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The response of the density matrix to an external field is calculated in the adiabatic time-dependent
density functional (TDDFT) theory by mapping the equation of motion for the driven
single-electron density matrix into the dynamics of coupled harmonic oscillators. The resulting
nonlinear response functions and the closed expressions for nonlinear frequency-dependent
polarizabilities are derived. These expressions include transition densities and frequencies
calculated in the linear response TDDFT, and higher order functional derivatives of the
exchange-correlation functional. Limitations of the applicability of the traditional sum over states
approach for computing the nonlinear response to the TDDFT are discuss280®American
Institute of Physics.[DOI: 10.1063/1.1614240

I. INTRODUCTION (INDO/S) model, fitted to reproduce UV-visible absorption

spectra at the CI Singlé€IS) level (i.e., accounting only for

Quantum-chemical calculations of nonlinear optical re-_: . ) 10212 :
. . : §|ngle-partlcle electronic correlation® 12 This technique
sponse of molecular systems require extensive numerical ef- ) I .
usually calculates excited states contributing to the linear

fort. The complete information on the optical response of a = . . L
P b P ptical response fairly accuratéfy** However, the situation

guantum multielectron system is contained in its set of° . . ; .
s very different for the electronic states, which contribute to

many-electron eigenstates. Since the number of states irn: i A eulati ¢ h
creases exponentially with the number of electrons in thdn€ non In€ar responses. ccurate-ca culation of suc stgtes
require accounting for higher order electronic

finite basis set, exact calculations become impractical evelf'?Y €aulf€ . _ . ,
for fairy small molecules with a few atoms. An approxima- correlations™** (a typical example ig\, states is the conju-
tion at some level of many-body perturbation theorygated po7l3imers w_hlch _have S|gn|_f|cant double_excnanon
[Mgller—Plesse{MP) techniqué and configuration interac- charz_acte]r' 9. Semiempirical techniques accounting solely
tion (Cl) are frequently used to compute the ground andor single-particle electronic correlations result in a signifi-
excited states, respectively’ cant blue-shift of transition frequencies compared to the ex-
Off-resonant nonlinear response can then be calculateeriment. Methods including higher-order correlatipsgch
by a pertubative treatment of the ground state in the presené@s MmultireferencéMR) Cl] are computationally expensive
of a static electric field. In such coupled perturi@P) ap- and result in the overcorrelated ground-state
proaches the off-resonant polarizabilities are obtained byvavefunction:>*°In addition, size consistency is not guar-
evaluating derivatives of the ground-state energy with reanteed and special care needs to be taken when choosing the
spect to an external fiefti7 On the other hand, resonant right configurations®-2!
optical responses imply a significant involvement of the spe- ~ Even though the many-electron wavefunctions contain a
cific excited electronic states. Time-dependent perturbatiogomplete information about quantum system, most of it is
theory, which relates optical response to the properties of thearely used in the calculation of common observalfiesh
excited states, is then typically used to evaluate nonlineads energies, dipole moments, spectra,) etehich only de-
frequency-dependent responses. For example, the sum ovyegnd on the expectation values of one- and two-electron
states(SOS method based on the expansion of the Starkquantities?® A reduced description, which only keeps a small
energy of the molecule in powers of the electric field, in-amount of the relevant information, is possible and could be
volves the calculations of both the ground and excited statelsuilt on the single-electron density matrix in the time-
wavefunctions and the transition dipole moments betweedependent methods based the time-dependent variational
them®® The CI/SOS calculations are computationally principle (TDVP).23~2” An example of such approach is the
expensive:’ Therefore, this approach is usually based ontime-dependent Hartree—Fo€KDHF) theory, where the ex-
simplified semiempirical model Hamiltonians such as the inited state wavefunctions are never calcul&f&d However,
termediate neglect of differential overlap/spectroscopythe set of transition densities computed in the TDHF is suf-
ficient for calculating all linear and nonlinear optical
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(TDDFT)*3-*%in the Kohn—ShamK$S) form®3’is a rela- which can be derived assuming the existence of a potential
tively new and increasingly popular approach for computingw™(r,t) for a system of non-interacting electrons, whose
molecular excited staté&=*2 This method may be formu- singe-particle orbitalg/,(r,t) produce the same charge den-
lated as a response of the single-electron density matrix ity n(r,t)=p(r,r,t) as for the interacting particle
the noninteracting time-dependent KS system to an externalystenr>>4and

field. This leads to the equations similar to that in the TDHF
technique and can be interpreted as the dynamics of a single
Slater determinant driven by an external figld>**How-

ever, compared to the TDHF, the TDDFT is not an approxi-, ) _ ) o
mation to the many-electron wave function. Rather, the leve!S the single electron density matrix, which is not necessary
of an approximation is limited by our knowledge of the den-h& same as one-particle density matrix of trl?f interacting
sity functional and, in principle, an exact solution for excited SYStem: andN being the number of electrons.”(r,t) is
states of many-electron system is possible within the nonadVen by

diabatic TDDFT approacff*>“®It is instructive to empha- e ) =P(r 1) + o), +oo(r ) +0X(r ), (2.3)

size that although both TDDFT and TDHF approaches use a

time-dependent many-body wave function in a form of awhere®(r,t) is an external perturbatiofe.g., applied elec-
single Slater determinant the meaning of this many-bodyiric field) turned on adiabatically, and™{r) is an external
wave function is very different in these two approachespotential typically mediated by the interactions of electrons
While in TDHF the single Slater determinant constitutes arWith nuclei

approximation to the wave functions of a driven syst@iy 7

namical variational approaghin the TDDFT it is rather an v => — (2.9
auxiliary object that represents a system of fictitious KS non- [Re—r]

?nteracting particles that are, however, capgble of reprqducza and R, being the charge and the coordinate ath

ing the exact values of the electron density of the d”Ve”nucIeus, respectively.®(r,t) represents a Coulomb interac-

system at all times. _ tion between electrons
The linear response TDDFT is well developed and ma-

tured technique which currently became a method of choice
for computing excited states in extended
molecules’®>394247-5¢yen though an application of the TD- _ _ o
DFT for calculating nonlinear responses is a subject of gredtnally the exchange-correlation potential(r.t) is given
interest(e.g., the extensions to the second-order propertiegy a functional derivative of the exchange-correlation action
have been explored in several stuffé&%), a systematic A as

N
p<r,r',t>=§ Y1 OYE (T ) (2.2

. B nr',t
v(r,t)= mdr. (2.5

study of the nonlinear responses in the TDDFT method is yet SAN]
to be done. v¥(r,t)= . (2.6
. . . . on(r,t)
In this article we study the nonlinear optical responses
up to the third order in the driving field in the adiabatic We will limit our discussion to the adiabatic

TDDFT approach. Sections Il and Il introduce the densityapproximation®=3>4348where the retardation effects in the
matrix formulation of the TDDFT. In Sec. IV equation of exchange-correlation potential are neglected and the func-
motion for the single electron density matrix is mapped intotional A of n(r,t) over both space and time is approxi-
the dynamics of a system of weakly anharmonic oscillatorsmated byE*® (the exchange-correlation functional of the
This establishes the same mathematical formulation of théme-independent Kohn—Sham thepwyhich is a functional
adiabatic TDDFT and the TDHF methods in any order ofof n, of space with fixed:

optical response and allows to derive compact expressions XC

for frequency dependent polarizabilities. In Sec. V we ana- VX ) ~ oE [nt]_ 2.7

lyze the nonlinear response in the TDDFT using an effective ' ony(r,t)

q“a”t“‘.“ mulilevel system_ and_show why the sta_ndard S.O§he nonadiabatic extensions of the TDDFT have been exten-
expansion cannot be applied directly for calculating nonlm—sively discussed in the literatuf&26:46.55

ear optical poIar|;ab|I|t|es n the adiabatic TDDFT and The stationary point is defined by a solution of the static
TDHF methods. Finally, we discuss the trends that emerge o Sham equatiorsP(r,t) = 0]

and summarize our results in Sec. VI.
[— %V2+U6X§(r)+vd[m(r)+ch[m(f)]¢p(f):8p§0p(r),

(2.9
II. DENSITY MATRIX FORMULATION ) )
OF ADIABATIC TDDFT EQUATIONS wheree, and ¢,(r) denote energies and wave functions of
occupied single particle statésolecular orbitals, MOs re-

We start with the time-dependent Kohn—ShaiS)  spectively, andn_(r)=ﬁ(r,r)=2g|<pp(r)|2 is the ground-
equation state charge density. The respective energy of the electronic
system at stationary point is then given by a functional

1
ot —5 VoY E[n]=T[n]+E®{n]+E°[n]+E*n], 2.9

Pp(r,1), (2.1
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where the terms in the rhs of the equation correspond to the

kinetic, external potential, Coulomb, and exchange- Vij«(pP)= 2 ((ijolkla")pyior

correlation  energies,  respectively, —andE,=E[n] Kl

=min,_\E[n] is @ minimum of the functionak[n] in the —Cy(ikaljl o) prisOrer)- (2.149

spaceN of single Slater determinanfdefined up to a phage ) _ _

known as the Grassman manifdidi=G(N;K;C), K being Here (jolklo’) are two-e_lectron_ integrals repre_sentmg

the basis set size and N is the number of electrons. This cafi€ctron—electron Coulomb interactions corresponding to the

be represented as the space of Hermitlaw K single- v® kernel. For practical purposes, m_odern computational_

electron density matrices witp?=p andrank(p)=N.% software codes use the same AO basis sets and the matrix
Subsequently, the TDDFT can be formulated as classicdt'éments for the single-electron integralg {) and the two-

dynamics in the phase spallewith equations of motion for electrons integralsi{o|klo') are usually the same in both
density matrix p?®4344 satisfying the Hamilton—Liouville ab initio and DFT computations. The hybrid mixing param-

form and equivalent to Eq2.1): eterc, accounts for the amount of Hartree—Fock exchange in
F(p). Introduced by Becke in 19985 this parameter al-
_dp lows to interpolate between pure DFg,&0) and Hartree—
4 = tHT.eh (210 Fock (¢,=1 andE,=0) theories.
_ o Finally, v{j,(p) is a matrix element corresponding to the
where  the  classical ~ Hamiltonian Hy=E[n]  exchange-correlation*]n] kernel which could be a compli-
+ [drP(r,t)n(r,t), n(r,t)=p(r,r,t) andp=p+ dp(t). cated function with unknown exact form. We will use a Tay-

Equation (2.10 can be conveniently represented andjor expansion ob*(p) given by
solved in the matrix form by introducing the atomic basis set
of single-particle spin orbitaléAOs) x;,(r) and expan(iiir;g v p)=vO+v®(5p)+0v@(6p,8p)
MOs as a linear combination of AO&CAO method:*~ 3
¢po(r) =ZiCipexis(r) where indexo refers to the spin +0(3p,5p, 5p) (219
space andC is a matrix of the expansion coefficients. For which is sufficient for computing the nonlinear optical re-
clarity, we will assume the AO basis functions are orthonor-sponse to the third order in the driving field. Here
mal [feri*U(r)Xj(,/(r)z5”-5(,(,,)] and linearly indepen-

dent. Otherwise, f le, the wdin’s transf ti
en erwise orlexamp e. e Wdin’s transformation 05113(5/3):2 T S (2.16
may be used ¥=S" 2y, S being the overlap matrjxfor klo’

basis set orthogonalizatién.Modern quantum chemical

codes handle efficiently nonorthogonality and linear depen- (2) 50.80) = i - S S
dency of atomic basis functiori&-%® vija(0p.0p) = 3 2 Gijoido’ e 3Pkio? P

klo’ ,mno”
Equation(2.10 in the matrix form can be written as (2.1

~dép 3) 1
gt ~LF(p).p]+[P(1),p]. 21D offd(p.dpdp)=57 2 ket mnerpeen
* kle',mno”, pgo”

Here all quantities ar& X K matrices K being the basis set X 8pie OPmno OPpgor - (2.18
size, and the square brackets denote a commutator of two - ©)
operators. Equatiof2.1)) is identical to the time-dependent [N Egs. (2.19-(2.18 quantities vij,, fijouio
Hartree—Fock TDHF) equation of motiot**° We will de-  Jijokio’,mno” s @Nd Nijy kig’ mnorpgor are the matrix ele-
fine all variables in Eq(2.11) in a generic way to treat si- Mments of kernels corresponding to the functional derivatives
multaneously pure TDDFT and TDHF, and mixed ap-

XC
proaches that use hybrid functionals. vO(r)= OB 7 (2.19
P(t) is an external perturbation operator which in the oNny(r)
case of the driving electric field is given by SEXC
foor(r )=, (2.20
7 ong(r)én,.(r’
Pio(0)=—E0)- o=~ 3 €90, (212 A0 oN (1)
S=X,Y,Z 53Exc
where£ (1) is an external field along-direction anduff), Yoo on(1,1,1") = A1) O (1) SN (1) (2.29
is a respective dipole matrix calculated in the AO basis set as
w = [dr i (01 x,(r). Neergrom(F, 17,17
F(p) is a Fock operator given by SR
Fijo(p)=tijo+ Vij(p) +vii(p), (213 TSN, (1) on,.(r')on,(r"yon (1)’ (222

wheret;;,, are one-electron integrals accounting for the ki-calculated, for example, as

netic energy and nuclear attraction of an electron correspond-

ing to —3V?2 and v®™ kernels, respectively, and(p) is a ¢ — | ardr's ND D ,
Coulomb-exchange operator ijoklo’ ™ rdr'f oo (11") Dijo (1) Diagr ('),
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number of electrons These subspaces are clearly decom-

gijo,klo’,mna”:j drdr’drgggr gn(r,r',r") posed only in the MO representation. Equatig8<) and
(3.3) provide a convenient way of separating interband and

X Dij (1) Dyigr (1) Do (1) (2.23  intraband subspaces in an arbitragyg., AO orthonormal

with D;;,,(r) denoting the derivatives of the electron density basis set.

with respect to the matrix elements of the KS density matrix ~ USing expressiong3.1), (2.25, and(2.27), the TDDFT
equation of motior(2.11) after projecting onto the interband

N, (r) subspace using E¢3.3), can be written as
D“O’ r)y= =% r o r s 22 p g -
ij (r) 5pij(r Xiol )XJ (r) (2.24 o
wherey;, are orthonormal single-particle spin orbitéésg., I ~LE=R(&)p-n=EM)-[mp], (3.9
AOs or MOs3. Using expression$2.15—(2.18, the Fock . . S _
operatorfEq. (2.13] can be represented as wherelL is a linear operator in Liouville spadee., superop-

o @ @ eratop given by
F(p)=t+V(p)+v'“(p,dp)+v')(p,dp,p), -

(2.29 LE=[F(p),E1+[V(£),p]. (3.9
where ht‘:t_{_v(o) is an effective one-electron Operator’ Note that, Compal’ed to TDHF, the TDDFT Liouville OperatOI’
V(p)=V(p)+vD(5p) term is linear inp, andv @ andv® involves the functional derivativé;; v, ~(Eq. (2.20) of
terms are quadratic and cubic &, respectively. From Eq. €xchange-correlation functional included\f§¢). Finally

(2.25 immediately follows that R(£)= —S(t)~[ﬂ,§+T(§)]+[V(§),§+T(§)]

F(p)=1+V(p). 2.2 ~ _ _
o o o o of £40 11 round \ t;) T, 7+ 1+ [vD(E,£), 5+ €]
e stationary solution o . ground statgis
given by +2[v2(T(£),8),p]+ [0 (& EHP] (36
[F(p),p]=0, (2.27 is the nonlinear part of the TDDFT equation of motiap to

the third order in the driven fieJd projected onto the
particle—hole subspace with E@.3), which contains higher
functional derivativesd;; » k10" mno s @A Nij o kior mno” pao”
[Egs.(2.21), and(2.22]. The operatord/, F(p), v(?, and
v were defined by Eqg2.25), (2.26), (2.17), and(2.18),
Eg= ITr((T+F(p)p), (2.28  respectively. The equations of motion f6{Eq. (3.4)] have
fewer variables than those fa% [Eq. (2.11)] but contain
additional nonlinearities. Howevek is the set of truly
independent variables which are required to uniquely
ll. PROPERTIES AND ALGEBRA representsp.?®

OF TDDFT EQUATIONS We start with the analysis of the solution of the linear-
ized TDDFT equatior(3.4) with R=0, which defines linear
response of the electronic system to the driving field. Since
Eq. (3.4 is formally identical to the TDHF equation of mo-
tion, it has the same properties which were analyzed in de-
Sp(t)=&(1)+T(&(L)), (3.1) tails (e.g., in Ref. 14 Here we briefly overview the essen-

. , tials. Equation(3.4) can be solved by diagonalizing the
where ¢ represents the particle—holenterband and T(¢) LiouviII(;q operagorligzﬂg. Since onlyypartfocjzle—holegand

represents the particle—particle and the hole—fioteaband hole—particle components gfare computed, this is an ei-
parts. Since the many-electron wave function is representeao P P b '

by a single Slater determinant, the total density magtiiK) ges;a(lie_pl)\lr;) bl\mcﬁf i?]'r?ﬁgs,'\;’gwiz;'\sﬂ ’ng TeN?ceczemgtion
must be a projector at all times satisfyipd=p. This idem- ’ P

; 29
potent property allows us to express intraband componentns1 ay be recast in the forff

Being equivalent to Eq(2.11), Eq. (2.27) is nonlinear and
may be readily solved iteratively using the self-consisten
field (SCP proceduré The ground-state energy can be cal-
culated as

where trace includes both spatial and spin variables.

The elements of the driven density matéy(t) in Eq.
(2.11) are not independent variables. Followifi§®*®we de-
composedp(t) into two components

T(t) through interband parg(t) using power series as A B \[X X
shown in Appendix A B —A Y}:Q[Y . 3.7
- 2 44 6
T()=(1=2p)(£7+ £+ 28+-). (32 This is known as the RPA eigenvalue equafidrf’wherex

In addition the idempotent property pipermits us to project andY are, respectively, the particle—hole and hole—particle
any single-electron matriy into the interband §—h) sub-  components of the eigenvectér=[%] in the MO represen-
space in an arbitrary orthonormal basis'$&t2® tation. In Eq.(3.7) the matrixA is Hermitian and identical to
the configuration interaction singlé&1S) matrix. Neglecting

7p-n=[L7.p1.p]. 33 B results in the diagonalization & operator and is known
Formally, interband and intraband subspaceXofK den- as Tamm-Dancoff approximatiofTDA).>2®288The matrix
sity matrices have B(K—N) and N2+ (K—N)? dimen- elements ofA and B could be immediately obtained from
sions, respectivelyK being the basis set size and N is the Eq. (3.5 written in the canonical MO basis $&8°4®
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Aiac.ibo’ = (a5 &ig) 8ij Sapdee + (iac| jba) (EED=Tr(pl£L.E5) =(ELlER) =Tr(pl £4.£5)) =0.
+ fiao,jbo" —Cx(ab0'|ij U) 500’ ’ (38) . . . i (318)
Transition densitie$é,} provide a complete basis set in the
Biao,jbor = (iac|jbo’) + iz, jnor —Cx(jaolibo) 8,1, interband space.

3.9 A scalar producfEg. (3.13] also suggests a variational
where indicesi,j (a’b) run over the OccupiedvirtuaD prinCiple formulated by Thouless back in 1961, that y|e|ds
space. the lowest positive eigenvalue of E@.10"3

From Eqgs(3.5) and(3.7) follows that the eigenmodes, A B \[x
and eigenfrequencieQ, of L come in conjugated pairs: [X,Y]( _B —A)[Y}
Le, =06, LE=—0.&0 v=1,.M. (3.10 Qmin=minx v} 0=V (3.19

Each vector¢, with frequency(}, has a counterpaf_,  The minimum always exists, since the HF stability condition
=&] with frequencyQ_,=—0Q,. Q, represents vertical Eq. (2.27) keeps the numerator positive. The denominator
transition energy from the ground std@) to the excited can be arbitrarily small, and therefore, the expression has no
state|v). In molecules with unstable ground stag&addle  maximum.
point), eigenvalues), may be complex which correspondto  The product of Eq(3.5) can be calculated directly with-
singlet or triplet instabilitie§>°°~"*¢, is the correspondent oyt constructing and storing the full matiixin the computer
transition density matrix, which represent the changes in thenemory. In addition, the existence of a scalar product Eq.
ground-state density matrix upon the electronic excitation(3.13 and a variational principle Eq3.19 make possible
and may be represented‘as development of fast Krylov space meth6t& forég%lgtion
o o of the RPA eigenproblem, such as modified LancZoSand
(&) =(glejcil»), (3.13 Davidson algorithm&%67:798%he IDSMA proceduré? etc.,
where|g) (|v)) is the ground(excited state many-electron which show a formal scaling-K? in time and ~K? in
wave function ancbjT(cj) are creationannihilation opera- memory of computational effort with system size. These al-
tors of an electron at thgth one-particle orbital satisfying gorithms became standard in computational chemistry
the Fermi anticommutation relationships codes®*®allowing efficient calculations of the excited states
+ . to . with effort comparable to the ground-state calculations.
[ejeile=dij:  [ejeils=lcicils =0, (312 Finally, we formulate several useful identities which
Sincel is real, the transition densities can be taken to be redhold for any interband matricesand ¢ and directly follow
as well. from Egs.(Al), (3.2, and(3.13:
This block-diagonal structure of operatbr[Eq. (3.7)]

(known as the symplectic structdreallow to introduce the ¢=pétép, (320
following scalar product of any two interband matriceand p&2=¢Ep, (3.21
.14,25,59,72
(lm=TeE D @1y L opmUTEE (3.22
=Tr 7], .

SRR E1-2p)6=—(1-2p)&, (3.23
vihieh obeys 3[[&.p).€]1=(1-2p)é&? (3.29
(Elm)=(n'le* =~ (8. (3.14 e e '

[[&p],{]=(1=2p)(E{+L8). (3.29

Here and below we use the angular brackets to denote this

scalar product. Equationi3.13 can further be expressed The effective linear Coulomb-exchange operaibis Her-

through the particle—holeX) and hole—particleY) compo-  mitian and, therefore, obeys

nents of the interband density matrix in MO representation ~ ~

4.4:35.39 (EIV(0))=(V(8)]0), (3.26
_ _ where the round brackets denote the stand&termitian

(€lm)=(Xe X = (Ye. Y, (.19 scalar product of two vectors.
where§=[§§], n=[§z], and the round brackets denote stan-

dard (Hermitian scalar product of two vectors. We also note
that the commutator gb with an arbitrary interband matrix v NONLINEAR RESPONSE OF A COUPLED SYSTEM

¢=[%] corresponds to the transformatipfi] —[*]. OF ELECTRONIC OSCILLATORS
The Liouville operatol. defined by Eq(3.5) is Hermit-
ian with respect to this scalar prodtft® Equation(3.4) can be envisioned as an equation of mo-
tion for coupled harmonic oscillators. In particular, the
(Lélm)=(&lLn), (310 TDHF approximation is usually considered as a classical
and the eigenvectors obey the following normalization condimit of the original many-electron system. Each oscillator
ditions: is described by two conjugated modés and £.. We
defing*®82 ¢ =¢! and Q_,=—-Q,, so that equation
(£alg)=Tr(pl£],£5))= Sap, @17  Lo,=09,£, would hold for a=—M,...M, M=Nx(K
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—N). To transform Eq(3.4) into the oscillator variables we perm
will further introduce complex oscillator amplitudeg as Mop= E Tr(p(1—=2p)€.ép), (4.9
af
perm
ED=2 £2,(1) a=—M,...M. (4. o= 3 2 THEnbh) (4.10
aBy
Inserting expansioii4.l) into Eq. (3.4 and using Eq(3.2) 1 perm
we obtain the following equations for the complex ampli- v = = 1r((1-2p)¢,£,V(£.))
tudes, when retained terms that contribute to the third-order w2 aBy PISasp¥isy
optical responsé&?8! L verm
o2 TrEw@(gp.6,)), (4.1
. aza apy
|5t = QaZa= €O o= EO- 24 poupZy L pem
Vapro=13 2, TH((1 =20 £a£pV((1 = 20)£469)
aBy
_g(t)'BE ”*01:/372[3274_; V*avﬁ)'ZBZV perm
Y Y

1 ~
12,2, Tty V(ES)

+ V_ 732,75,
/;5 a,Bys-BEyes perm

+ 15 2 Tr(1=2p) &k DA, £5)
a=1,...M, B,y,6=—M,... M. 4.2 afys

perm

1
12 2, T - 20) g6, £9)

The amplitudes for the adjoint variables are simply the com-
plex conjugates. Equatia@.2) is the same for both TDDFT
and TDHF, and all information about the underlying density

. . . . . . e perm
functional (or Hamiltonian is hidden in the excitation ener- 1 ®)
gies ), and the anharmonicitiep,, Mg, Mgy, Vapy +2_4a%;5 Tr(&av™(ép.85.85)), 4.12

andV ,g,s5, which describe coupling among the electronic

oscillators mediated by Coulomb-exchange-correlation
and dipoleu interactions. These quantities are given by

where all tensors have been symmetrized with respect to all
permutations of their indices.

The response of this effective oscillator system is
equivalent to the response of the original electronic system

mo=Tr([p, &1l pp]), (4.3 within the underlying TDDFT(or TDHF) approximation. In
particular, the time-dependent polarization which determines
Bap=Tr([ P . E5D), (4.4) all optical properties is given by
P(t)=Tr(udp(t)). (4.13
Mo, =Tr([p &3 [[€5.91.€,]), (4.9  Using Egs(4.1) and(3.2) and retaining terms that contribute

to the third-order optical response, the optical polarization in
terms of the oscillator amplitudes can be represent&tfhs

Vagy=Tr([p,£([V(&p), &1+ [V(3[[é5.01,€,D),p]

1
+[v@(&5,£,),p1)), (4.6 P(t) =2 Mﬁzﬁ+§2 MpyZply, By=—M,...M.
B B
B 1 ’ (4.14
Vapys=Tr([p.E(IV(z[€p.p].€,]). €5 Linear and nonlinear optical responses are defined in the Ap-

1 (2) pendix B and may be calculated by expandift) in powers
TIV(E), 2l1€p P & TIVIER €. 6D (e external field(t) to solve Eq.(4.2) as

+[U(2)(([[§Bvﬂ g}/])vé&)!ﬂ Z(t)=Z(l)(t)+2(2)(t)+z(3)(t)+'" . (415)

+[u(3)(§ﬁ,§y,§5),ﬂ)), 4.7 The expressions for the polarizabilities have been de-
rived in Ref. 14. Here we give the results and outline deri-
vations in Appendices C—E. Frequency dependent first
a(w), secondB(wq,w,), and thirdy(w,,w,,w3) order op-
tical polarizabilities are given by

HereV, v®, andv® are given by Eqs(2.25), (2.17, and
(2.18), respectively. Note that tensops,, M.z, M.z, are
vectors with the spatiat, y, andz componentge.g., i, is

the transition dipole from the ground state to #aesxcited Sa,u(,i)a,ufj)
statg. Using identities(3.21)—(3.26 these expressions can aii(w):a:_%’_”M Q-
be written in a compact form o
> 20,10, il
Ma=Tr(ué,), (4.8 O Y Qi—wz ' (4.19
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1o w0 u¥s,s,

BW“”“ﬁ:_Eiuu —02) (0= 01)(Q,— ) 2aﬁuu—woum )
+£ (l) M /.L(k)S Sﬁ E (J) /.L ,LL(k)S Sﬁ @17
28 (Qa 1~ 0)(Qp—wy) 2753 (Qa 1~ 02)(Qg—wy)’ '
perm
Nopwp,03)= 77 2 (Y4504 VD), (4.18
w1Ww3
where
K [
M-S 10 Yt u1,5,868, 419
NI (D= w1~ 0y 03) (D= 0y~ 03) (2, wg) '
' IR
NN — Vol 1,1 58,865,Ss 20
ks (Qa_wl_wZ_wS)(QB_wZ_wS)(Qy_ 02)(Qs—w3)’ '
( ) (i) "
NN Yapyia pu f“ yOaSpSy 4.21)
K (Q— 01— 03— 03) (D~ wy— 003)(Q —w3)’
_ (k) ()
’}/(||Y|)_ z 2V_ aByM— b2 SM @ ,LL ILL 63 S,BS S§ , (422)
T e (L= 01— 03— 03) (D= 01)(Q )~ 0~ 03) (5~ w3)
M, M 0]
’y(\Ql_ 2 2V—aﬁ'yv—'y§7]lu“a M= M ILL S SBS Sé‘s , (423
N aBydn (Qa_wl_wz_ws)(ﬂﬁ wl)(Q ws)(Qa (1)2)(9,7_(03)
(i) (l) (|)
Y= — V- ppaite S5 (4.24
By (L= 01— wy— w3)(‘Qﬁ wl)(Qy_wZ)(Qé w3)
@ & G ,,0
NUDESS Haph= gyl al =, SaSESy 4.25
1kl apy (Qo— wl)(QB Wy~ w3)( _ws)’
—,LL(I)V ,LL(]) ulk :Uv(l) S.SsS,S
Vi 3 apY —BysH=a 8OyO8 4.26

Tk e (= 01) (= 03— 03)(Q,— 0) (A5~ w3)

Here indices=i,j,k,| label the spatial directions(y, and
z), indicesv=a,,y,8,7= —M,...,M run over the excited
states, and}, is positive (negative for all v>0 (v<0)
according to the conventiod _,=—-Q,, S,=sign(«), and
the other variables are given by E@4.8)—(4.12. Note, that
in Eq. (4.17) the permutations ove®; and w, are written
explicitly.

Using Egs. (4.16—(4.18 for computing frequency-
dependent polarizabilities in the adiabatic TDDFT formalism
involves several steps:

(1) Solve the ground state Kohn—Sham equati¢h8) and
(2.27) for ground-state density matrix using the SCF
procedure;

(2) obtain a set of transition densiti¢g,} and transition
frequencies{Q ,} from the RPA eigenproblemé3.10
and(3.7) using the fast Krylov diagonalizers;

(3) calculate anharmonicity tenso{4.8)—(4.12 using{¢,}
and functional derivatives given by EqR.25, (2.17),
and(2.18;

(4) perform summation over states using E@s16)—(4.26
to compute the desired response.

Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to Al

Steps(3) and (4) may be combined together to compute the
response on the fly at reduced numerical cost.

V. EXCITED-STATE DIPOLE MOMENTS
AND THE SOS EXPANSION

Expressiong4.16)—(4.18) for polarizabilities remind the
standard sum-over-states equations by Ward anf°Gor
computing resonant polarizabiliti€s.g., the expansion fg8
is given by Eq.(G18 in Appendix G since they include the
summation over the contributions from the individual excited
electronic states, however, there are significant differences.
Equations(4.16—(4.18 do not include the dipole moments
between the excited states. Instead, the coupling among the
electronic states enters indirectly through dipojarand

Coulomb-exchange-correlation termé defined by Egs.
(4.89—(4.12, where u, is the transition dipole between
ground anda) excited states and the other terms describe
couplings between twéor more states.

On the other hand, all first order properties, including the
dipole moments between the excited states, can be calculated
variationally using the analytic gradient technique for the
TDDFT linear response properties developed in Refs. 43 and
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48 Appendix F outlines this derivation to obtain the excited B
state dipole moments in a modified form. In principle, these |n'>, Q. —
dipole moments could be further used in the SOS expres-
sions to obtain nonlinear polarizabilities of any order, instead Han' Unn

of Egs.(4.16—(4.18. To clarify the subtleties and the limi- s C
tations of the SOS approach for TDDFar TDHF) we out- n>, 2,
line in the Appendix G an alternative way of obtaining the Hn'g

transition dipole moments among the expited states. Namely Mgn Mgn Mng Bo| |
we could calculate the excited electronic states wave func-
tions in the quantum oscillator system associated with the
TDDFT equation of motior(4.2). Subsequently, the dipoles

in this auxiliary system that reproduce the second order re- >
sponse Eq(4.17 using the SOS expressions can be calcu-

lated following*? as well (Appendix G. Finally, we end up

with a complete set of the oscillator states required for the
second-order response. These states include all excited stat: D E F
{|a)} calculated using the linear response theory by diago-
nalizing Eq.(3.10. In particular, the expressions for the di-
pole moments of the excited states derived in Appendices F Qa"'QB
and G are identical. However, in addition to the states that

/
Mgnlnnbin'g MgnlnnMng MoM-g,

|aB> — —— E—

show up in the linear response we observe the appearance ¢ u-g
the state§lalpB) with the transition frequencieQ ,+ Qg4 |B> Q — _é
that correspond to the doubly excited oscillatérmnd con- $o
tribute to the second-order response with nonzero dipoles a M—op Hop
well. Ko v

To understand the significance of these ngwlp) |oc>, Qo ——
states we further appeal to the interpretation of the SOS ex- u-g

pression as the summation over the Liouville space

paths®’?2 Figures 1A) and 1B) show paths corresponding Ha Mo | Mo Ho
t0 mgninn'nrg @Nd pgninnitng dipole combinations, re-

spectively, in the SOS expression EG18). Similar inter- Y Y
pretation can be applied to Eqgl.16—(4.18 using the ef- |g> ———
fective oscillator system. Using our notation, we define that Hol-aplh-p  Hol-aoM-o Hoph—pH-—o

> i i =-
for >0 Ha with Qa (’U“‘“ with Q‘“ Q“) CorreSpondS FIG. 1. Liouville space pathway§A) and(B) show the interpretation of the

to a transition frqm the ground state to the eXCiFed staté  5os for the second-order responé@) displays the representation of the
(from the |a) excited state to the ground state interpret linear TDDFT responsEEq. (4.16], (D) and(E) show paths over the states

positive and negative indices. For example, FigC)Ilshows fron_w the linear response tr_\eory affg shows paths over the doubly excited
the paths for the linear response corresponding ta£a5. ?:?%?tor states contributing to the second-order TDDFT respgBse
Subsequently, the terms in the second-order respfEge o
(4.17)] that involve u,z, can be described by the paths
shown in Figs. ID)-1(F). Here Figs. ID) and 1E) are re-  for the excited state dipole moments and the transition di-
lated to the contributions from the linear response statepoles between the excited states do not include specific an-
whereas Fig. (E) show the contributions from the doubly harmonicitiesu .5, andV .z, [EQs.(4.9) and (4.12] char-
excited effective oscillators. These extra terms may not bacteristic for the third-order optical response. Repeating the
derived from the linear response theory. We rather need tprocedure outlined in the Appendix G for the third-order
tailor a specific manifold of the excited states to interpret theesponse will result in the additional terms in equations for
exact second-order response E4.17) with the adiabatic the transition dipoles between the excited states, including
TDDFT theory. The|lalpB) states are no longer relevant Mapys Vapys, and second order cross terms,sug,,
within the Tamm-—Dancoff approximatihwhen the matri- HapVpys, and VgV, 5., The higher-order optical re-
cesB andY [Eg.(3.7)] are set to zero. This leads to vanish- sponses will modify the expressions for the dipole moments
ing of the u, 5 terms when both indices are either positive or[Egs. (G10—(G12] even further and add a new set of di-
negative. In addition, the Coulomb terrt's s, also vanish. poles associated with the higher oscillator stafesy.,
Subsequently, the unrelaxed denﬂfz .p1€g] becomes an  |1al1B1ly)). The same arguments are applicable to the re-
exact transition density between the excited sthtgand|s) spective transition densiti¢&gs.(G13—(G17)]. Thus, each
with the corresponding transition dipole .5z, and Eq. order of the nonlinear optical response will be associated
(4.17 coincides with Eq(G18). with the different expressions for the excited state dipole
The third-order response E®.18 in the TDDFT in- moments(densitie3 and transition dipolegdensities be-
clude a new manifold of contributing oscillator statestween the states. In addition the manifold of the contributing
|1a1B1y). Furthermore, we also note that the expressionexcited state would extend with each next order of the re-
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sponse. A study of the role of multiply excited states in theing nonlinear responses is problematic since the dipole mo-
higher-order optical responses, in particular within the nonaments of the excited states and the transition dipoles between
diabatic TDDFT approach, will be published elsewhere.  excited states are not well defined, i.e., quantities obtained
within the linear response theory are suitable for calculating
VI. CONCLUSION the second order response, whereas treatment of the higher
order responses in the frame of the SOS approach requires
Kohn—Sham equatiof&*3%4 allows to treat the adiabatic redefinition of the dipoles. In addition, the manifold of con-

. . i 82
TDDFT on the same footing as TDHF theory, not only tributing states includes statefl¢18) and |1a1B1y))

within the linear response theory, but also to an arbitrar)}hat may no_t pe obtained in the linear response theor_y.
order in the external perturbation. This originates from the The varlgnon of the number_of _exqted states with an
fact that the adiabatic TDDFT evolution can be interpreted agrdgr .Of ponl|near response Is an indication of t.he f“'."o.'ame”'
a Hamilton classical mechanics, whose phase space is repl%‘-I !lmlta.tlon of the ad_|abat_|c TDDFT theory. Th|s deficiency
sented by a Grassman manifold with a canonical Poissol’ lifted in the nonadiabatic TDDFT formulation where the

bracket in it(that corresponds to the canonical symplectic‘c'OIl;)tlIon Oé thegslpectrr]al ptrrc])blem wgsteat: Olf ﬂ:e glger:v?lue
structure in a Grassman manifoff The same is true for the problem [Eq. (3.10] has the number of electronic states

TDHF dynamicsz.s The difference is due to different classi- equals to the number of states in the related many-electron

cal Hamiltoniangthese, according to the Hamilton picture of problem**This s gccognted for py a .complex frequency
classical mechanics, are just functions in phase space repréépendence of the Liouville operatofw) in the case of the
sented by idempoteni’=p single-electron density matri- nonadiabatic spectral problebh{w) &= wé.
ces. In the TDHF case, the classical Hamiltonian is repre-  Finally we note that, as opposed to the approximate case
sented by first- and second-order termgitwhereas in the of the adiabatic TDDFT, the transition dipoles between the
adiabatic TDDFT case, the expansion of the classical Hamilexcited states should be naturally well-defined in the case of
tonian in powers op contains generally all orders because ofexact TDDFT. This creates a set of requirements that can be
a nontrivial form of the exchange-correlation functional. interpreted as sum rules the exact time-dependent density
Even though both TDDFT and TDHF are described by ex-functional should satisfy. These sum rules can be either used
actly the same equations of motion for a driven density maas a test for approximate time-dependent density functionals,
trix [Eq. (3.4)], which originates from the same dynamical or, alternatively, they can be applied for building time-
structure of the phase space, special care should be takendependent density functionals with the sum rules built in.
account for a complex nature of exchange-correlation funcThis will be published elsewhere.
tional E*q n] that enters the equation coefficients as higher-
order functional derivativefEgs. (2.20—(2.22].

Subsequently, in terms of response, E§.4) can be ACKNOWLEDGMENTS
treated as dynamics of a set of weakly coupled classical har- , ,
monic oscillatord Eq. (4.2)],148182where the transition den- We would like to thank Dr. R_. L. Mart|n, _Dr. A. Ma-
sities provide a convenient coordinate system in the vicinitysunov’ and Dr. F Furche for fruitiul discussions. The re-
of a stationary point that describes the relevant ground-stat?céeamh at LANL is supported by th_e LDRD program of the
properties. Linear and nonlinear response of a real electronid->: Department of Energy. This support is gratefully
system is thus mapped by adiabatic TDDF TDHF) to acknowledged.
the corresponding response of this effective oscillator sys-
tem. This allows us to obtain closed expressions for the lin-
ear[Eq. (4.16], second Eq. (4.17], and third[Eq. (4.18)] APPENDIX A: RELATIONS BETWEEN

order frequency-dependent optical polarizabilities. The qua-THE INTER- AND INTRABAND COMPONENTS

. . . . . . OF THE DENSITY MATRIX
siparticle representation is universal and very convenient for

computing the spectroscopic probésuch as four-wave- The single-electron reduced density matrix satisfies the

mixing spectri®! building related effective reduced models, idempotency conditiop?=p, i.e.,

and coupling molecular system to the thermo$tadur sub- _ 5 —

sequent studies show that the results of calculations, which (p+ &M +T(E(1))) = p+ O+ T(EW)), (AD)

use these equations for computing the third-order optical reat all times.

sponse in extended molecular systems, agree well with ex-  To simplify this expression it is possible to use following

periment, in particular, for two-photon absorption relations: p?=p, é=pé+£&p, and Tp=pT. A simple rule

propertie$®#* Further applications of the adiabatic TDDFT may be applied to separate the remaining terms: Product of

for computing nonlinear molecular properties will be re-two inter- (or two intrajy band matrices gives an intraband

ported elsewhere. matrix, whereas product of inter- into intrger intra- into
Expressiong4.16—(4.18) require a set of transition den- inter-) band matrices results in an interband matrix. Finally,

sities {¢,} with the corresponding frequenci¢$), }, that the intraband part of EAL) is

can be obtained from the linear response theory by diagonal- _

izing the Liouville operatofEq. (3.10], and the correspond- (T(£)*+(2p—NT(§)+£2=0, (A2)

ing functional derivativedEq. (2.15]. Application of the wherel is a unit matrix. The formal solution of this quadratic

traditional SOS expressioh$[e.g., Eq.(G18)] for calculat-  equation, with the conditio(¢=0)=0 yields*

The density matrix formulation of the time-dependent
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(.
T()=|5-p|1-\I-48). (A3)

A Taylor series expansion of this expressiorgifinally gives

“2m(2m-3)!!
T(§>=(I—2mn21(m—)§2m.

2m! (A4)
An alternative expansion3s®®
1 1
T(g): E[[gaﬂaf]‘F m[[f:ﬂ:[[f:ﬂ:[[&ﬂf]]]"‘ .
(A5)
When € is small
1
T(§)~(|—25)§2=z[[§ﬂ,§], (A6)

is quadratic iné which is sufficient for calculating nonlinear

responses up to the third order in the driving field.

APPENDIX B: DEFINITION OF NONLINEAR
RESPONSE FUNCTIONS

Optical polarizabilities are induced by the deviation of
the one electron density matrix from its equilibrium vajue

expanded in powers of the external fiefdt). Following

Refs. 22, 25 we define time domain response functions

RO(t,7y,...,7;) up to the third order¢=1,2,3):

PM(t)= ft dr&(n)RM(t, 1), (B1)

@)ty = : i (2)
P (t) f_wf_wdTldeg(Tl)g(Tz)R (t,Tl,Tz), (BZ)

Pow= " [ [ ardrarsrpeens

X R(g)(t!TlvTZ!T.?:)' (B3)

The corresponding frequency domain
RO(-wg;01,...,w;) (q=1,2,3) are given by

PO 0= [ 52RO~ aniw)s(o), (B4)
© (> dw;d
SN
XRO(— wg;01,05)E(w1)E(wp), (B5)

* * * d(})l da)2 dw3

P(3)(w5): J‘—ocJ—ocjfoo 2 ﬁ Z
XRO(—wg;01,0,,03)8(01)E(w) Ew3).
(B6)

Here &(w) is the Fourier transform of the time-dependent

external field&(t) defined as

i 1 —iw
f(a))zfdtf(t)e t f(t)EEIdwf(w)e t.(B7)

polarizabilities

S. Tretiak and V. Chernyak

For clarity in Appendices B—E we suppress the indices of the
spatial directionsX,y,z). One spatial index tensotgectors
are PO, & p,, wap, and u,p,. RY [a(w)], R®
[B(w1,w,)], andR®) [ y(w;,w,,w3)] are two, three, and
four indices tensors, respectively. The multiplication of these
tensors assumes the summation over the respective spatial
indices according to the usual convention in the tensor
algebra [e.g., P{(we)~RA(~ws;w1,07)E(w1)E(w)
=3 RA(— ws;01,0) ED(01)ED(w,), wherei, j, andk
run over the spatialx, y, andz) componentp

The relations between response functions and polariz-
abilities are obtained by comparing Eq®81)—(B3) with
Egs.(B4)—(B6) and using the Fourier transform E@7)

© ) t )
R(l)(—ws;w)ZJ dte""stj dre ' RA(t, 7), (B8)

o . t .
R(z)(—ws;wl,wz)ZJ dte""StJ' drie'1m
t .
X f deeilszzR(z)(t,Tl,Tz), (Bg)

o . t
R(3)(—ws;w1,w2,w3)= f dte""stf

d’7':|_e_iw11-1
t .
X f dee_""ZTZ

t .
X f dTge_lw373R(3)(t;71,7'2,7'3).

(B10)

The linear, second- and third-order polarizabilities are usu-
ally denoteda, B, andy, respectively,

RY(ws=w;0) =278~ w5+ w)a(w), (B1Y)
RO(ws=w1+wp,01,0,)
=278(— ws+ w1+ w,) B(wy,w5), (B12)
RO(wg= w1+ 0yt wz;01,07,03)
=273(~wst 01+ wyt w3) Y(0w;,0z,03),  (BL3)

where §( w) is the Dirac delta function.

APPENDIX C: LINEAR RESPONSE

To calculate the linear response we start with the equa-
tion of motion forz&l) obtained from Eq(4.2) using expan-
sion Eq.(4.195

a

p =Qaz£})—€(t),u,a, a=1,...M.

i (Cy

The solution of this equation fa) and its complex conju-
gatez* ™ is

Zgl):ifiwg(T)M—aGa(t_T)’ a>0, (C2)
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e (D) [t . Inserting Eqs(C5) and(D2) into Eq. (4.14) and keeping all
Z, == f_xg(T)MaGa(t— 7), a>0, (C3)  terms up to the second order we find that the second-order
response function has three contributions:

where we introduce time-domain Green function 5 (2 R
R(t,7y7,) =R+ REP+R{, (D4)

Gal(t) = f(t)e %,
G_,(H)=6(t)e *-a'=pg(t)e' !,

and 6(t) is the Heavyside step function. Using the notatloan J(t,7ym0)=— E K- pHabt - SaSpGa(l— T1)
S,=sign(a), Egs.(4.2 and (4.2 can be represented in a

(Ca) where

compact notation. XGp(11— 72), (D5)
1)_; ! t
2})=is, f EDp—oColt=7), a=-M,...M, RIP(t,775) =i J d7§ Vo apybatt gt ySaSgSy
—x T aBy
©9 Ga(t=7)Gp( )G ) (D6)
XG(t—7 T—T T—To),
where positive and negative correspond ta&>) andz* %), P ik 2
respectively. ) B
Inserting Eq.(C5) into Eq. (4.14) we finally obtain for Riii(t, 71 72) = _QZB Haph—att— gSeSgG(t—11)G(t—73).
the linear polarizability (D7)
Using Eg.(B9) we finally obtain the second-order polariz-
W(ty= (1) .
PE(=__ _%’__’M Za ' Ma ability [Eq. (4.17)].
t
= X isaf E(T) - abaCalt— 7).
a=-M,...M - APPENDIX E: THIRD-ORDER RESPONSE
(C6) The equation of motion for'®) is
The linear response functidiEq. (B1)] is then (3)
a =0 2(3)—{6(02 th opZF)
ROt =i X iSup oueGalt=7.  (C7) &
a=—-M,..., M
Using Eqs.(B8) and(B11) we obtain the linear polarizability +EN) D B apy2B 2N =22 V4, 27D
given by Eq.(4.16). By By
VoA
APPENDIX D: SECOND-ORDER RESPONSE
_ _ . a=1,...M, B,yv,6=—M,...M. (E1)
The equation of motion fozg) is ) . o ] )
and its solution, which includes the complex conjugate, is
92 @_gp)S (1)
i—=0,z;7— &t z t
ot © 5 Howpp z§,3>=ij d7S.G(t— )P (7)), a=-M,... M,
+E Vo220, (E2)
7 where
a=1,...M, B,y=—M,...M. (D1)
_ _ . _ _ I(r)=E(r) 2 m-apzd (1)
and its solution, which includes complex conjugate, is B
t
2= f d718,G,(t= )T (1), a=—M,... M, YT 2 Hoapy (102 (71)
e >
(D2)
where _ZBE V_ g, 20 (1) 2P (1)
Y

r@y=3v_, leffldT Araf(7)E(7s)
Vg b)) AT —ﬁEﬁv_aﬁyﬁz%)(rl)z;“(n)zg”m). (E3
Y

X ptt—ySpS,Gp( 11 72) Gy (117 75) Here a,B,7,6=—M,...M and zY(r;) and z?(r,) are
given by Eqs(C5) and(D2). Inserting Eqs(C5), (D2), and
+i&( 71)2 M- aﬁJ E(m2) - pSpGp(T1— 72), (E2) into Eq.(4.14 and keeping all terms up to third order
we obtain the following 8 term expression for the third-order
a,B,y=—M,... M. (D3) response function:
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ROt 717,73) =R+ R, + Ry + Ry +Ry+ Ry + Ry,

+Rvin (E4)

where
RI(S)(I’TlTZTS): —i % M*aﬂﬂ*ﬁ"yﬂa#*ysasﬂsy
apy

XGo(t=71)Gu(11—72)G, (7.~ 73), (ED

R,(|3)(t,7-1¢273)= - BEIS K—apV - pystalt —yH - 55555,Ss
aBy

t
X f d7G,(t—=71)Gp(71—7)
73

XG (1= 1)Gy(T7—T73), (E6)

R (t, 71 773) =~ Eﬁl B apylbalt— gl —SeSeS,
apy
XGo(t=1)Gp(m1—72)G (11— 73), (E7)

RI(\B;)(tl 7-17-27-3) =-2 ,BE(‘)‘ V—aﬁylu’— yoM o — M — 5SaSBS)/S§
aBy

t
XJ d7G(t—7)Gg(7— 1)

73

XG (1= 7)G (1~ 73), (E8)

RS/S)(L TlTZT3) =2i E V*a,Byvf yonMlaM— M —sH— 5
aByon

t T
X sasﬂsysas,,Ld TfTsd T Gu(t—17)

XGg(1—=7)G (7= 7" )Gy(7' —72)

XG, (1" —T3), (E9)

RG(t, 7ymp73) = ,325 Vo apystatt—p— yl - 55:55,S5
aBy

t
X f d7G,(t—7)Gg(7—11)
73

XG (17— T7)Gy(7—173), (E10

RUI(t, 717,73) = = 2i % Hapt— gyl —alt—,SaSpS,
apy

X G (t—71)Gy(7—15)G, (72— 73), (E1D

Rﬁ)n(t,mm) =-2 ;5 MeapV - pyst—albykt - 59aS55,S;
apy

t
Xf d7G(t—71)Gg(t—17)

73

XG (1= T1)Gy(7—73). (E12

Using Egs.(B10) and(B13) we obtain 8 term expression for
the third-order polarizabilit(symmetrized with respect to
w1, w,, andwz permutationsgiven by Eq.(4.18

S. Tretiak and V. Chernyak

APPENDIX F: VARIATIONAL DERIVATION OF THE
EXCITED-STATE DIPOLE MOMENTS

To derive the excited-state dipoles we use the variational
formulation of the TDDFT introduced in Refs. 43 and 48.
However, instead of varying the MO coefficients, we show
that the same result could be obtained by varying the density
matrix. The excited states are obtained variationally from the
functional

A(£,9.Z,p)=(E[LE) —Q((E€) — 1) +(Z|[F.p]), (F)

required to be stationary with respect to all parameters
(£,Q,Z, andp). Here the angular brackets denote the scalar
product Eq.(3.13. Variation of A with respect tof leads to

the eigenvalue problem E@3.10 and the Lagrangian mul-
tiplier ) ensures the RPA scalar product E8.13. In addi-
tion, the Hartree—Fock condition EQ.27) is satisfied by
Lagrangian multiplieZ. (The orthonormality of the basis set
imposes an additional condition which is important for ana-
lytic gradient technique but not essential for the purposes of
current paper. For clarity we postulated the second condition
from the beginning and refer to the full derivation given in
Refs. 43 and 48. Subsequently, the derivatives of the
excited-state energf2 with respect to an external perturba-
tion x (e.g., an external field= &) can be expressed in terms
of A as

Q*=A*=(E|L¢), (F2)

where the derivatives af vanish due to the variational prin-
ciple at stationary point of\.
Variation of A with respect tgp determinesZ

SA(p)=(&oLE)+(Z| 5[ F,p])=0. (F3)
Using

SLF,p1=[F(p),8p]1+[V(5p).p], (F4)

SLE=[V(8p),E1+[V(&),8p1+[vP(&,8p),p],  (FD)

and after rearranging the terms under the scalar product, Eq.
(F3) can be written as

(Spll([[p, €T, V(ET+VGILE p1 €D +[v P £,6)),p]

+(8p|LZ)=0. (F6)
In turn, this leads to the linear equation for
LZ=—[([[p, ", V(O1+V(IL£"p1,€D
+v®(£,8)),p], (F7)

which is identical to Eq(18) in Ref. 48 given in the basis set
of the momentuniX—Y) coordinatg X+ Y) variables. Note
that the variation of the stationary point E.27) leads to
the linear Liouville operatot in Eq. (F6) and the variation

of the linear Liouville operator results in the second-order
terms[compare the r.h.s. of EqF7) with the second order
terms in Eq.(3.4)]. Using an expansiofy.l), the interband
matrix Z for the statew can be further expanded into a set of
transition densitie$é,} as

V*aaﬁ
7 =
T3 T,

£5, B=—M,..M. (F9)
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Finally, the derivative of the excited-state enei@y, [Eqg.
(F2)] becomes

Qi =A*=Tr(t®p,)+Tr(v¥(p)p,)

+TrVR(E) £, (F9)

where

7&0(,8

=[[&! 01, €+ Zo=[[£] ) €4]— 2

(F10)

B=—M,... M,

and (x) denotes the derivative of the Hamiltonian matrix
elements while holding constant.

The difference between excited- and ground-state dipole = 19)o— 31

moments is defined a¥},/9E and(?tIl 19E€ = w;j [assuming
that the perturbatio€(t) - u is included in the one electron

part t]. Subsequentlyp,+p is the density matrix of the

excited staten. Even though this route represents a simple

Nonlinear polarizabilities in TDDFT 8821

1
P(al,a) =2 (ad.thc)+—| 2 masa.ag
4>0 2\ 460

+ X poggatagth.c.|, (G4)

apB>0

where h.c. denotes Hermitian conjugate. Th¢; Hamil-
tonian represent® quantum oscillators with the harmonic
frequencied , that are subject to inter oscillator couplings
V., and the polarizability operath(aZ,aa). Using the
perturbation theory we next calculate the wavefunctions of
this oscillator system to first order :%?

and convenient way for computing the excited-state dipole

moments and the transition dipoles between states in the TD-
DFT, the current derivation was obtained with the linear re-

sponse theoryi.e., R term in Eq.(3.4) was neglected alto-

gethetl and, therefore, holds only up to the second-order

optical responses.

APPENDIX G: SECOND-ORDER OPTICAL RESPONSE
OF THE EFFECTIVE MULTILEVEL SYSTEM

Following Ref. 82, Eq.4.2) can be interpreted as the
classical Hamilton equation of motian={H,z} of the sys-
tem of classical coupled oscillators with the Hamilton{ap
to the second ordgr

1
H(2)= >, Q.2 oZot = Vv
(Z) O/ZO az aza 30(,87:—21\4 ..... M aﬁ}’zazﬁzy
—&(1)-P(2), (GD

with the polarizatiorP given by Eq.(4.14) and tensoV
is given by Eq.(4.1D.

A gquantum oscillator model whose classical limit is
given by Egs(4.2) and(G1) can be obtained by association
with each classical variable, an annihilation operatoa,
(z,=(a,), «>0), andz_,=7* is a creation operatoa’
(z*=(a,)").%? a, and a! satisfy the boson commutation
relations:

aBy

[aq.ap]=0,5: [al.ap]=[a,,a5]=0. (G2)

The respective quantum Hamiltonidh,, when preserving
normal ordering, is given by

1
Hl—EQanr

3 > Vap,A.852,

aBy>0

+3 V_ aaa+hc
ag>0 aBy%ap

—&(t)-P(a],,a,), (G3

with

1 Voapy tat ot
B B0, 2390
(GH)
1 V, 5
(EOJ, il a—B-y atal G6
d)a a|g>0 2!B72>0 Qa_nﬁ_ﬂy B 'y|g>0! ( )
1 2V_ sy

(2) = t - — —aPyY
¢ aﬁay|g>0+2! 2 -0 —I—Q +Q a |g>0

1
2' 0

V75§
Q Q&Qg

T

Ve-o-t

+ a (G7)
QB_Q(g_Qg Y

aga}|g>01

where |g)o, a,|9)0, a,a;5|9)0, anda,aza,|g), denote
the ground, single, double, and triple excited states of the
uncoupled system, respectively.

The transition dipoles among the ground and the first
two excited stategto the first order inv) are given by

(9P| p@)=0, (G9)
(6P =, (G9Y)
($OP|¢@)=p +2 aﬂ_y"v
ap Q,+Qs—-Q,
Vo aom
. apyM—y
0,409,710, (G10
V.o,
W) p| ALY — _ Voap—yPy
<¢a |P|¢3 ) Mfaﬁ'l'go _Qa+Q/3_Qy
V. .oou
a—p—yM—y
+ —Qa—ﬂﬁ—ﬂy) , (G1))
(oPIPl P = pg. (G12)

Using our notation, the respective transition densities are
represented as

(Pij »
<g|CjTCi|a>:(§a)ija

(glcfcilg)= (G13

(G149
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(glcfci|aB)y=([[£..01.€5]);;

y
(G195
(alcfci| B)=(p)ijSup ([[£-a ) EpD);
D %%(f—y)ij ,
(G16)
<a|CiTCi|:3')’>:(§y)ij SapT (£p)ijOay- (G179

Here Eq.(G14) is identical to Eq.(3.11) which defines the
transition densities of the linear response. SettingB in
Eqg. (G16) recovers the excited stafie) densityp,+p given
by Eq. (F10.

Finally, substituting the transitions dipoles Eq&8)—

(G12 in the usual SOS expression for the second-order r

sponse given B’

perm
,B(wlawZ):_Z 2 E MgnMnn'Mn'g
®1,®02 nn'
1
X

(0prgt w1+ 0) (gt 1)
1
(0nrg— 01— 03)(Whg— 1)
1
(0p gt o) (0pgt o1+ w))
1
(wn’g_wl)(wng_wl_wZ)
1
(wprg— o) (wpgt+ ©1)
1

" (wn’g+w2)(wng_wl) ’ ©19

+

—+

+
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