [2,2]paracyclophane Pc). The aromatic ring units are shown by solid
rectangles. The color code is given in the bottom row. Mode frequencies of
1c (ΩII = 4.12 eV , ΩIIIA = 5.36 eV , ΩIIIB = 5.73 eV ); 2c (ΩII = 3.53 eV ,
ΩIII = 5.25 eV ); Pc (ΩIA = 3.95 eV , ΩIB = 4.77 eV , ΩIII = 5.5 eV )
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Before turning to the dimer spectra we shall examine the calculated ab-

sorption spectrum of [2,2]paracyclophane (Pc) which in an important common

unit of all dimers studied. The electronic properties of Pc has been extensively

studied [203,204]. The calculated and experimental spectra of Pc is displayed

in the top panel in Fig. 9.2. Three electronic excitations are considered. The

lowest transition IA with frequency ΩIA = 3.95 eV is forbidden in linear ab-

sorption 3. IB is the first peak in absorption (ΩIB = 4.77 eV ) with a weak

dipole along the benzene long axis. Peak III (ΩIII = 5.5 eV ) dominates the ab-

sorption. Our calculated frequencies compare well with experiment (4.06 eV ,

5.12 eV and 5.42 eV [204]). Pc(ρ) shown in Fig. 9.3 represents the ground

state density matrix ρ̄ of Pc. The aromatic rings at the corners and two bridge

shoulders in the center are clearly identified. Pc(IA) shows the lowest elec-

tronic modes in Pc. The excitation is localized on the aromatic rings and

shows the strong electronic coherence (which is a signature of charge delocal-

ization) between them. Pc(IB) is also delocalized over the entire molecule but

with a weaker coherences between aromatic rings than Pc(IA). In contrast,

the Pc(III) mode shows very small charge delocalization between arene rings.

Modes IA and IB are delocalized and are therefore red-shifted compared to

mode III which is localized on the arene rings. Due to its localized nature,

mode III has roughly the same structure and transition frequency (5.3-5.4 eV )

for all three molecules Pc, 1c, and 2c.

9.2 Electronic modes of dimers

Panel 1a(ρ) in Fig. 9.3 displays the ground state density matrix ρ̄ of 1a.

The plot shows that dimerization hardly affects the ground state; The density

matrices of the Pc(ρ) and 1c(ρ) units can be easily identified in the density

3Experimentally this transition is weakly vibronically allowed by borrowing intensity
from IB [203]. It can be seen by plotting the experimental absorption in logarithmic scale.
The fluorescence of Pc originates primarily from IA [203]
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matrices of 1a. The ground state density matrices of other dimers (not shown)

behave similarly.

We next turn to the optical excitations of the dimers. Panel 1a(I) of Fig. 9.4

shows the lowest frequency electronic mode IA of 1a. This mode is virtually

the same as Pc(IA): It is essentially localized on the paracyclophane, has a

vanishing oscillator strength, and represents the charge delocalization between

monomers. The following mode 1a(IB) corresponds to Pc(IB) and similarly has

a weak oscillator strength. However, the small delocalization to neighboring

vinylic groups leads to dramatic red shift in frequency from 3.95 to 2.91 eV

for IA and from 4.77 to 3.04 eV for IB.

Mode 1a(IIA) resembles mode II of the monomer 1c (diagonal blocks), but

shows some electronic coherences between chromophores (off-diagonal blocks).

The structure of 1a(IIB) is similar to 1a(IIA) but it shows a slightly dif-

ferent distribution of coherences and stronger charge delocalization between

monomers. The coupling of the monomeric modes 1c(II) leads to a Davydov-

like splitting resulting in modes IIA and IIB in the dimers [205]. The frequency

splitting reflects the interaction strength between monomers. The high fre-

quency mode 1a(III) is localized mostly on the aromatic rings at the edge,

and weakly penetrates to the central Pc unit, with a small trace of optical

coherences between the monomers. This mode shows about the same localiza-

tion properties as 1c(II). We thus conclude that the electronic excitations of

the dimer 1a can be constructed from the excitations of its Pc and 1c units,

perturbed by interaction between monomers.

Electronic modes of different dimers are compared next in order to investi-

gate how geometry and monomer-size affect charge delocalization. The second

column in Fig. 9.4 shows the electronic modes of 1b (for atom labeling see

Fig. 9.2). The dominant optical excitations of the larger dimers 2a and 2b are

displayed in the third and forth columns.
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Figure 9.4: Contour plots of electronic modes which dominate the absorption
dimers. The axis labels represent the individual carbon atoms as labeled in
Fig. 9.1. The panels indicate the molecule (Fig. 9.1) and the electronic mode
(Fig. 9.2). The monomers 1c and 2c units are shown by solid rectangles.
The paracyclophane Pc unit is shown by dashed rectangle. The color code
is given in Fig. 9.3. Mode frequencies of 1a (ΩIA = 2.91 eV , ΩIB = 3.03
eV , ΩIIA = 3.69 eV , ΩIIB = 4.02 eV , ΩIII = 5.46 eV ); 1b (ΩIA = 2.92
eV , ΩIB = 3.01 eV , ΩIIA = 3.72 eV , ΩIIB = 4.59 eV , ΩIII = 5.47 eV ); 2a
(ΩIA = 2.91 eV , ΩIB = 3.03 eV , ΩIIA = 3.29 eV , ΩIIB = 3.61 eV , ΩIII = 5.29
eV ); 2b (ΩIA = 2.92 eV , ΩIB = 3.01 eV , ΩIIA = 3.41 eV , ΩIIB = 3.86 eV ,
ΩIII = 5.30 eV )
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The lowest-frequency modes IA and IB and the high frequency mode III

are localized and hardly change upon dimerization. Modes IA with frequency

2.9 eV and mode IB with frequency 3 eV originating from Pc(IA) and Pc(IB)

respectively are virtually the same for all four dimers. Mode III which can be

attributed to 1c(III) and 2c(III) is localized on the arene rings and shows a

weak charge delocalization between monomers for all four molecules. However,

it has a quite different diagonal distribution of optical coherences for short (1a,

1b) and long (2a, 2b) dimers. The localized nature of mode III explains the

invariance of its transition frequency (5.3-5.5 eV ).

The bulk (delocalized) mode II appearing in the spectra as peaks IIA and

IIB changes significantly upon dimerization and shows charge delocalization

which depends on the molecule. Comparison of IIA and IIB leads to the fol-

lowing observations: (i) charge delocalization is much stronger for molecules

with ortho- (1b and 2b) than with para- (1a and 2a) orientation because the

vinylic groups where the monomer bulk mode II is concentrated in b are geo-

metrically closer with separation of about 4 Å, and strongly interact with each

other; (ii) charge delocalization is stronger for the shorter molecules (1a and

1b) compared with 2a and 2b because in the former the electron - hole pair

’spends more time’ on the Pc unit which promotes charge delocalization; (iii)

The stronger the charge delocalization between monomers, the less IIA and IIB

resemble the original 1c(II) and 2c(II) modes. The splitting depends on the

optical coherences between monomers in the mode. For example 1b exhibits

the strongest coherences in mode II and shows the largest splitting ∼ 0.9 eV

between IIA and IIB peaks. 2a has the weakest coherences in mode II, show-

ing a much smaller splitting ∼ 0.3 eV . IIA is much stronger in absorption

compared to IIB, which leads to a single peak spectrum of type II.
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9.3 Emission Spectra and Radiative Decay

Rates

In the present study the emission spectra were not calculated explicitly. Never-

theless, our computed electronic modes may be used to analyze the qualitative

trends of the experimental fluorescence spectra displayed in Fig. 9.2 (dotted

curves). Fluorescence spectra of the monomers, 1c and 2c, both show distinct

vibronic structure and have the similar Stokes shifts of 0.7 eV and 0.5 eV

respectively (defined as the shift between the strongest peaks in absorption

and emission). The fluorescence spectra of dimers 2a and 2b have virtually

identical shapes to the monomer (2c) and show Stokes shifts 0.4 eV , 0.5 eV ,

and 0.5 eV , respectively. The spectra of dimers, 1a and 1b, are markedly dif-

ferent: They are broad and featureless, show no vibronic structures, and their

shapes resemble the fluorescence of Pc. The Stokes shifts of 1a and 1b are large

compared to 1c (0.8 eV , 0.9 eV , and 0.7 eV , respectively). These observations

can be explained by assuming that in the short dimers 1a and 1b the optically

excited IIA state relaxes to the lower lying IA and IB states. The fluorescence

originates from the states IA and IB which are red-shifted by 0.93 eV and 0.8

eV with respect to IIA. The large Stokes shift is thus electronic in origin.

In contrast, in longer dimers 2a and 2b, the state IIA is significantly red-

shifted since it is delocalized, whereas the states IA and IB do not shift. Con-

sequently the separation between II and IA(IB) in long dimers is only about

0.33 eV (0.2 eV ). In fact, the states IA and IB lay within the linewidth of

optically active transition IIA. Consequently, the relaxation of population to

states IA and IB upon excitation of state IIA is less important and the emission

originates primarily from the initially excited state.

This picture is supported by a close examination of the radiative decay rate
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γr
ν, calculated using the expression [72]

γr
ν =

2

3
fνΩ

2
ν. (9.1)

Here fν and Ων are the oscillator strength and the frequency of mode ν (see

Eq. (2.55)).

Assuming that only the delocalized mode IIA participates in the fluores-

cence of long molecules, we obtain 0.7 ns−1 and 0.67 ns−1 for the monomer (2c)

and the dimer (2a) decay rates. These compare well with experimental values

of 0.55 ns−1 and 0.5 ns−1 [202], respectively. The calculated rate is somewhat

larger because molecular vibrations and solvent effects which reduce electronic

coherence were not taken into account. The calculated radiative lifetime of stil-

bene 1c (0.52 ns−1) is consistent with the experimental value 0.62-0.67 ns−1

[206]. The radiative rates of the short dimers behave markedly different. The

experimental radiative rate of 1a is significantly slower and the quantum yield

is lower than 2a. Assuming that only the localized mode IB participates in

fluorescence of the short dimer 1a, we obtained 0.05 ns−1 for the radiative rate

compared with the experimental value of 0.06 ns−1 [202]. The calculated rate

is underestimated because the fluorescence depends also on states IA and II of

1a. Thus the weak oscillator strengths of IA and IB in 1a and 1b and the fast

relaxation to these states lead to the strong fluorescence quenching in the short

dimers. This is interesting for the design of optical and luminescent materials.

In summary the optical excitations of a family stilbenoid dimers have been

calculated and analyzed using a two-dimensional representation of electronic

normal modes in real space. These plots reveal an off-diagonal (diagonal) size

associated with relative (center of mass) motion of electron - hole pairs cre-

ated upon optical excitation. The lowest frequency electronic mode is localized

on the paracyclophane group of the dimer, makes a small contribution in ab-

sorption of all aggregates, but dominates the emission spectra of small dimers

1a and 1b, leading to a large electronic Stokes shift. The two lower energy
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electronic modes, localized on the monomeric units, dominate the linear ab-

sorption of all aggregates and the fluorescence of long dimers 2a and 2b. Their

electronic coherences reflect the charge delocalization between monomers and

strongly depend on the relative chromophore orientation. Our calculations ac-

count for all observed trends in absorption spectra, fluorescence Stokes shift,

and radiative lifetimes, and establish a rigorous connection between the optical

response of aggregates and the properties of the monomers.



Chapter 10

Scaling and Saturation of
Second Order Off-Resonant
Polarizabilities in
Donor/Acceptor Polyenes.

Polyenic oligomers are of particular interest as model systems of one-

dimensional conjugated chromophores [207]. These molecules possess large

optical polarizabilities due to delocalized π-electron excitations [25,11,10,1].

Adding an electron-withdrawing and an electron-donating group enhances the

optical response even further [10,12,9,8,13,208–210]. The mechanisms lead-

ing to dramatic changes in optical polarizabilities with increasing chain length

and donor/acceptor strength and the limiting factors of these enhancements

are still not fully understood. Exploring the interplay between these two fac-

tors is a key for a rational design strategy of molecules possessing large optical

polarizabilities [211]. Experimental investigations are complicated by sample-

quality, controlled synthesis and poor solubility of large molecules. On the

theoretical side, different approaches are used for small molecules and bulk

materials, making it hard to investigate the intermediate crossover regime.

The variation of off-resonant optical polarizabilities with molecular size

may be described by the scaling law ∼ nb, n being the number of repeat

units. In odd order responses (α, γ) the scaling exponents b vary considerably

155
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for short molecules: 1 < bα < 2 and 2 < bγ < 8 depending on the system

and model [11,28,29,118,98]. For elongated chains we expect the polarizability

per repeat-unit α/n and γ/n to saturate and become size independent; The

exponents b should thus attain the value 1, indicating that the polarizabilities

become extensive properties. The saturation of γ/n was first predicted by

Flytzanis and co-workers [118]. Recent theoretical studies indicate that it sets

in at about 30-50 repeat units. A saturation length of ∼ 200 was observed

experimentally in one case [111].

Donor/acceptor substituted molecules possess even-order nonlinear polar-

izabilities. A comprehensive review of the current status of second order po-

larizability studies was given in [10]. Optical polarizabilities can be calculated

using a perturbative expansion involving a summation over all molecular states.

By restricting the summation to a single excited state and assuming that the

charge-transfer transition is unidirectional, we obtain the two-level expression

commonly used to estimate the second order polarizability

β ∝ (µee − µgg)
µ2

ge

E2
ge

, (10.1)

where µgg and µee are the ground and excited state dipole moments, µge is

the transition dipole, and Ege is the transition frequency. It is not clear from

Eq. (10.1) how should β scale with molecular size. Existing experimental and

theoretical studies have not established the precise scaling law of β and its the

crossover to the bulk. Experimental studies restricted by synthetic consider-

ations to chain length of 11 repeat units show 1.4 < bβ < 3.2 [10,12,9,8,13]

whereas calculations performed with up to 22 repeat units yield 1.5 < bβ < 2

[10,212]. Semiempirical calculations made by Morley suggest that for polyenes

bβ = 1 [208,209] whereas for polyarenes bβ = 0 [210]. Using (β/molecular

volume) as the figure of merit of different materials, he predicted that the

optimal values in polyenic and polyarenic chromophores should be about 20

and 3 repeat units respectively [208–210].
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In this Chapter the CEO technique [74,104] is used to explore the variation

of β over a broad size range, all the way to the bulk. Our calculations show that

in marked contrast to α and γ, β itself (and not β/n) saturates for large sizes.

A real-space theoretical analysis readily account for this behavior, pinpoint

the origin of β, and provide useful guideline for the synthesis of molecules with

desirable nonlinear optical properties. Although the calculations presented

here are for polyene bridges, this approach can be readily applied to a broad

range of optical materials.

10.1 Real-space Two-Dimensional analysis of

Substitution Effects

The optimal ground-state geometries of the donor/acceptor substituted

polyenes shown in Fig. 10.1 were calculated at the AM1 level using Gaussian-

94 1. The ZINDO code was then used to generate the INDO/S hamiltonian

[64–67] and calculate Hartree-Fock ground-state density matrices ρ̄ij.

The effect of donor/acceptor substitutions on the chemical bonding pat-

tern and charge distributions in the ground state can be visualized using

contour plots of the density matrices in real-space [104,70]. Absolute val-

ues of the reduced single-electron ground-state density matrices elements |ρ̄ij|
of donor/acceptor substituted molecule DA(15) (n=15 is the number of dou-

ble bonds) are shown in Fig. 10.2A. The axes represent carbon atoms of the

bridge labeled 1-30 (In Figures 10.2 and 10.3 the donor end is labeled 1 and

the acceptor end is 2n). The density matrix is dominated by the diagonal and

near-diagonal elements, reflecting the bonds between nearest neighbor atoms.

The double bonds are clearly identified.

To show the effect of substitution on the ground state we consider the

difference matrix ∆ρ̄ ≡ |ρ̄DA− ρ̄N | between the density matrices of the substi-

1During geometry optimization in long molecules, the geometry of the polyenic chain was
constrained to be planar.
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CN

CN

DA(n)

Me2N

Me2N

CN

CN

n-1
D(n)

A(n)

n-1

N(n)

n-1

n-1

Figure 10.1: Structures of the neutral N(n), Donor D(n), Acceptor A(n), and
Donor/Acceptor DA(n) substituted molecules. Calculations were performed
for bridges with n =5,10,15,20,30,40 double bonds.

tuted (ρ̄DA) and neutral (unsubstituted) (ρ̄N) molecules for various molecular

sizes (see Fig. 10.1). The difference matrices for molecules with n=9, 15 and

30 are displayed in Fig. 10.3 A, B, and C respectively. These plots only show

the polyenic bridge; The donor and the acceptor regions has been removed.

For clarity ∆ρ was magnified as indicated in each panel and used the same

color code. The plots show that for large sizes (n=30 and 15) the donor and

acceptor do not communicate directly and their effects are well confined to

their respective vicinities; Consequently, the donor and the acceptor contri-

butions to the dipole become additive. This is clearly illustrated in the top

panel in Fig. 10.4 which shows that the ground-state dipole moment µgg of the
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Figure 10.2: Contour plots of the ground state density matrix ρ̄ (A), and the
density matrices induced by a static electric field δρ(1) (B), δρ(2) (C), and δρ(3)

(D) of molecule DA(15). The part of the density matrix corresponding to the
bridge is marked by a rectangle. The axes are labeled by the bridge carbon
atoms. Atom 1 (30) correspond to the donor (acceptor) ends.
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donor/acceptor molecule is equal to the sum of dipole moments of molecules

with donor only (D) and with acceptor only (A) substitutions. For shorter

chains (e.g. n = 9 Fig. 10.3A) ∆ρ̄ is finite all across the chain, indicating a

weak coupling of the donor and acceptor. The leveling off the ground-state

dipole moments µgg of the donor/accceptor molecules with increasing of chain

length (Fig. 10.4A) reflects the absence of long range electronic coherence in

large polyenes and is crucial for predicting the scaling of optical properties

with size, as will be shown below.

10.2 Size-scaling of optical polarizabilities

When the molecule is driven by an external field, its density matrix acquires

a time-dependent part ρ(t) = ρ̄ + δρ(t). In the frequency domain we have

[73,104,70]

δρij(ω) = δρ
(1)
ij (ω) + δρ

(2)
ij (ω) + δρ

(3)
ij (ω) + · · · . (10.2)

where δρ
(k)
ij (ω), the k’th order contribution in the incoming optical field, may

be calculated by solving the time-dependent Hartree Fock(TDHF) equation of

motion using the ground state density matrices as an input [56,70,104]. The

k’th order polarizability is calculated by taking the expectation value of the

dipole operator with respect to δρ(k)(ω). α, β, and γ are then calculated using

δρ(1), δρ(2), and δρ(3) induced by a static external field.

The resulting size-scaling of the off-resonant polarizabilities α/n, β and γ/n

is depicted in Fig. 10.4, and the scaling exponents bα, bβ and bγ are displayed

in Fig. 10.5. The behavior of bα and bγ which reach the value 1 at large sizes is

consistent with the thermodynamic (bulk) limit. bβ, however is very different

and vanishes at large sizes.

To visualize the optical response in real-space and analyze this markedly

different behavior of β we examine the induced density matrices δρ(k) =

δρ(k)(ω = 0) contributing to the optical response. In Fig. 10.2 we display the
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Figure 10.3: Top row: Contour plots of the ground state difference matrices
∆ρ̄ = ρ̄DA − ρ̄N for n=9 (A), n=15 (B), and n=30 (C) shown for the bridge
part of the matrix. Axes are labeled by the bridge carbon atoms with atom 1
on the donor side and atom 2n on the acceptor side. The second, the third,
and the forth rows display the difference matrices to various orders in the field
∆ρ(1), ∆ρ(2), and ∆ρ(3) respectively.
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induced density matrix to first δρ(1) (B), second δρ(2) (C) and third δρ(3) (D)

order in the external field. Shown are the absolute magnitudes of these density

matrices in the site representation, using the same format of the ground state

calculations (Fig. 10.2A). These plots relate the optical properties directly to

motions of charges in the system. The diagonal elements δρ
(k)
jj reflect induced

charges on various atoms whereas the off-diagonal elements δρ
(k)
ij show the

optically-induced coherences between i-th and j-th atomic orbitals. They may

be viewed as dynamical bond-orders representing the joint amplitude of find-

ing an electron on atom i and a hole on atom j. We note that the coherence

size of the induced density matrix (given by its anti-diagonal section) increases

as we move from panels B to D, indicating that higher nonlinearities induce a

coherence between atoms farther and farther apart.

The effect of substitutions on the optical response can best be visualized

by plotting the differences ∆ρ(k) ≡ δρ
(k)
DA − δρ

(k)
N between the induced density

matrices in the substituted and the neutral molecules. Because the neutral

molecule does not possess quadratic polarizability, only the difference ∆ρ(2)

contributes to β. ∆ρ(1), ∆ρ(2), and ∆ρ(3) are displayed at the second, third, and

forth rows of Fig. 10.3 using the same format of the ground state calculations

(top row). The most striking observation from these two-dimensional plots is

that the donor/acceptor influence is screened by the π electrons and is confined

to a finite section of the bridge with about 15-17 double bonds. For short chains

(left column) the donor and acceptor communicate directly since their influence

regions overlap spatially and significant electronic coherence develops between

them. At large chains (n=30, right column) their effects are clearly separable.

This is the reason why β levels off to a constant with bβ = 0: only the ends

of the molecule contribute to β whereas the middle part is identical to that

of neutral molecule with vanishing second order polarizability! This scaling

is completely different from the behavior of α and γ; The entire molecule
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Figure 10.4: Scaling with size and saturation of the ground state dipole mo-
ment µgg (A), the first (B), second (C), and third (D) orders off-resonant
polarizabilities of the molecules displayed in Fig. 10.1. N Neutral (no substi-
tutions) N; H acceptor substituted (A); • donor substituted (D); � in panels
A and C show the sum of molecules (A) and (D). The additivity of µgg and β
at large sizes reflects the independent effect of the donor and acceptor. Note
the similar saturation behavior of α/n, γ/n and β.
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Figure 10.5: Variation of the scaling exponents bχ ≡ d[ln χ]/d[ln n], χ = α, γ, δ
with size for the curves shown in Fig. 10.4. At large sizes bα and bγ tend to
1 whereas bβ approaches 0. These reflect the saturation of α/n, γ/n, and β
shown in Fig. 10.4.

contributes to these odd order responses resulting in the fixed polarizability

per unit molecular length at large sizes (Fig. 10.4B and D).

We can draw close analogy between size-scaling of the ground state dipole

and the second order polarizability by comparing Fig. 10.3 with panels A and

C of Fig. 10.4. Only limited coherence regions of the ground state density

matrix and the induced density matrices at the molecular ends are affected by

the donor and the acceptor. The size of these coherence regions depends on

the donor and the acceptor strength. Both the ground state dipole moment

and β saturate when the molecular size becomes larger than the size of these

regions. For large chains the donor/acceptor contributions to the second order

polarizability are additive, as illustrated in Fig. 10.4C: β of the donor/acceptor

molecule (DA) becomes equal to the sum of β’s of a molecule with only donor

(D) and a molecule with only acceptor (A) substitutions. This additivity is
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similar to that displayed earlier for the permanent ground state dipole µgg

(Fig. 10.4A).

Unlike the present real-space analysis, the mechanism of saturation of β at

large sizes is highly nontrivial when examined using the molecular eigenstates

(Eq. (10.1)). Since excited states are delocalized, it can be argued that µ2
ge ∼ n

at large n in the two-level model [98,73]. This is necessary to guarantee that the

linear scaling of the linear off-resonant polarizability with n: α ∼ fge

E2
ge

=
2µ2

ge

Ege
∼

n, where fge is the oscillator strength. µgg, µee and Ege saturate with molecular

size [12,9,208,209]. At first glance we thus expect β ∼ n. This is however not

the case, for the following reason: The difference (µee − µgg) originates from

charge redistribution upon electronic excitation. Fig. 10.3 clearly shows that

charge transfer which affects the permanent dipole only occurs in confined

regions at the ends. Since the excited states are delocalized over the entire

molecule, the difference (µee− µgg) should scale as n−1, which cancels the ∼ n

scaling of µ2
ge, resulting in an overall constant β, independent of n. Another

way to state this is that the ground state (µgg) and the excited state (µee)

contributions to β both scale as n, and the saturation of β originates from

a delicate cancellation of these two ∼ n terms. It is interesting to note that

similar cancellations have been observed in γ as well; Individual contributions

which scale as n2 interfere and almost cancel, resulting in the overall ∼ n

scaling [72].

Defining and predicting the saturation size of optical properties has been

the main focus of extensive theoretical effort [11,10]. This is a key factor in

developing synthetic strategies for novel materials. The interference effects

discussed above make it very difficult to predict trends using the molecular

eigenstates. In contrast, our two-dimensional plots provide a highly intuitive

yet quantitative tool for addressing this longstanding problem: the density ma-

trix shows that the influence of the donor is limited to a few double bonds in its
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vicinity, and the same is true for the acceptor. The size of the influence region

(along the diagonal and off-diagonal elements) in a large polyene defines the in-

trinsic coherence size of the system. When the molecular size is larger than the

coherence size, the effects of the donor and the acceptor are totally decoupled

and additive; both β and µgg then become size-independent. This is reminis-

cent of the description of quantum confinement in semiconductor nanoparticles

[38,139–142]. Our analysis shows that the donor and acceptor are decoupled

even in an ideal chain when the purely-electronic response is calculated. Other

factors such as vibrations and chain dislocations may contribute further to the

decoupling of the donor and the acceptor, and the saturation may show up at

shorter sizes.

The picture of electron transfer from donor to acceptor, accompanied by

a giant dipole (and β) is therefore highly misleading in large polyenes. While

direct donor-to acceptor charge transfer does occur at short chains, this is no

longer the case for elongated molecules, as is evident from the lack of long-range

electronic coherence between the donor and the acceptor.



Chapter 11

Electronic-oscillator analysis of
femtosecond four-wave mixing
in conjugated polyenes.

Resonant time domain nonlinear spectroscopy provides direct information

on the creation of carriers and excitons and their subsequent dynam-

ics [213,214,144–146,215–220]. Femtosecond time-resolved absorption spec-

troscopy revealed the strong coupling between electronic and vibrational states

in excited state dynamics of the singlet exciton of polydiacetylene [213,214].

Time-resolved gain and absorption measurements have been performed to

study the quantum yield of poly(paraphenylenevinylene) for films, dilute

blends and solutions, the defect quenching of luminescence, the formation and

decay of excitons [144–146], and the energy relaxation and field-induced exciton

dissociation [215–217]. Degenerate four-wave mixing measurements have been

performed in perylenes [219]. Recently, the dephasing dynamics of vibronic

states in polydiacetylene films has been investigated [220]. These experiments

are usually interpreted by simply applying kinetic equations for excited state

populations using phenomenoligical decay rates.

167
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11.1 The CEO Representation of Resonant

Response

In this Chapter we investigate how ultrafast resonant four-wave mixing (FWM)

can be used to provide some alternative, dynamical, signatures of electronic

correlations. Our analysis is based on the recently developed coupled electronic

oscillator representation of the optical response, obtained by following the

dynamics of the reduced single electron density matrix [56]. The equations

of motion for the density matrix are expanded in terms of amplitudes of the

various electron-hole oscillators. With these equations the optical response is

mapped onto a set nonlinear equations; optical nonlinearities are attributed

to anharmonicities and scattering of oscillators [56,55,60,74,73,104,70]. The

equations of motion derived here hold for the optical response up to the third

order in the incoming field. However, extending the present framework to

higher order nonlinearities is straightforward.

This technique have been applied to the calculation of a specific reso-

nant time-domain experiment, namely degenerate FWM in the two-pulse self

diffraction set-up. We consider the signal generated in the 2k2 − k1 direction,

where k2 and k1 are the incoming wavevectors. We assume resonant excita-

tion of the lowest 1Bu oscillator and identify the oscillators which contribute

to this signal. Electronic correlations, which manifest themselves as nonlinear

couplings between oscillators, lead to distinct signatures in the FWM signal.

Our analysis shows that for the signal considered here, only 2 oscillators have

to be considered explicitly, which allows for a very clear and intuitive descrip-

tion of the various nonlinearities [221]. We shall refer to these as the primary

oscillators. All other oscillators are excited off-resonance. Their dynamics fol-

lows adiabatically the excitation and therefore they can be eliminated from

the equations, which results in new anharmonic couplings as well as renormal-

izations of the existing anharmonicities of the primary oscillators.
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To analyze the time-domain signatures of correlations we compare calcu-

lations made using the simple Hückel (SSH) model [222], which includes no

correlations in the optical response, with the Pariser-Parr-Pople (PPP) model,

where Coulomb interactions are included. Some unique signatures of correla-

tions in the ultrafast signals are found: First, due to correlations the shape

of the FWM amplitude is changed from a free-induction decay, which has a

maximum immediately after the excitation, to one which displays a delayed

maximum as function of time. The results are compared with inorganic semi-

conductor nanostructures, where such effects have been predicted [223–225]

and observed [226,227]. Second, the correlations also strongly affect the dy-

namics of the phase of the FWM signal. The relative phase of the FWM

signal with respect to the exciting pulses changes from π
2

for the Hückel model

to about 0 or π, depending on the signs of the anharmonic coupling coefficients.

Third, for the PPP model strong signals for negative delays (pulse k2 comes

first), which are absent in a simple two-level model are found. Such signals

reflect the contributions of a third level which could either be a two-photon Ag

oscillator or a many body effect of two Bu oscillators [228–230]. Our calcula-

tions show, that anharmonicities due to many-particle interactions dominate

these signals in conjugated polyenes. This state of affairs is reminiscent of

molecular aggregates and was recently analyzed for photosynthetic antenna

complexes [231].

11.1.1 Equations of motion for electron-hole oscillators

A system of many π-electrons described by the tight-binding PPP Hamiltonian

(Section 2.1) [62] is considered with following parameters: U0 = 11.13eV ,

β0 = −2.4eV, β1 = −3.5eV Å
−1
, ε = 1.5, a0 = 1.2935Å [55]. For comparison

calculations using the Hückel model where the Coulomb interaction is neglected

U0 = 0 were also performed. In this case β1 = −5eV Å
−1

was used in order to
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reproduce the PPP band edge.

The CEO (Chapter 2) maps the calculation of the optical response onto the

dynamics of coupled electronic oscillators representing the electron-hole pair

components of the reduced single electron density matrix [56]. The particle-

hole part of the density matrix can be expanded on terms of these modes ξα

(see Eq. (2.46))

ξ(t) =
∑
α>0

(ξαzα(t) + ξ+
α z

∗
α(t)) . (11.1)

Each oscillator α is described by two operators ξα and ξ+
α . Following Ref. [56]

we define ξ−α = ξ+
α . zα and its complex conjugate z−α = z∗α will be denoted

complex oscillator amplitudes. The oscillator variables, are the eigenmodes of

the linear part of Eq. (2.36) and satisfy:

L(ξα) = Ωαξα, L(ξ−α) = −Ωαξ−α . (11.2)

They are normalized using the condition (Eq. (2.44)):

Tr(ρ̄[ξ−α, ξβ]) = δα,β . (11.3)

Inserting the expansion Eq. (11.1) into Eq. (2.36) gives the following equations

of motion for the complex amplitude zα(t) of the oscillator variable ξαin the

external field E(t):

i
∂

∂t
zα = Ωαzα − Eµα − E

∑
β

µα,βzβ − E
∑
βγ

µα,βγzβzγ

+
∑
βγ

Vα,βγzβzγ +
∑
βγδ

Vα,βγδzβzγzδ , (11.4)

with

µα = Tr([ρ̄, ξ−α][µ, ρ̄])

µα,β = Tr([ρ̄, ξ−α][µ, ξβ])

µα,βγ = Tr([ρ̄, ξ−α][µ,
1

2
[[ξβ, ρ̄], ξγ]]) (11.5)
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Vα,βγ = Tr([ρ̄, ξ−α][V (ξβ), ξγ]) + Tr([ρ̄, ξ−α][V (
1

2
[[ξβ, ρ̄], ξγ]), ρ̄])

Vα,βγδ = Tr([ρ̄, ξ−α][V (
1

2
[[ξβ, ρ̄], ξγ]), ξδ]) + Tr([ρ̄, ξ−α][V (ξβ),

1

2
[[ξβ, ρ̄], ξγ]]) .

Eq. (11.4) constitutes the equations of motion for zα with α > 0. The am-

plitudes for the adjoint (negative frequency) variables are simply the complex

conjugates, see Eq. (11.1). The summation indices β, γ, and δ on the right

hand side of Eq. (11.4) run over all (positive and negative frequency) oscillator

variables.

The first two term in the right hand side of Eq. (11.4) represent a linearily

driven harmonic oscillator. The other terms are anharmonicities describing

coupling among electronic oscillators. Field-induced and purely material an-

harmonic coefficients are labeled by µ and V , respectively. Note that the

summations on the right hand side include terms where the summation in-

dices are equal (β = γ = δ) (diagonal anharmonicities). It is important to

note that, as is evident from Eq. (11.5), all the anharmonic coefficients can be

calculated using the ground state density matrix ρ̄ as well as the eigenmodes

ξα of the linearized TDHF equation.

The optical polarization is given by (Eq. (2.34)):

P (t) =
∑

β

µ̃βzβ(t) +
∑
βγ

µ̃βγzβ(t)zγ(t) , (11.6)

with

µ̃β = Tr(µξβ)

µ̃βγ = Tr(µ
1

2
[[ξβ, ρ̄], ξγ]) . (11.7)

Like in Eq. (11.4) also in Eq. (11.6) the summation indices β and γ run over

all oscillator variables. Eqs. (11.4) and (11.6) may be used to compute the

optical response of our many-electron system. This task has therefore been

mapped onto finding the oscillators and the nonlinear couplings µ and V . µ
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describes optical transitions between the oscillators whereas V describes scat-

tering between oscillators, induced by the many-body Coulomb-interaction.

For a polyacetylene chain with N carbon atoms and N π-electrons there

are N2

4
particle-hole oscillators. Eq. (11.4) therefore represents the equations

of motion for the N2

4
complex amplitudes of oscillator variables associated

with positive frequencies. In Ref. [56] equivalent equations of motion have

been given for the coordinate Qα and the momentum Pα of the oscillators. In

the analysis of resonant optical nonlinearities it is more convenient to use the

complex amplitudes, rather than coordinates and momenta. The expansion of

the density matrix in the wave-vectors of the exciting fields, which corresponds

to an expansion with respect to the central excitation frequencies, is simpler

in this case. The equations used in Ref. [232] contain also particle-particle

and hole-hole oscillators to a total number of N2. These equations are also

equivalent to the present ones, since within the TDHF the additional oscillators

carry no information and can be eliminated rigorously [56].

11.1.2 Two-oscillator representation of resonant four-
wave mixing

In Appendices 11.3 and 11.4 we show how our equations of motion can be

applied to compute optical nonlinearities induced by a multiple-pulse excita-

tion. A major advantage of the oscillator representation is that in practical

applications it is usually necessary to include only very few oscillators. For

off-resonant susceptibilities these are the oscillators that couple most strongly

to the ground state density matrix. A tree diagram scheme for identifying

the dominant oscillators for the nonlinear response, order by order, has been

developed in Ref. [232]. In this Chapter resonant response is considered, and

the most natural way to select the relevant oscillators is by including those

oscillators whose frequencies are close to various combinations of the incoming
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field frequencies. The selectivity is expected to be more pronounced in the res-

onant case, which enables us to discuss the response using very few parameters

(frequencies and anharmonic coefficients) connected to the relevant oscillators.

The exciting field is given by:

E(t) =
∑
j=1,2

Êje
−((t−τj )/t̄j )2(eikj ·r−iωjt + e−ikj ·r+iωjt) . (11.8)

Here Êj is the real amplitude, τj the time delay and ωj the central frequency

of pulse j. In our numerical calculations we have assumed that the central

frequencies of both exciting pulses coincide with that of the 1Bu oscillator,

which has the largest oscillator strength, i.e.: ωL = ω1 = ω2 = Ω(1Bu) = Ω1,

and a duration of t̄1 = t̄2 = 20fs for the Gaussian pulse envelopes is used.

Since the spectral width of even these very short laser pulses (about 0.1eV ) is

small compared to the frequency spacing between the oscillators, only a few

oscillators will be excited resonantly. Our calculations show that the first and

third order response is to very good accuracy dominated by the 1Bu oscillator.

In second order there may be one Ag oscillator which appears as resonantly

excited two-photon transition. This will be discussed later using Figs. 11.1

and 11.7.

In Appendix 11.5 we have developed equations which retain only two res-

onantly excited primary oscillators, the 1Bu and one Ag oscillator, explicitly.

The off-resonant contributions from all other virtual Ag oscillators in second or-

der, were adiabatically eliminated from the equations of motion, which results

in renormalization of anharmonicities and scattering constants. The following

equations of motion for the complex amplitudes of the two primary oscillators

were obtained.

i
∂

∂t
z1 = (Ω1 − ωL − i

1

T2
)z1 − µ1E − E2(Y1 +X1)z1 − E2X−1z−1

− Eµ12z2 − E(s2 + Y3 +X3)z1z1 − E(s1 + Y2 +X2)z−1z1

+ 2V12z2z−1 + (V1 + Y4 +X4)z−1z1z1 (11.9)
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z−1 = z∗1

i
∂

∂t
z2 = (Ω2 − 2ωL − i

1

T ′
2

)z2 − Eµ12z1 + V12z1z1 (11.10)

Here we have added phenomenological dephasing times T2 and T ′
2 for the two-

oscillators and z−1 denotes the amplitude of the negative frequency variable

ξ−1 of the 1Bu oscillator, see Appendix 11.3. We assume that the relaxation

times for the populations, i.e. particle-particle and hole-hole components of

the density matrix, are given by T1 = T2/2. We thus do not include pure

dephasing processes. To investigate pure dephasing one needs to consider

additional dynamic variables [72]; This goes beyond the present treatment.

In principle the inclusion of dephasing times for the off-resonant oscillators

results in imaginary contributions to the renormalization terms Xi, Yi. Since

in our case the detuning for the off-resonant terms is very large compared to

the dephasing rate, those imaginary parts can be neglected.

All parameters appearing in Eqs. (11.9) and (11.10) have been defined in

Eqs. (11.34-11.39). In Appendix 11.5 we also present the equations in more

detail, including indices denoting the propagation directions. To obtain the

FWM signal we solve Eqs. (11.9) and (11.10) order by order. In first order one

has to solve the equation for z1 keeping just the µ1E terms on the right hand

side. This represents a linearily driven harmonic oscillator with frequency

Ω1 and transition dipole µ1. The solution of this equation yields z1 for the

propagation directions k1 and k2. z−1 is then the complex conjugate of z1

with the inverse directions −k1 and −k2 (see Appendices 11.3-11.5). Then we

solve the equation for z2 in second order, keeping inhomogenities representing

two-photon resonances, which correspond to the direction 2k2. In the equation

for z2 the first term represents an oscillator with frequency Ω2. The other terms

are nonlinear sources. µ12 is a transition dipole coupling the two oscillators

and V12 a many-body induced nonlinear coupling. Finally, the first and second

order terms are inserted again into the equation for z1 to calculate the third
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order kS = 2k2 − k1 component. The induced polarization in this direction is

given by:

PS(t) = e−iωLt

(
µ1z1 +

∑
β

µ−1βz−1zβ +
∑

β

µ1βz1zβ

)
. (11.11)

As shown in Appendix 11.5 the amplitudes for the virtual Ag oscillators be

evaluated analytically. Inserting these expressions, Eqs. (11.30)-(11.33), into

Eq. (11.11) simplifies the expression for the polarization.

PS(t) = e−iωLt
(
µ1z1 + µ12z−1z2 + (A1 +B1)z−1(z1)

2

+ (A2 +B2)Ez−1z1 + A3E(z1)
2
)

= e−iωLt|PS(t)|e−iϕ′(t).(11.12)

The anharmonic constants A1, A2, A3, B1, and B2 arise from the elimination of

the virtual oscillators, see Eq. (11.40). |PS(t)| is the time-resolved amplitude

and ϕ′(t) the slowly varying part of the phase. The total phase of the signal

is given by ϕS(t) = −(ωLt + ϕ′(t)) = −ϕL(t) − ϕ′(t), where ϕL(t) is exactly

the phase of the exciting laser pulses, see Eq. (11.8). We later examine the

relative phase of the signal with respect to the exciting pulses [233]

∆ϕ(t) = ϕL(t)− ϕS(t) = ϕ′(t) . (11.13)

This phase can be measured using heterodyne detection. The time-integrated

FWM signal is given by

SINT (τ) =

∫
|PS(t)|2dt , (11.14)

where τ is the time delay between the two-pulses.

The interpretation of the various terms in Eq. (11.9), which generate the

FWM signal are as follows. First we discuss the terms which only involve the

1Bu oscillator. s1 is the only nonlinearity which is also present in a simple two

level system [234]. It represents the creation of a FWM signal by scattering

of the field off a transient grating (k2 − k1). It has its origin in the fact that
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electrons are Fermions and is usually referred to as Pauli blocking or phase-

space filling nonlinearity [223,224,226]. s2 describes a similar process, where

now the field is scattered off a term rotating with twice the transition frequency

of the 1Bu oscillator (−2ω2), instead of a transient grating term (ω1−ω2), which

has no optical rotation frequency, since ω1 = ω2. V1 formally appears as a local-

field like nonlinearity [223,72]. It describes self-scattering of the excitation of

the 1Bu oscillator induced by the many-particle Coulomb-interaction. Next we

discuss the terms resulting from the Ag oscillator, which is excited resonantly

in second order. µ12 is the transition dipole which couples the Ag and 1Bu

oscillators. It describes the creation of a third order polarization associated

with the 1Bu oscillator, created from the excitation of the Ag oscillator times

a field. µ12 also appears in the definition of the polarization. This term comes

from the particle-particle part of the density matrix. V12 describes the many-

particle induced coupling between the Ag and the 1Bu oscillator, which gives

rise to nonlinear signals. All other terms (Xi and Yi) come from the elimination

of off-resonant second order contributions. X1, Y1, X−1 describe the creation of

a FWM signal by scattering of a linear term by two-fields. In the definition of

these coefficients it follows that they are determined only by dipole moments

between oscillators. All other terms resulting from the elimination process

involve many-particle interactions between oscillators, which means that they

are zero for the Hückel model. By inspection of the equations of motion one

finds that all these terms lead to renormalizations of already existing nonlinear

coupling coefficients s1, s2, V1. Finally, the particle-particle part of the density

matrix leads to the quadratic terms in the polarization, Eq. (11.11).

Depending on the time delay, the FWM technique considered here yields

information about different anharmonic couplings. For positive delay (pulse

k1 comes first) this technique is known as photon echo, since in an inhomoge-

neously broadened system the amplitude of the signal will have an echo-like
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envelope [234,235]. As can be analyzed using Eq. (11.36), for a positive delay

larger than the pulse duration, when the overlap between the two pulses can

be neglected, only few of the inhomogentities in Eq. (11.9) contribute to the

signal. Like in a two-level system, the phase-space filling s1 and its renormal-

izations Y2 and X2, only contribute for positive delay [234,235]. Also the small

renormalization term X−1 only contributes for positive delay. All of these in-

homogenities explicitly contain pulse k2 multiplying a term which is present

after both pulses have excited the system, see Eq. (11.36). This only leads to

a nonvanishing results, if pulse k2 comes after pulse k1. For positive delays

also the many-particle induced terms represented by the nonlinear scattering

potentials V12 and V1, as well as its renormalizations Y4 and X4 contribute

[223,224]. The sources of these terms do not contain an electric field, but are

given by products of complex amplitudes. These amplitudes do not vanish as

fast as the exciting pulses, but decay slowly as determined by the dephasing

times. Therefore these many-particle terms will contribute to the signal for

any time delay [223–225].

For large negative delay the two-photon resonances induce FWM signals

even if many-particle interactions are neglected [228–230]. (Note that for a

linearily driven harmonic three-level system, i.e. equal energy spacing and

dipole moments scaling like
√

2, all nonlinear terms cancel identically, and the

optical response is purely linear.) This is represented by µ12 and s2, as well

as its renormalizations Y3 and X3. These inhomogeneties contain pulse k1

multiplying a term which is present after pulse k2 has excited the system, see

Eq. (11.36). Such terms are nonvanishing only if pulse k1 comes after k2. For

a small (positive or negative) delay, when the two pulses temporarily overlap,

all of the inhomogeneties in Eq. (11.9) contribute. In addition to the ones

discussed before, also the small source terms Y1 and X1, may contribute to the

signal. Since they contain explicitly both pulse k1 and k2 they vanish unless
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both pulses overlap.

11.2 Numerical results

In this section we compare the calculated FWM signals for the Hückel and

the PPP models for a 30 carbon atom polyacetylene chain. The signal will

be analyzed in terms of the anharmonicities and scattering of the oscillators

as described in the previous section. We tabulate all relevant coupling con-

stants and show how many virtual oscillators are needed for calculating the

renormalized anharmonicities.

11.2.1 The Hückel model

We first discuss the properties of the geometry optimized ground state for the

Hückel model [55,236]. The ground state is characterized by a uniform charge

density ρ̄nn = 0.5 at each carbon atom. The second quantity, which is closely

related to the stabilization mechanism of the ground state, is the bond order

defined by

pn = ρ̄n,n+1 + ρ̄n+1,n . (11.15)

We further introduce the bond order alternation parameter p′n

p′n =< pn > −(−1)npn (11.16)

where < pn > is the average bond order, which is 0.64 in our calculation. The

geometry optimized ground state is a bond order wave, where pn alternates

between every two bonds [55,60]. Except for boundary effects near the chain

ends it has an almost uniform bond order alternation parameter of p′n = 0.21.

The average bond length is 1.06 ± 0.11Å. Thus the transfer integral can be

approximated by tn,n±1 = β̄(1− (−1)nδ), with β̄ = −3.9eV and δ = 0.13.

For the Hückel model most of the coupling constants appearing in the

equations of motion, Eqs. (11.9) and (11.10), are zero, since the Coulomb
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Table 11.1: Mode frequencies and anharmonic coupling constants for the
Hückel and the PPP models.

Hückel PPP

Ω(1Bu) 2.28eV 2.28eV

Ω(5Bu) 3.99eV 4.52eV

µ1 3.86eÅ 4.80eÅ

s1 -3.86eÅ -2.81eÅ

s2 0.0eÅ 0.017eÅ

V1 0.0eV 0.063eV

µ12 0.0eV 0.66eÅ

V12 0.0eV -0.021eV

X1 21.99eÅ2V −1 5.36eÅ2V −1

X−1 0.0eÅ2V −1 0.078eÅ2V −1

X2 0.0eÅ 0.26eÅ

X3 0.0eÅ 0.13eÅ

X4 0.0eV -0.082eV

Y1 -36.16eÅ2V −1 -23.0eÅ2V −1

Y2 0.0eÅ -1.33eÅ

Y3 0.0eÅ -0.67eÅ

Y4 0.0eV 0.035eV

matrix vanishes, see Table 11.1. The surviving terms µ1, s1, s2, µ1n do not

include the Coulomb interaction. As can be seen in Appendix 11.5, most of

the terms arising from the elimination of the off-resonant Ag oscillators involve

the Coulomb interaction. Therefore only X1, X−1, Y1 are finite. Additionally,

for the Hückel model we find no Ag oscillator which can be resonantly excited

as a two-photon resonance. This can be seen from Fig. 11.1, which displays

the frequencies of all oscillators. The frequency of the lowest 1Bu oscillator is

2.28eV . The Ag oscillators which are closest in frequency to twice the frequency

of the 1Bu are the 6Ag and 7Ag oscillators at 4.13eV . The frequency difference

2Ω(1Bu) − Ω(6Ag) = 0.43eV is already larger than the spectral width of the
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Figure 11.1: Frequencies of all Bu and Ag oscillators for the Hückel model of a
30 carbon atom polyacetylene chain. There are 113 Bu and 112 Ag oscillators.
The frequencies of the first eight Bu (Ag) oscillators are: 2.28, 3.35, 3.46,
3.46, 4.63, 4.66, 4.66, and 4.79eV (2.82, 2.82, 3.99, 3.99, 4.13, 4.13, 5.30, and
5.30eV ).

exciting 20fs laser pulses, which is about 0.1eV . Therefore all contributions

from Ag oscillators can be assumed to be off-resonant and the only primary

oscillator is the 1Bu. In the numerical calculations of the FWM signal we

have included the phenomenological relaxation times T2 = 80fs for the Bu

and T ′
2 = 40fs for the Ag oscillators.

In Fig. 11.2 we show the density matrices of the ground-state and of the

1Bu oscillator using the π orbital (real-space) basis. The diagonals of these

plots represent the charge density ρnn, the off diagonal elements shows the
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Figure 11.2: (a) Ground state density matrix and (b) absolute value of density
matrix representing the 1Bu oscillator for the Hückel model. (c) Ground state
density matrix and absolute value of density matrix representing the 1Bu (d),
3Ag (e), and 5Ag (f) oscillators for the PPP model. (Large=blue, green, yellow,
red=small)
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Figure 11.3: Convergence of anharmonicities for the Hückel model as function
of number of virtual Ag oscillator variables. Shown is the relative percent
difference of the quantity to its converged value.

electronic coherences in the system. The ground state is more localized along

the diagonal than the oscillator, which shows that the optical excitation creates

electronic coherence in the system.

In Table 11.1 we give the relevant coupling constants for the Hückel model.

It turns out that µ1 = −s1; this resembles a simple two-level model, where the

inhomogenity of the optical Bloch equation for the polarization reads µE(1−n)

(here n is the population) [234]. We also find that s2 is zero, indicating that

no two-photon resonance involving solely the 1Bu oscillator contributes to the

signal, which again mimics a simple two-level system. Therefore the only

nonlinearity, involving just the 1Bu oscillator, is given by s1, which represents

a scattering of the field off a transient grating.

Looking at the coupling coefficients arising from the elimination of the Ag

oscillators, it turns out that X−1 vanishes, and X1 and Y1 are finite. Both of

these coefficients represent the scattering of two fields of the linear excitation.
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Figure 11.4: (a) Time-resolved amplitude and (b) phase of the FWM signal
for time-delay τ = 0fs for the Hückel model. Solid line: model IH, dashed:
model IIH, dotted: model IIIH, and dashed-dotted: laser pulse envelope.

These terms result in small contributions to the FWM signal and, as can be

seen from Eq. (11.36), they only contribute when the two pulses overlap in

time.

To find out how many virtual oscillators contribute to these two terms, we

show in Fig. 11.3 the convergence of X1 and Y1 with the number of virtual Ag

oscillator variables taken into account. The summations over the Ag oscillators,

see Eq. (11.39), have been made in such a way that we start with the largest

term and then one by one include the smaller coupling terms. We see that by
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taking just 2 (out of 224) Ag oscillators variables into account to obtain a 0.5%

accuracy for X1 and 2.5% for Y1. The two oscillators most strongly coupled to

the 1Bu oscillator are the 2Ag and 3Ag oscillators; both have a frequency of

2.82eV .

In Fig. 11.4 we display the amplitude and the relative phase of the time-

resolved FWM signal for time-delay τ = 0fs for three different models. Model

IH is a full calculation which includes all oscillators explicitly, according to

Appendix 11.4. In models IIH and IIIH only the 1Bu oscillator has been con-

sidered explicitly. The off resonant Ag oscillators enter via renormalizations of

the anharmonic couplings in model IIH (see Appendix 11.5), while in model

IIIH they are neglected. We find that all three calculations are very similar.

Only during the excitation process, when the signal is still small, there are

slight differences in the phase of the signals. This analysis shows that the reso-

nant FWM signal for the Hückel model is well described by the 1Bu oscillator

alone, which can also be described using a simple two-level model. The shape

of the amplitude of the FWM signal represents a free-induction decay, which

means that the signal reaches its maximum immediately after the excitation

by the pulses, and subsequently decays [234]. We also compute the relative

phase ∆ϕ of the FWM signal, which is given in Fig. 11.4(b), is after the ex-

citation process (t > 20fs) equal to π
2
. This means that, like in a resonantly

excited classical oscillator, the optically excited polarization follows the laser

pulse with a phase shift of π
2
, which is in agreement with analytical solution of

optical Bloch equations performed for ultrashort pulses [223,234]. It has been

shown that in this limit the FWM signal caused by phase-space filling has a

negative imaginary prefactor, which gives a relative phase of π
2
.

The second order density matrix has a k2−k1 (transient-grating) and a 2k2

(two-photon) component. The latter is negligible in the present calculation.

Fig. 11.5(a) shows the second order density matrix representing a transient-
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Figure 11.5: Absolute value of second-order density matrix ρ(2)(t) at t = 20fs
representing transient-grating (k2− k1) for (a) model IH, Eq. (27), (b) model
IP, Eq. (28), (c) model IIP, Eq. (27), and (d) two-photon resonances (2k2) for
model IIIP, Eq. (29).

grating in real space

ρ(−1|1)(t) = ei(ω1−ω2)t

(
1

2
([[ξ1, ρ̄], ξ−1] + [[ξ−1, ρ̄], ξ1])z

(−1|0)
−1 (t)z

(0|1)
1 (t)

+
∑

β

ξβz
(−1|1)
β (t)

)
, (11.17)

here the upper indices refer to the propagation directions, see Appendix 11.3.

Due to the symmetry of this expression the density matrix ρij representing

this term is zero if i + j is even (this is indicated by the red squares in Fig.

11.5(a), where we have used a different plot style but the same color code as in

Fig. 11.2). The Ag oscillator amplitudes (z
(−1|1)
β ) are small, and the odd index
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Figure 11.6: Time-integrated FWM for the Hückel model. Solid line: model
IH, dashed: model IIIH, and dashed-dotted: laser pulse envelope.

combinations show therefore a profile similar to the 1Bu oscillator shown in

Fig. 11.2(b).

Since we have shown that the Hückel model behaves like a simple two-level

system, we expect no time-integrated FWM signal for negative delays. This is

verified by Fig. 11.6, where we compare model IH and IIIH. While the signal for

positive delays decays with T2/2, as expected for a homogeneously broadened

two-level system, the signal decays much faster for negative delays. The small

signals for negative delays solely originate from the finite pulse width. The

dashed line in Fig. 11.6 represents the time-integrated signal for model IIIH,

it lies almost exactly on the solid line representing model IH.

We should however point out, that the absence of the second primary os-

cillator, appearing as a two-photon resonance is not an intrinsic property of

the Hückel model. For other sizes or bond alternation parameters there may

be Ag oscillators with frequencies in the vicinity of twice the frequency of the

1Bu oscillator, which may then also contribute to the nonlinear response. For
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the same parameters used here, we find that for a chain containing 22 carbon

atoms the 6Ag and 7Ag oscillators can be resonantly excited as two-photon

resonances (Ω(1Bu) = 2.56eV , Ω(6Ag) = Ω(7Ag) = 5.11eV ). Our calculations

show, that compared to the 1Bu oscillators, even for this case, the Ag oscilla-

tors contribute only weakly for the signal. For zero delay they are responsible

for only 0.8% of the signal (for the 30 carbon atom chain this value is 0.2%).

However, for large negative delays, when the contributions from the 1Bu os-

cillator vanish, the two-photon resonances induce a finite FWM signal. For

the chain of 22 carbon atoms these signals for negative delays are very weak.

The time-integrated FWM signal for τ = −100fs is five orders of magnitude

smaller than the one for zero delay. We therefore believe that our conclusions

drawn for the resonant response of Hückel model, regarding the weak coupling

of the 1Bu to the Ag oscillators, are of general nature.

11.2.2 The PPP model

We shall now explore the role of electronic correlations by repeating the pre-

vious calculations for the PPP model. Similar to the Hückel model, the geom-

etry optimized HF ground state is characterized by a bond order wave with a

uniform charge density [55,236]. This structure is stabilized by the electron-

phonon and the Coulomb exchange interactions. The calculated ground state

has an average bond order < pn >= 0.63 and alternation parameter p′n = 0.24.

The average bond order alternation is a little larger than in the Hückel model.

The average bond length is 1.31 ± 0.05Å, where the alternation is due to

the larger force constant smaller than in the Hückel model [236]. The aver-

age transfer integral can be approximated by tn,n±1 = β̄(1 − (−1)nδ), with

β̄ = −2.7eV and δ = 0.07.

All of the coupling constants in Eqs. (11.9) and (11.10) can contribute

once the Coulomb interaction is incorporated, see Table 11.1. The frequency
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Figure 11.7: Bu and Ag oscillator frequencies for the PPP model for a 30
carbon atom polyacetylene chain. There are 113 Bu and 112 Ag oscillators.
The frequencies of the first eight Bu (Ag) oscillators are: 2.28, 3.49, 4.10,
4.57, 4.59, 4.95, 5.48, and 5.62eV (2.89, 3.73, 4.06, 4.52, 5.05, 5.12, 5.13, and
5.37eV ).

of the lowest 1Bu oscillator is again 2.28eV . The Ag oscillator which is closest

in frequency to twice the frequency of the 1Bu is the 5Ag at 4.52eV , see Fig.

11.7. The frequency difference 2Ω(1Bu) − Ω(5Ag) = 0.049eV is smaller than

the spectral width of the exciting 20fs laser pulses. All other contributions

from Ag oscillators can be assumed to be off-resonant. So the two primary

oscillators, which are considered explicitely, are 1Bu and 5Ag.

In Fig. 11.2(c) and (d) we show the density matrices of the HF ground-

state and of the 1Bu oscillator. Compared to the 1Bu oscillator, see Fig.
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11.2, calculated for the Hückel model, which is strongly delocalized in the off-

diagonal direction, the many-particle Coulomb-interaction leads to localization

of the oscillator towards the diagonal. Still the ground state is again more

localized along the diagonal than the oscillator, which shows that the optical

excitation creates electronic coherence in the system. Also shown in Fig. 11.2

are the most strongly contributing Ag oscillators, (e) the 3Ag, which gives

the strongest off resonant contribution, and (f) the 5Ag, which appears as a

two-photon resonance.

In Table 11.1 we give the relevant coupling constants for the PPP model.

To simplify the analysis of these numerous term, we split the discussion into

three parts. In model IP, like in model IIIH for the Hückel model, we neglect all

contributions except for the ones involving only the 1Bu oscillator. In addition

to these contributions we include in model IIP the renormalization originating

from the elimination of the Ag oscillators appearing as transient-gratings (Xi).

Finally, in model IIIP we also add the explicitely considered 5Ag oscillator, as

well as all renormalizations induced by Ag oscillators appearing as two-photon

resonances (Yi).

In model IP only the following terms contribute: µ1, s1, s2, V1. s1 describes

the phase space filling, unlike the Hückel model, due to correlations its magni-

tude is not equal to the magnitude of the dipole µ1 but is somewhat smaller. s2

describes a similar process, where now the field is scattered off a term rotating

with twice the transition frequency of the 1Bu oscillator, instead of a transient

grating term like in s1, which basically has no rotation. In the absence of cor-

relation (the Hückel model) s2 was zero, here s2 is finite, but still very small,

only 0.6% of s1, and can therefore be neglected. V1 represents a many-particle

induced scattering potential, which formally appears like a local field correc-

tion [223–225]. Actually it includes all many-particle contributions involving

only the 1Bu oscillator. Neglecting the small s2 contribution, the equation
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is equivalent to a nonlinear wave-equation, which has been extensively used

for the description of nonlinear optical properties of inorganic semiconduc-

tors [223,224,226,233]. In this sense the nonlinear wave-equation appears as

a special case of the present oscillator equations, obtained when some terms

are neglected. This nonlinear wave equations can be derived by expanding

the semiconductor Bloch equation [237–239,38] in an excitonic basis, keeping

only the 1s exciton. In the language of the semiconductor Bloch equations the

nonlinear scattering potential includes energy and field renormalization terms,

which are induced by the many-particle Coulomb interaction [225,233].

The FWM signal for model IP is given by the solid lines in Fig. 11.8 ,

where both the amplitude of the FWM signal and its relative phase are plotted.

Compared to the Hückel model calculations, the amplitude changes its shape.

It is no longer a free-induction decay, but has a maximum at later times, which

are determined by the dephasing times. This is the same signature that has

been observed in time-resolved FWM experiments on inorganic semiconductor

nanostructures [226,227,240]. In semiconductors these signal shapes have been

interpreted by a nonlinear Ginzburg-Landau like wave equation for the 1s

exciton amplitude [223,224,226,233]. If we only consider the 1Bu oscillator

and further neglect the small s2 term, we obtain an identical wave equation

as a special case of the oscillator equations. Besides the phase-space filling

(s1) induced by the many particle Coulomb interaction it has an additional

nonlinearity (V1), which formally appears like a local field correction. This

nonlinear scattering potential describes scattering of the induced polarizations,

resulting in a FWM signal. According to analytical solutions of optical Bloch

equations including a local field, this contribution has a real positive prefactor

[223,233]. Since V1 itself is positive and since the many-particle induced FWM

signal is like in inorganic semiconductors larger than the phase-space filling,

the relative phase of the FWM signal, solid line in Fig. 11.8, is about 0, i.e.
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Figure 11.8: (a) Time-resolved amplitude and (b) phase of the FWM signal for
time-delay τ = 0fs for the PPP model: Solid line: model IP, dashed: model
IIP, dotted: model IIIP, and dashed-dotted: laser pulse envelope.

the induced polarization is in phase with the exciting pulse.

Fig. 11.5(b) shows the second-order density matrix in real space, repre-

senting a transient-grating (k2 − k1) formed by the 1Bu oscillator

ρ(−1|1)(t) = ei(ω1−ω2)t
1

2
([[ξ1, ρ̄], ξ−1] + [[ξ−1, ρ̄], ξ1])z

(−1|0)
−1 (t)z

(0|1)
1 (t) . (11.18)

Due to the symmetry of this expression, like in the Hückel model, the density

matrix ρij representing this term is zero if i + j is even (this is indicated by

the red squares). The odd index combinations show a profile similar to the
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Figure 11.9: Convergence of the X anharmonicities for the PPP model as
function of number of virtual Ag oscillator variables. Shown is the relative
percent difference of the quantity to its converged value.

1Bu oscillator shown in Fig. 11.2(f). Accordingly, like the 1Bu oscillator, also

the corresponding transient-grating is more localized in the PPP than in the

Hückel model.

In model IIP the off resonant transient grating contributions X1-X4 are

included. The convergence of these parameters with the number of oscillator

variables is shown in Fig. 11.9. The value forX1, which is a small contribution,

since it describes scattering of a linear term off two-fields, is to 2.7% accuracy

given by the coupling to the 3Ag oscillator. For X−1, we have to keep five

Ag oscillator variables to get 5% accuracy. X2, which acts as renormalizations

of s1 is to within 5% given by the coupling to the 3Ag oscillator alone. For

X3, which acts as renormalizations of s2 we have to keep contributions from

three Ag oscillators variables to get it to 3% accuracy. To get X4, the renor-

malization of the nonlinear scattering potential V1 also within 5%, we have to

keep 16 oscillators variables The expression for X4 it is entirely determined by

the Coulomb-interaction between different oscillators. Its slow convergence as
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function of the number of oscillators variables compared to the other quanti-

ties indicates, that the Coulomb-interaction couples the oscillators much less

selectively than the dipole coupling, which is present in the expressions for the

other terms.

The FWM signal for model IIP is given in Fig. 11.8 (dashed lines), where

the absolute value as well as the relative phase of the FWM signal are plotted.

The most notable changes between the signal involving only the 1Bu oscillator

and the present one are the decrease in amplitude and the change in phase.

These features can be simply explained by considering the values of V1 and

its renormalization X4. While V1 is positive +0.063eV , X4 is calculated to

be negative and larger in absolute value −0.082eV . Therefore the effective

nonlinear scattering potential V1 + X4 = −0.019eV is negative and about

a factor 3 smaller than V1. This reduces the amplitude of the interaction-

induced contribution to the signal and changes its phase, which in turn explains

the observed differences. This change of phase has strong influence on the

spectrally resolved FWM signal. While the Fourier transform (FT) of the

signal originating from the 1Bu oscillator is, like in inorganic semiconductors

[233,241], slightly asymmetric with respect to detuning with a tail towards

lower frequencies, the FT of the signal for model IIP, is asymmetric with tails

towards higher frequencies. These spectral features can also be nicely analyzed

using a Wigner spectrogram [242,243] as discussed in Ref. [221].

Fig. 11.5(c) shows the transient-grating (k2− k1) part of the second order

density matrix in real space. It is formed by the 1Bu oscillator and some Ag

oscillators and given by Eq. (11.17). The density matrix contains contributions

from the 1Bu and about eight Ag oscillators, which contribute most strongly to

X4. ρij is again zero if i+ j is even (this is indicated by the red squares). Due

to the contributing Ag oscillators, the resulting density matrix extends further

to the off-diagonal than the one originating from the 1Bu oscillator alone.
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Figure 11.10: Same as Fig. 11.9 but for the Y anharmonicities.

So far, our analysis demonstrated that the off-resonant terms involving

transient gratings contribute significantly. In addition to the previous terms

we include in model IIIP all renormalizations arising from terms representing

two-photon resonances Y1-Y4. Their convergence with the number of virtual

oscillators variables is shown in Fig. 11.10. The value for Y1 (which is a small

contribution, since it describes scattering of a linear term off two-fields) is to

0.7% given by the coupling to the 3Ag oscillator. The value for Y2 (Y3), which

act as renormalizations of s1 (s2) is to 0.1% (0.2%) given by the coupling to

the 3Ag oscillator. The reason that we essentially only need the 3Ag oscillator

to determine Y1-Y3 is that in addition to its strong dipole coupling to the 1Bu

oscillator, it is not too much off resonant compared to most other oscillators.

To get Y4, the renormalization of the nonlinear scattering potential V1 also

within 5%, we have to keep two oscillators the 3Ag and the 8Ag. As a two-

photon resonance we also keep the 5Ag explicitely. It is dipole and Coulomb

coupled to the 1Bu oscillator by µ12 and V12.

The FWM signal for model IIIP is given in Fig. 11.8 (dotted line). Com-
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pared to the model IIP, the amplitude increases again and the phase is close to

0. In order to explain these changes we have to consider two effects. First, like

before, the renormalization of V1. The effective nonlinear scattering potential

is now given by V1 + X4 + Y4 which is 0.016eV , a positive but quite small

value. Second, the increase in amplitude is caused by the contribution from

the two-photon resonance represented by V12, which describes the Coulomb

coupling between the 1Bu and the 5Ag oscillator.

This change of phase will again influence the spectrally resolved FWM

signal, which is now again be asymmetric with respect to the detuning with

tails towards negative detuning. This is the same signature which appears

when we keep only the 1Bu oscillator, and is also the typical signature in the

FT FWM signal of inorganic semiconductors [233,241].

Fig. 11.5(d) shows the two-photon resonance (2k2) part of the density ma-

trix in real space, which is formed by the 1Bu oscillator and some Ag oscillators,

and given by

ρ(0|2)(t) = e−2iω2t

(
1

2
([[ξ1, ρ̄], ξ1] + [[ξ1, ρ̄], ξ1])(z

(0|1)
1 (t))2 +

∑
β

ξβz
(0|2)
β (t)

)
.

(11.19)

The density matrix consists of small contribution from the 1Bu and about

mainly two Ag oscillators, namely 3Ag and 5Ag. Its shape is essentially a

superposition of the density matrices representing the 3Ag and the 5Ag oscil-

lators, shown in Fig. 11.2.

Having analyzed the different contributions to the nonlinear optical re-

sponse within the PPP model, we propose a simplified two-oscillator model

[221], which to a good accuracy reproduces the signal. Compared to the model

resulting from the elimination of off-resonant contributions, we further neglect

small contributions like X1, X−1 and Y1, and also s2 and its renormalization

X3, and Y3. We further neglect the anharmonic constants A1, A2, A3, B1, and
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B2 that appear in the definition of the polarization. So now the off-resonant os-

cillators only enter in renormalizations of s1 and V1. The equations considered

within this reduced model are [221]

i
∂

∂t
z1 = (Ω1 − ωL − i

1

T2
)z1 − µ1E

− Eµ12z2 − E(s1 + Y2 +X2)z1z−1

+ 2V12z2z−1 + (V1 + Y4 +X4)z−1z1z1 (11.20)

z−1 = z∗1

i
∂

∂t
z2 = (Ω2 − 2ωL − i

1

T ′
2

)z2 − Eµ12z1 + V12z1z1 (11.21)

The induced polarization is given by:

PS(t) = e−iωLt (µ1z1 + µ12z2z−1) . (11.22)

We compare the results obtained for this model (IVP) with results ob-

tained by a full calculation (VP), where we have kept all oscillators explicitely

(in practice these results were obtained by a real-space calculation), see Ap-

pendix 11.4. The good agreement between the two calculations shown in Fig.

11.11, confirms the validity of this simplified description. There are only slight

differences in the amplitude and the phase of the FWM signal mainly during

the initial excitation process.

Another important effect is the existence of strong FWM signals for neg-

ative delays, which may be induced by either two-photon Ag oscillator vari-

ables, or by many-body anharmonicities of the Bu oscillators. Our calculations

show that, as for positive delay, the many-body anharmonicities contribute

most strongly to the signal for negative delays. The time-integrated signals

in Fig. 11.12 decay for positive delays with T2/2, and for negative delays

with about T2/4 [223,224]. The very weak modulations, which can be seen

for negative delays, are due to quantum beats with a frequency determined

by 2Ω(1Bu)− Ω(5Ag). The results for the full model VP (solid line) and the

reduced model IVP (dashed line) are again in very good agreement.
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Figure 11.11: (a) Time-resolved amplitude and (b) phase of the FWM signal
for time-delay τ = 0fs for the PPP model. Solid line: model VP, dashed:
model IVP, and dashed-dotted: laser pulse envelope.

In summary, resonant two-pulse four-wave mixing experiments in conju-

gated polyenes have been modeled using the electronic-oscillator representa-

tion. We found that it is only required to consider two electronic oscillators

explicitely. The role of electronic correlations has been clarified by compar-

ing calculations done in the absence of electronic correlations (Hückel model)

and with strong electronic correlations (PPP model). While both models have

similar linear optical properties, i.e. a strong lowest transition at the same

spectral position, their nonlinear optical properties are very different. For
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Figure 11.12: Time-integrated FWM for the PPP model. Solid line: model
VP, dashed: model IVP.

the PPP model we predict signatures of electronic correlations, which should

be observable in ultrafast optical spectroscopy, in both the phase and the

amplitude of the signal. We expect analogous effects to be observable us-

ing frequency-domain resonant four-wave mixing techniques [244–247]. The

coupling coefficients leading to the nonlinear optical response as well as the

calculated signals have been compared to theoretical and experimental treat-

ments for inorganic semiconductors. The present approach provides a unified

theoretical analysis of resonant nonlinear experiments in organic and inorganic

materials.

11.3 Appendix A. Equations of motion for

two-pulse nonlinear optical response

In this Appendix, we show how the oscillator equations of motion can be

used to describe multiple-pulse optical experiments. We consider a two-pulse
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nonlinear optical experiment, where the exciting field is given by

E(t) = E1(t)(e
ik1·r−iω1t + e−ik1·r+iω1t) + E2(t)(e

ik2·r−iω2t + e−ik2·r+iω2t)

= E+
1 (t)e−iω1t + E−

1 (t)eiω1t + E+
2 (t)e−iω2t + E−

2 (t)eiω2t. (11.23)

E1,2(t) are the pulse envelopes. The term E+
i (E−

i ) refer to the components

of E with direction +ki (−ki). Such an exciting field will create excitations

associated with different directions eiK·r, K = nk1 + mk2, where n,m can

be any integers [225,248]. We label these different directional components by

(n|m), which refers to the excitation associated with the direction nk1 + mk2.

Inserting this decomposition into the equations of motion Eq. (11.4) and

transforming to the rotating frame, leads to

i
∂

∂t
z(n|m)

α = (Ωα − nω1 −mω2)z
(n|m)
α

− µα(δn=1δm=0E
+
1 + δn=−1δm=0E

−
1 + δn=0δm=1E

+
2 + δn=0δm=−1E

−
2 )

− E+
1

∑
β

µα,βz
(n−1|m)
β − E−

1

∑
β

µα,βz
(n+1|m)
β

− E+
2

∑
β

µα,βz
(n|m−1)
β − E−

2

∑
β

µα,βz
(n|m+1)
β

− E+
1

∑
n′m′βγ

µα,βγz
(n−n′−1|m−m′)
β z(n′|m′)

γ − E−
1

∑
n′m′βγ

µα,βγz
(n−n′+1|m−m′)
β z(n′|m′)

γ

− E+
2

∑
n′m′βγ

µα,βγz
(n−n′|m−m′−1)
β z(n′|m′)

γ − E−
2

∑
n′m′βγ

µα,βγz
(n−n′ |m−m′+1)
β z(n′|m′)

γ

+
∑

n′m′βγ

Vα,βγz
(n−n′|m−m′)
β z(n′|m′)

γ

+
∑

n′m′n′′m′′βγδ

Vα,βγδz
(n−n′−n′′|m−m′−m′′)
β z(n′|m′)

γ z
(n′′|m′′)
δ (11.24)

The polarization is given by:

P (n|m)(t) = ei(nk1+mk2)·r−i(nω1+mω2)t

×
(∑

β

µ̃βz
(n|m)
β +

∑
n′,m′,βγ

µ̃βγz
(n−n′|m−m′)
β z(n′|m′)

γ

)
, (11.25)

These equations can be used to describe two pulse experiments; the general-

ization to experiments with more than two exciting pulses is straightforward.



CHAPTER 11. FWM IN CONJUGATED POLYENES 200

In Eq. (11.24) we have only to solve explicitely for the complex amplitudes of

the oscillator variables associated with positive frequency (α > 0). The ampli-

tudes for the corresponding modes with negative frequencies are determined

by: z
(n|m)
−α = (z

(−n|−m)
α )∗, here −α refers to the adjoint mode of α. All oscillator

variables and amplitudes have to be included in the summations appearing in

right hand sides of Eqs. (11.24) and (11.25).

11.4 Appendix B. Iterative calculation of the

four-wave mixing signal

In the following we perform a detailed analysis of FWM in self-diffraction

geometry, where the third-order signal is monitored in the direction 2k2 − k1.

Only Bu oscillators can be excited in the linear response.

i
∂

∂t
z(1|0)

α = (Ωα − ω1)z
(1|0)
α − µαE

+
1

i
∂

∂t
z(−1|0)

α = (Ωα + ω1)z
(−1|0)
α − µαE

−
1

i
∂

∂t
z(0|1)

α = (Ωα − ω2)z
(0|1)
α − µαE

+
2

i
∂

∂t
z(0|−1)

α = (Ωα + ω2)z
(0|−1)
α − µαE

−
2

z
(1|0)
−α = (z(−1|0)

α )∗

z
(−1|0)
−α = (z(1|0)

α )∗

z
(0|1)
−α = (z(0|−1)

α )∗

z
(0|−1)
−α = (z(0|1)

α )∗ (11.26)

The second order response consists of different contributions. The particle-

particle part is given by T (ξ) and has not to be calculated separately, but is

completely determined by the linear response [56]. Additionally Ag oscillators

can be excited in second order, representing the particle-hole part of the re-

sponse. To calculate the FWM signal in the direction 2k2 − k1 in third order,
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we have to consider a transient-grating (k2 − k1; ω1 − ω2) and a two-photon

(2k2; −2ω2) response.

i
∂

∂t
z(−1|1)

α = (Ωα + ω1 − ω2)z
(−1|1)
α − E−

1

∑
β

µα,βz
(0|1)
β − E+

2

∑
β

µα,βz
(−1|0)
β

+
∑
βγ

(Vα,βγ + Vα,γβ)z
(−1|0)
β z(0|1)

γ

i
∂

∂t
z(1|−1)

α = (Ωα − ω1 + ω2)z
(1|−1)
α − E+

1

∑
β

µα,βz
(0|−1)
β − E−

2

∑
β

µα,βz
(1|0)
β

+
∑
βγ

(Vα,βγ + Vα,γβ)z
(1|0)
β z(0|−1)

γ

i
∂

∂t
z(0|2)

α = (Ωα − 2ω2)z
(0|2)
α − E+

2

∑
β

µα,βz
(0|1)
β

+
∑
βγ

Vα,βγz
(0|1)
β z(0|1)

γ

i
∂

∂t
z(0|−2)

α = (Ωα + 2ω2)z
(0|−2)
α − E−

2

∑
β

µα,βz
(0|−1)
β

+
∑
βγ

Vα,βγz
(0|−1)
β z(0|−1)

γ

z
(−1|1)
−α = (z(1|−1)

α )∗

z
(1|−1)
−α = (z(−1|1)

α )∗

z
(0|2)
−α = (z(0|−2)

α )∗

z
(0|−2)
−α = (z(0|2)

α )∗ (11.27)

In third order again only Bu oscillators can be excited:

i
∂

∂t
z(−1|2)

α = (Ωα + ω1 − 2ω2)z
(−1|2)
α − E−

1

∑
β

µα,βz
(0|2)
β − E+

2

∑
β

µα,βz
(−1|1)
β

− E−
1

∑
βγ

µα,βγz
(0|1)
β z(0|1)

γ − E+
2

∑
βγ

(µα,βγ + µα,γβ)z
(−1|0)
β z(0|1)

γ

+
∑
βγ

(Vα,βγ + Vα,γβ)z
(0|2)
β z(−1|0)

γ +
∑
βγ

(Vα,βγ + Vα,γβ)z
(−1|1)
β z(0|1)

γ

+
∑
βγδ

(Vα,βγδ + Vα,γβδ + Vα,γδβ)z(−1|0)
β z(0|1)

γ z(0|1)
δ

i
∂

∂t
z(1|−2)

α = (Ωα − ω1 + 2ω2)z
(1|−2)
α − E+

1

∑
β

µα,βz
(0|−2)
β − E−

2

∑
β

µα,βz
(1|−1)
β
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− E+
1

∑
βγ

µα,βγz
(0|−1)
β z(0|−1)

γ − E−
2

∑
βγ

(µα,βγ + µα,γβ)z
(1|0)
β z(0|−1)

γ

+
∑
βγ

(Vα,βγ + Vα,γβ)z
(0|−2)
β z(1|0)

γ +
∑
βγ

(Vα,βγ + Vα,γβ)z
(1|−1)
β z(0|−1)

γ

+
∑
βγδ

(Vα,βγδ + Vα,γβδ + Vα,γδβ)z
(1|0)
β z(0|−1)

γ z
(0|−1)
δ

z
(−1|2)
−α = (z(1|−2)

α )∗

z
(1|−2)
−α = (z(−1|2)

α )∗ (11.28)

The polarization in the 2k2 − k1 direction is finally given by:

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t

(∑
β

µ̃βz
(−1|2)
β

+
∑
βγ

(µ̃βγ + µ̃γβ)(z
(−1|0)
β z(0|2)

γ + z
(0|1)
β z(−1|1)

γ )

)
. (11.29)

Eqs. (11.28) and (11.29) include all resonant and nonresonant pathways that

can contribute to the two-pulse FWM experiment considered here.

11.5 Appendix C. Elimination of off-resonant

oscillators

Below we describe how the general equations of motion of Appendix 11.4 can

be reduced to include only the relevant oscillators, which are needed for the

description of resonant FWM. In our numerical calculations we have assumed

that the central frequency of both exciting pulses is in resonance with the tran-

sition to the 1Bu oscillator, i.e.: ωL = ω1 = ω2 = Ω(1Bu). The pulse envelopes

are assumed to be Gaussian, E(t) ∝ e−((t−t̂)/t̄)2 , with a width of t̄ = 20fs.

Since the spectral width of even these very short laser pulses (about 0.1eV )

is small compared to the frequency spacing between the dominant oscillators,

only a few oscillators will be excited resonantly. Our calculations show that the

first and third order response is to very good accuracy dominated by only the

1Bu oscillator. In second order there may be one Ag oscillator which appears
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as resonantly excited two-photon transition. We now develop equations which

only retain two primary oscillators, the 1Bu and one Ag oscillator explicitely.

The off-resonant contributions from all other Ag oscillators in second order, can

be eliminated from the equations of motion and will result in renormalization

of anharmonicities and scattering constants.

The elimination of the off-resonant oscillators goes as follows: In the equa-

tion of motion for the two-photon resonances z
(0|2)
α we assume that the am-

plitude adiabatically follows its inhomogenity on the right hand side of the

equation. So we can set ∂
∂t
z

(0|2)
α = 0 and then solve the equation, which gives:

z(0|2)
α =

1

Ωα − 2ωL

(E+
2 µα,1z

(0|1)
1 − Vα,11z

(0|1)
1 z

(0|1)
1 ) . (11.30)

The contributions of Ag oscillator variables associated with negative frequency

are given by:

z
(0|2)
−α =

1

Ωα + 2ωL

(E+
2 µα,−1z

(0|1)
1 − Vα,−1−1z

(0|1)
1 z

(0|1)
1 ) . (11.31)

Here the index 1 refers to the positive frequency oscillator variable of 1Bu

oscillator and −1 to its adjoint, i.e. the negative frequency variable.

The similar elimination can be done for the transient-grating like terms.

Here all oscillators can be assumed to be off resonant, since there is no particle-

hole oscillator with zero frequency.

z(−1|1)
α =

1

Ωα

(E−
1 µα,1z

(0|1)
1 + E+

2 µα,−1z
(−1|0)
−1 − (Vα,1−1 + Vα,−11)z

(−1|0)
−1 z

(0|1)
1 )(11.32)

and

z
(−1|1)
−α =

1

Ωα
(E−

1 µα,−1z
(0|1)
1 + E+

2 µα,1z
(−1|0)
−1 − (Vα,−11 + Vα,1−1)z

(−1|0)
−1 z

(0|1)
1 ).(11.33)

These expressions for the off-resonant second order quantities can be in-

serted into the equation for the third order amplitude, which leads to the

renormalization of some nonlinear coupling constants and a few additional

terms. After this elimination, keeping just two oscillators explicitely (1 refers
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to the 1Bu oscillator and 2 the Ag considered as a two-photon resonance), the

FWM signal is determined by the following set of equations. In first order:

i
∂

∂t
z

(1|0)
1 = (Ω1 − ωL)z

(1|0)
1 − µ1E

+
1

z
(−1|0)
−1 = (z

(1|0)
1 )∗

i
∂

∂t
z(0|1)
1 = (Ω1 − ωL)z(0|1)

1 − µ1E
+
2

z
(0|−1)
−1 = (z

(0|1)
1 )∗ (11.34)

In second order:

i
∂

∂t
z

(0|2)
2 = (Ω2 − 2ωL)z

(0|2)
2 − E+

2 µ12z
(0|1)
1 + V12z

(0|1)
1 z

(0|1)
1 . (11.35)

And in third order:

i
∂

∂t
z

(−1|2)
1 = (Ω1 − ωL)z

(−1|2)
1 − E−

1 E
+
2 (Y1 +X1)z

(0|1)
1 − (E+

2 )2(X−1)z
(−1|0)
−1

− E−
1 µ12z

(0|2)
2 − E−

1 (s2 + Y3 +X3)z
(0|1)
1 z

(0|1)
1 − E+

2 (s1 + Y2 +X2)z
(−1|0)
−1 z

(0|1)
1

+ 2V12z
(0|2)
2 z

(−1|0)
−1 + (V1 + Y4 +X4)z

(−1|0)
−1 z

(0|1)
1 z

(0|1)
1 (11.36)

The polarization in the direction is given by:

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t

(
µ1z

(−1|2)
1 +

∑
β

µ1βz
(−1|0)
−1 z

(0|2)
β

+
∑

β

µ−1βz
(0|1)
1 z

(−1|1)
β

)
. (11.37)

In these equations we have used some abbreviations:

µ1 = µ̃1

µ1n = µ1,n = µn,1 = (µ̃−1n + µ̃n−1)

s1 = (µ1,−11 + µ1,1−1)

s2 = µ1,11

V1 = (V1,11−1 + V1,1−11 + V1,−111)

V12 = V2,11 =
1

2
(V1,−12 + V1,2−1) . (11.38)



CHAPTER 11. FWM IN CONJUGATED POLYENES 205

The quantities Xi and Yi result from the elimination of the transient grating

and two-photon resonances, respectively. They are given by the following

summations over the Ag oscillator variables β:

X1 =
∑

β

µ1,βµβ,1 + µ1,−βµβ,−1

Ωβ

X−1 =
∑

β

µ1,βµβ,−1 + µ1,−βµβ,1

Ωβ

X2 =
∑

β

−1

Ωβ
(µ1,β(Vβ,−11 + Vβ,1−1) + µβ,−1(V1,β1 + V1,1β)

+ µ1,−β(Vβ,1−1 + Vβ,−11) + µβ,1(V1,−β1 + V1,1−β))

X3 =
∑

β

−1

Ωβ
(µβ,1(V1,β1 + V1,1β) + µβ,−1(V1,−β1 + V1,1−β))

X4 =
∑

β

−1

Ωβ
((Vβ,−11 + Vβ,1−1)(V1,β1 + V1,1β)

+ (Vβ,1−1 + Vβ,−11)(V1,−β1 + V1,1−β))

Y1 =
′∑
β

1

Ωβ − 2ωL
µ1,βµβ,1

+
∑

β

1

Ωβ + 2ωL
µ1,−βµβ,−1

Y2 =
′∑
β

−1

Ωβ − 2ωL
µβ,1(V1,β−1 + V1,−1β)

+
∑

β

−1

Ωβ + 2ωL
µβ,−1(V1,−β−1 + V1,−1−β)

Y3 =
′∑
β

−1

Ωβ − 2ωL
µ1,βVβ,11

+
∑

β

−1

Ωβ + 2ωL

µ1,−βVβ,−1−1

Y4 =
′∑
β

−1

Ωβ − 2ωL

(V1,β−1 + V1,−1β)Vβ,11

+
∑

β

−1

Ωβ + 2ωL
(V1,−β−1 + V1,−1−β)Vβ,−1−1 . (11.39)

The primes over the sum symbols for Yi indicate, that the summations exclude
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the positive frequency variable of the one Ag oscillator, which is explicitely

considered as a two-photon resonance. In Section 11.2 we show, that to a very

good accuracy the approximate equations derived in this Appendix reproduce

the full results calculated using Eqs. (11.26-11.29).

Inserting the expressions for the amplitudes of the virtual oscillators Eqs.

(11.30)-(11.33) into Eq. (11.38) allows to perform the summations over β and

simplifies the expression for the polarization. Like in the equations of motion

this procedure results in some new anharmonic couplings.

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t[µ1z
(−1|2)
1

+ µ12z
(−1|0)
−1 z

(0|2)
2 + (A1 +B1)z

(−1|0)
−1 (z

(0|1)
1 )2

+ (A2 +B2)E
+
2 z

(−1|0)
−1 z

(0|1)
1 + A3E

−
1 (z

(0|1)
1 )2] . (11.40)

Here A1, A2, and A3 are obtained via elimination of the transient-grating terms

involving virtual oscillators, and B1, as well as B2 from the corresponding two-

photon terms.
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Conclusions

A theoretical approach for calculating electronic structure of organic molecules

has been developed. The method is based on the collective electronic oscil-

lators (CEO) which represent the dynamics of the optically-driven reduced

single-electron density matrix and relate the electronic properties of molecules

directly to the motions of electron-hole pairs in real space.

The iterative DSMA procedure has been applied for computing efficiently

the electronic oscillators dominating optical response. The computational time

(and memory) requirements of this algorithm scale very favorably with system

size: ∼ N3 (and N2). A Fortran 77 code was developed which implements the

DSMA to calculate molecular electronic spectra. It interfaces with standard

quantum chemistry programs and employs the ZINDO package to generate

the INDO/S hamiltonian using ab-initio optimized molecular geometry, ex-

perimental X-ray diffraction, or NMR data. This code makes it possible to

compute optical spectra of very large molecules with hundreds of heavy atoms

with minimal computational effort. A simple single-oscillator approximation

for the off-resonant optical polarizabilities of polyene chains, which reproduce

their magnitude and scaling with molecular size and allows a quick prediction

of trends, was derived. The CEO was further extended for calculating relevant

properties of excited electronic states.

207
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To analyze the calculated spectra, a real-space representation of computed

electronic oscillators has been developed. By displaying the electronic mode

matrices using two-dimensional plots, a direct connection is established be-

tween the optical response and motions of charges in the molecule upon op-

tical excitation. The CEO was applied to the wide variety of conjugated and

aggregated organic molecules. The results pinpoint the origin of optical re-

sponse in these molecules, predict the trends, and may be useful in the design

of the new optical materials. Semiconductor, metallic and molecular materials

are treated by physicists and chemists using completely different approaches.

Application the CEO to systems of various sizes, ranging from small molecules

and nanostructures all the way to the bulk, cuts across these disciplines, and

should allow a unified treatment of these various materials.
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E. Göbel, Phys. Rev. Lett. 70, 3820 (1993).

[216] U. Lemmer, R. F. Mahrt, Y. Wada, A. Greiner, H. Bässler, and E. Göbel,
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