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Resonant nonlinear polarizabilities in the time-dependent
density functional theory
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The response of the density matrix to an external field is calculated in the adiabatic time-dependent
density functional ~TDDFT! theory by mapping the equation of motion for the driven
single-electron density matrix into the dynamics of coupled harmonic oscillators. The resulting
nonlinear response functions and the closed expressions for nonlinear frequency-dependent
polarizabilities are derived. These expressions include transition densities and frequencies
calculated in the linear response TDDFT, and higher order functional derivatives of the
exchange-correlation functional. Limitations of the applicability of the traditional sum over states
approach for computing the nonlinear response to the TDDFT are discussed. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1614240#
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I. INTRODUCTION

Quantum-chemical calculations of nonlinear optical
sponse of molecular systems require extensive numerica
fort. The complete information on the optical response o
quantum multielectron system is contained in its set
many-electron eigenstates. Since the number of states
creases exponentially with the number of electrons in
finite basis set, exact calculations become impractical e
for fairy small molecules with a few atoms. An approxim
tion at some level of many-body perturbation theo
@Møller–Plesset~MP! technique# and configuration interac
tion ~CI! are frequently used to compute the ground a
excited states, respectively.1–3

Off-resonant nonlinear response can then be calcul
by a pertubative treatment of the ground state in the prese
of a static electric field. In such coupled perturbed~CP! ap-
proaches the off-resonant polarizabilities are obtained
evaluating derivatives of the ground-state energy with
spect to an external field.4–7 On the other hand, resonan
optical responses imply a significant involvement of the s
cific excited electronic states. Time-dependent perturba
theory, which relates optical response to the properties of
excited states, is then typically used to evaluate nonlin
frequency-dependent responses. For example, the sum
states~SOS! method based on the expansion of the St
energy of the molecule in powers of the electric field,
volves the calculations of both the ground and excited st
wavefunctions and the transition dipole moments betw
them.8,9 The CI/SOS calculations are computationa
expensive.6,7 Therefore, this approach is usually based
simplified semiempirical model Hamiltonians such as the
termediate neglect of differential overlap/spectrosco

a!Author to whom correspondence should be addressed. Electronic
serg@lanl.gov
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~INDO/S! model, fitted to reproduce UV-visible absorptio
spectra at the CI Singles~CIS! level ~i.e., accounting only for
single-particle electronic correlations!.10–12 This technique
usually calculates excited states contributing to the lin
optical response fairly accurately.13,14 However, the situation
is very different for the electronic states, which contribute
the nonlinear responses. Accurate calculation of such st
may require accounting for higher order electron
correlations15,16 ~a typical example isAg states is the conju-
gated polymers which have significant double excitat
character17,18!. Semiempirical techniques accounting sole
for single-particle electronic correlations result in a sign
cant blue-shift of transition frequencies compared to the
periment. Methods including higher-order correlations@such
as multireference~MR! CI# are computationally expensiv
and result in the overcorrelated ground-sta
wavefunction.15,16 In addition, size consistency is not gua
anteed and special care needs to be taken when choosin
right configurations.19–21

Even though the many-electron wavefunctions contai
complete information about quantum system, most of it
rarely used in the calculation of common observables~such
as energies, dipole moments, spectra, etc.!, which only de-
pend on the expectation values of one- and two-elect
quantities.22 A reduced description, which only keeps a sm
amount of the relevant information, is possible and could
built on the single-electron density matrix in the tim
dependent methods based the time-dependent variat
principle ~TDVP!.23–27An example of such approach is th
time-dependent Hartree–Fock~TDHF! theory, where the ex-
cited state wavefunctions are never calculated.28,29 However,
the set of transition densities computed in the TDHF is s
ficient for calculating all linear and nonlinear optic
responses.14,25,30–32

The time-dependent density functional theo
il:
9 © 2003 American Institute of Physics
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~TDDFT!33–35 in the Kohn–Sham~KS! form36,37 is a rela-
tively new and increasingly popular approach for comput
molecular excited states.38–42 This method may be formu
lated as a response of the single-electron density matri
the noninteracting time-dependent KS system to an exte
field. This leads to the equations similar to that in the TDH
technique and can be interpreted as the dynamics of a s
Slater determinant driven by an external field.26,43,44 How-
ever, compared to the TDHF, the TDDFT is not an appro
mation to the many-electron wave function. Rather, the le
of an approximation is limited by our knowledge of the de
sity functional and, in principle, an exact solution for excit
states of many-electron system is possible within the no
diabatic TDDFT approach.26,45,46 It is instructive to empha-
size that although both TDDFT and TDHF approaches us
time-dependent many-body wave function in a form of
single Slater determinant the meaning of this many-bo
wave function is very different in these two approach
While in TDHF the single Slater determinant constitutes
approximation to the wave functions of a driven system~dy-
namical variational approach!, in the TDDFT it is rather an
auxiliary object that represents a system of fictitious KS n
interacting particles that are, however, capable of reprod
ing the exact values of the electron density of the driv
system at all times.

The linear response TDDFT is well developed and m
tured technique which currently became a method of cho
for computing excited states in extende
molecules.35,39,42,47–52Even though an application of the TD
DFT for calculating nonlinear responses is a subject of g
interest~e.g., the extensions to the second-order proper
have been explored in several studies43,53,54!, a systematic
study of the nonlinear responses in the TDDFT method is
to be done.

In this article we study the nonlinear optical respons
up to the third order in the driving field in the adiabat
TDDFT approach. Sections II and III introduce the dens
matrix formulation of the TDDFT. In Sec. IV equation o
motion for the single electron density matrix is mapped in
the dynamics of a system of weakly anharmonic oscillato
This establishes the same mathematical formulation of
adiabatic TDDFT and the TDHF methods in any order
optical response and allows to derive compact express
for frequency dependent polarizabilities. In Sec. V we a
lyze the nonlinear response in the TDDFT using an effec
quantum multilevel system and show why the standard S
expansion cannot be applied directly for calculating non
ear optical polarizabilities in the adiabatic TDDFT an
TDHF methods. Finally, we discuss the trends that eme
and summarize our results in Sec. VI.

II. DENSITY MATRIX FORMULATION
OF ADIABATIC TDDFT EQUATIONS

We start with the time-dependent Kohn–Sham~KS!
equation

i
]cp~r ,t !

]t
5F2

1

2
¹21veff~r ,t !Gcp~r ,t !, ~2.1!
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which can be derived assuming the existence of a poten
veff(r ,t) for a system of non-interacting electrons, who
singe-particle orbitalscp(r ,t) produce the same charge de
sity n(r ,t)5r(r ,r ,t) as for the interacting particle
system,33–35,45and

r~r ,r 8,t !5(
p

N

cp~r ,t !cp* ~r 8,t ! ~2.2!

is the single electron density matrix, which is not necess
the same as one-particle density matrix of the interact
system, andN being the number of electrons.veff(r ,t) is
given by

veff~r ,t !5P~r ,t !1vext~r !,1vcl~r ,t !1vxc~r ,t !, ~2.3!

whereP(r ,t) is an external perturbation~e.g., applied elec-
tric field! turned on adiabatically, andvext(r ) is an external
potential typically mediated by the interactions of electro
with nuclei

vext~r !5(
a

2Za

uRa2r u
, ~2.4!

Za and Ra being the charge and the coordinate ofath
nucleus, respectively.vcl(r ,t) represents a Coulomb interac
tion between electrons

vcl~r ,t !5E n~r 8,t !

ur2r 8u
dr 8. ~2.5!

Finally the exchange-correlation potentialvxc(r ,t) is given
by a functional derivative of the exchange-correlation act
Axc as

vxc~r ,t !5
dAxc@n#

dn~r ,t !
. ~2.6!

We will limit our discussion to the adiabati
approximation33–35,43,48where the retardation effects in th
exchange-correlation potential are neglected and the fu
tional Axc of n(r ,t) over both space and time is approx
mated byExc ~the exchange-correlation functional of th
time-independent Kohn–Sham theory! which is a functional
of nt of space with fixedt:

vxc~r ,t !'
dExc@nt#

dnt~r ,t !
. ~2.7!

The nonadiabatic extensions of the TDDFT have been ex
sively discussed in the literature.45,26,46,55

The stationary point is defined by a solution of the sta
Kohn–Sham equations@P(r ,t)50#

@2 1
2 ¹21vext~r !1vcl@ n̄#~r !1vxc@ n̄#~r !#wp~r !5«pwp~r !,

~2.8!

where«p andwp(r ) denote energies and wave functions
occupied single particle states~molecular orbitals, MOs!, re-
spectively, andn̄(r )5 r̄(r ,r )5(p

Nuwp(r )u2 is the ground-
state charge density. The respective energy of the electr
system at stationary point is then given by a functional

E@ n̄#5T@ n̄#1Eext@ n̄#1Ecl@ n̄#1Exc@ n̄#, ~2.9!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where the terms in the rhs of the equation correspond to
kinetic, external potential, Coulomb, and exchang
correlation energies, respectively, andEg5E@ n̄#
5minrPNE@n# is a minimum of the functionalE@n# in the
spaceN of single Slater determinants~defined up to a phase!
known as the Grassman manifoldM5G(N;K;C), K being
the basis set size and N is the number of electrons. This
be represented as the space of HermitianK3K single-
electron density matrices withr25r and rank(r)5N.25

Subsequently, the TDDFT can be formulated as class
dynamics in the phase spaceN with equations of motion for
density matrix r26,43,44 satisfying the Hamilton–Liouville
form and equivalent to Eq.~2.1!:

i
dr

dt
5$HT ,r%, ~2.10!

where the classical Hamiltonian HT5E@n#
1*drP(r ,t)n(r ,t), n(r ,t)5r(r ,r ,t) andr5 r̄1dr(t).

Equation ~2.10! can be conveniently represented a
solved in the matrix form by introducing the atomic basis
of single-particle spin orbitals~AOs! x is(r ) and expanding
MOs as a linear combination of AOs~LCAO method!:1–3

wps(r )5( iCipsx is(r ) where indexs refers to the spin
space andC is a matrix of the expansion coefficients. F
clarity, we will assume the AO basis functions are orthon
mal @*drx is* (r )x j s8(r )5d i j dss8)] and linearly indepen-
dent. Otherwise, for example, the Lo¨wdin’s transformation

may be used (x̃5S2
1
2x, S being the overlap matrix! for

basis set orthogonalization.2 Modern quantum chemica
codes handle efficiently nonorthogonality and linear dep
dency of atomic basis functions.56–58

Equation~2.10! in the matrix form can be written as

i
ddr

dt
5@F~r!,r#1@P~ t !,r#. ~2.11!

Here all quantities areK3K matrices,K being the basis se
size, and the square brackets denote a commutator of
operators. Equation~2.11! is identical to the time-dependen
Hartree–Fock~TDHF! equation of motion.14,59 We will de-
fine all variables in Eq.~2.11! in a generic way to treat si
multaneously pure TDDFT and TDHF, and mixed a
proaches that use hybrid functionals.

P(t) is an external perturbation operator which in t
case of the driving electric field is given by

Pi j s~ t !52E~ t !•mi j s52 (
s5x,y,z

E (s)~ t !m i j s
(s) , ~2.12!

whereE (s)(t) is an external field alongs-direction andm i j s
(s)

is a respective dipole matrix calculated in the AO basis se
m i j s

(s) 5*drx is* (r )r (s)x is(r ).
F(r) is a Fock operator given by

Fi j s~r!5t i j s1Vi j s~r!1v i j s
xc ~r!, ~2.13!

where t i j s are one-electron integrals accounting for the
netic energy and nuclear attraction of an electron correspo
ing to 2 1

2¹
2 and vext kernels, respectively, andV(r) is a

Coulomb-exchange operator
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Vi j s~r!5 (
kls8

~~ i j sukls8!rkls8

2cx~ iksu j l s!rklsdss8!. ~2.14!

Here (i j sukls8) are two-electron integrals representin
electron–electron Coulomb interactions corresponding to
vcl kernel. For practical purposes, modern computatio
software codes use the same AO basis sets and the m
elements for the single-electron integrals (t i j s) and the two-
electrons integrals (i j sukls8) are usually the same in bot
ab initio and DFT computations. The hybrid mixing param
etercx accounts for the amount of Hartree–Fock exchange
F(r). Introduced by Becke in 1993,60,61 this parameter al-
lows to interpolate between pure DFT (cx50) and Hartree–
Fock (cx51 andExc50) theories.

Finally, v i j s
xc (r) is a matrix element corresponding to th

exchange-correlationvxc@n# kernel which could be a compli
cated function with unknown exact form. We will use a Ta
lor expansion ofvxc(r) given by

vxc~r!5v (0)1v (1)~dr!1v (2)~dr,dr!

1v (3)~dr,dr,dr! ~2.15!

which is sufficient for computing the nonlinear optical r
sponse to the third order in the driving field. Here

v i j s
(1)~dr!5 (

kls8
f i j s,kls8drkls8 , ~2.16!

v i j s
(2)~dr,dr!5

1

2! (
kls8,mns9

gi j s,kls8,mns9drkls8drmns9 ,

~2.17!

v i j s
(3)~dr,dr,dr!5

1

3! (
kls8,mns9,pqs-

hi j s,kls8,mns9,pqs-

3drkls8drmns9drpqs- . ~2.18!

In Eqs. ~2.15!–~2.18! quantities v i j s
(0) , f i j s,kls8 ,

gi j s,kls8,mns9 , and hi j s,kls8,mns9,pqs- are the matrix ele-
ments of kernels corresponding to the functional derivati

vs
(0)~r !5

dExc

dns~r !
, ~2.19!

f ss8~r ,r 8!5
d2Exc

dns~r !dns8~r 8!
, ~2.20!

gss8s9~r ,r 8,r 9!5
d3Exc

dns~r !dns8~r 8!dns9~r 9!
, ~2.21!

hss8s9s-~r ,r 8,r 9,r-!

5
d4Exc

dns~r !dns8~r 8!dns9~r 9!dns-~r-!
, ~2.22!

calculated, for example, as

f i j s,kls85E drdr 8 f ss8~r ,r 8!Di j s~r !Dkls8~r 8!,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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gi j s,kls8,mns95E drdr 8dr 9gss8s9~r ,r 8,r 9!

3Di j s~r !Dkls8~r 8!Dmns9~r 9!, ~2.23!

with Di j s(r ) denoting the derivatives of the electron dens
with respect to the matrix elements of the KS density ma

Di j s~r !5
dns~r !

dr i j s
5x is* ~r !x j s~r !, ~2.24!

wherex is are orthonormal single-particle spin orbitals~e.g.,
AOs or MOs!. Using expressions~2.15!–~2.18!, the Fock
operator@Eq. ~2.13!# can be represented as

F~r!5 t̃ 1Ṽ~r!1v (2)~dr,dr!1v (3)~dr,dr,dr!,
~2.25!

where t̃ 5t1v (0) is an effective one-electron operato
Ṽ(r)5V(r)1v (1)(dr) term is linear inr, andv (2) andv (3)

terms are quadratic and cubic indr, respectively. From Eq
~2.25! immediately follows that

F~ r̄ !5 t̃ 1V~ r̄ !. ~2.26!

The stationary solution of Eq.~2.11! ~ground state! is
given by

@F~ r̄ !,r̄ #50, ~2.27!

Being equivalent to Eq.~2.11!, Eq. ~2.27! is nonlinear and
may be readily solved iteratively using the self-consist
field ~SCF! procedure.2 The ground-state energy can be c
culated as

Eg5 1
2 Tr~~ t̃ 1F~ r̄ !!r̄ !, ~2.28!

where trace includes both spatial and spin variables.

III. PROPERTIES AND ALGEBRA
OF TDDFT EQUATIONS

The elements of the driven density matrixdr(t) in Eq.
~2.11! are not independent variables. Following14,25,26we de-
composedr(t) into two components

dr~ t !5j~ t !1T~j~ t !!, ~3.1!

where j represents the particle–hole~interband! and T(j)
represents the particle–particle and the hole–hole~intraband!
parts. Since the many-electron wave function is represe
by a single Slater determinant, the total density matrixr(t)
must be a projector at all times satisfyingr25r. This idem-
potent property allows us to express intraband compon
T(t) through interband partj(t) using power series a
shown in Appendix A

T~j!5~ I 22r̄ !~j21j412j61¯ !. ~3.2!

In addition the idempotent property ofr̄ permits us to project
any single-electron matrixh into the interband (p2h) sub-
space in an arbitrary orthonormal basis set14,25,26

hp2h5@@h,r̄ #,r̄ #. ~3.3!

Formally, interband and intraband subspaces ofK3K den-
sity matrices have 2N(K2N) and N21(K2N)2 dimen-
sions, respectively~K being the basis set size and N is th
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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number of electrons!. These subspaces are clearly deco
posed only in the MO representation. Equations~3.2! and
~3.3! provide a convenient way of separating interband a
intraband subspaces in an arbitrary~e.g., AO! orthonormal
basis set.

Using expressions~3.1!, ~2.25!, and ~2.27!, the TDDFT
equation of motion~2.11! after projecting onto the interban
subspace using Eq.~3.3!, can be written as

i
]j

]t
2Lj5R~j!p2h2E~ t !•@m,r̄ #, ~3.4!

whereL is a linear operator in Liouville space~i.e., superop-
erator! given by

Lj5@F~ r̄ !,j#1@Ṽ~j!,r̄ #. ~3.5!

Note that, compared to TDHF, the TDDFT Liouville operat
involves the functional derivativef i j s,kls8 ~Eq. ~2.20!! of
exchange-correlation functional included inṼ(j). Finally

R~j!52E~ t !•@m,j1T~j!#1@Ṽ~j!,j1T~j!#

1@Ṽ~T~j!!,r̄1j#1@v (2)~j,j!,r̄1j#

12@v ~2!~T~j!,j!,r̄ #1@v (3)~j,j,j!,r̄ # ~3.6!

is the nonlinear part of the TDDFT equation of motion~up to
the third order in the driven field! projected onto the
particle–hole subspace with Eq.~3.3!, which contains higher
functional derivativesgi j s,kls8,mns9 , andhi j s,kls8,mns9,pqs-
@Eqs. ~2.21!, and ~2.22!#. The operatorsṼ, F( r̄), v (2), and
v (3) were defined by Eqs.~2.25!, ~2.26!, ~2.17!, and ~2.18!,
respectively. The equations of motion forj @Eq. ~3.4!# have
fewer variables than those fordr @Eq. ~2.11!# but contain
additional nonlinearities. However,j is the set of truly
independent variables which are required to uniqu
representdr.25

We start with the analysis of the solution of the linea
ized TDDFT equation~3.4! with R50, which defines linear
response of the electronic system to the driving field. Sin
Eq. ~3.4! is formally identical to the TDHF equation of mo
tion, it has the same properties which were analyzed in
tails ~e.g., in Ref. 14!. Here we briefly overview the essen
tials. Equation~3.4! can be solved by diagonalizing th
Liouville operator Lj5Vj. Since only particle–hole and
hole–particle components ofj are computed, this is an ei
genvalue problem of dimension 2M32M , M5Nocc3Nvir

5N3(K2N), which in the MO basis set representatio
may be recast in the form28,29

S A B

2B 2AD FXYG5VFXYG . ~3.7!

This is known as the RPA eigenvalue equation,62–67whereX
and Y are, respectively, the particle–hole and hole–parti
components of the eigenvectorj5@Y

X# in the MO represen-
tation. In Eq.~3.7! the matrixA is Hermitian and identical to
the configuration interaction singles~CIS! matrix. Neglecting
B results in the diagonalization ofA operator and is known
as Tamm–Dancoff approximation~TDA!.52,62,68The matrix
elements ofA and B could be immediately obtained from
Eq. ~3.5! written in the canonical MO basis set35,39,48
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Aias, jbs85~«as2« is!d i j dabdss81~ iasu jbs8!

1 f ias, jbs82cx~absu i j s!dss8 , ~3.8!

Bias, jbs85~ iasu jbs8!1 f ias, jbs82cx~ jasu ibs!dss8 ,
~3.9!

where indicesi , j (a,b) run over the occupied~virtual!
space.

From Eqs.~3.5! and~3.7! follows that the eigenmodesjn

and eigenfrequenciesVn of L come in conjugated pairs:

Ljn5Vnjn Ljn
†52Vnjn

† n51,...,M . ~3.10!

Each vectorjn with frequencyVn has a counterpartj2n

5jn
† with frequencyV2n52Vn . Vn represents vertica

transition energy from the ground stateug& to the excited
state un&. In molecules with unstable ground state~saddle
point!, eigenvaluesVn may be complex which correspond
singlet or triplet instabilities.62,69–71jn is the corresponden
transition density matrix, which represent the changes in
ground-state density matrix upon the electronic excitati
and may be represented as14

~jn! i j 5^gucj
†ci un&, ~3.11!

where ug& ~un&! is the ground~excited! state many-electron
wave function andcj

†(cj ) are creation~annihilation! opera-
tors of an electron at thej th one-particle orbital satisfying
the Fermi anticommutation relationships

@cj
†ci #15d i j ; @cj

†ci
†#15@cjci #150. ~3.12!

SinceL is real, the transition densities can be taken to be
as well.

This block-diagonal structure of operatorL @Eq. ~3.7!#
~known as the symplectic structure25! allow to introduce the
following scalar product of any two interband matricesj and
h;14,25,59,72

^juh&[Tr~ r̄@j†,h#!, ~3.13!

which obeys

^juh&5^h†uj†&* 52^huj&. ~3.14!

Here and below we use the angular brackets to denote
scalar product. Equation~3.13! can further be expresse
through the particle–hole (X) and hole–particle (Y) compo-
nents of the interband density matrix in MO representat
as14,35,39

^juh&[~Xj ,Xh!2~Yj ,Yh!, ~3.15!

wherej5@Yj

Xj#, h5@Yh

Xh#, and the round brackets denote sta

dard~Hermitian! scalar product of two vectors. We also no
that the commutator ofr̄ with an arbitrary interband matrix
j5@Y

X# corresponds to the transformation@Y
X#→@2Y

X #.
The Liouville operatorL defined by Eq.~3.5! is Hermit-

ian with respect to this scalar product14,25

^Ljuh&5^juLh&, ~3.16!

and the eigenvectors obey the following normalization c
ditions:

^jaujb&5Tr~ r̄@ja
† ,jb#!5dab , ~3.17!
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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^jaujb
†&5Tr~ r̄@ja

† ,jb
† # !5^ja

† ujb&5Tr~ r̄@ja ,jb#!50.
~3.18!

Transition densities$ja% provide a complete basis set in th
interband space.

A scalar product@Eq. ~3.13!# also suggests a variationa
principle formulated by Thouless back in 1961, that yiel
the lowest positive eigenvalue of Eq.~3.10!73

Vmin5min$X,Y%

@X,Y#S A B

2B 2AD FXYG
u~XX!2~YY!u

. ~3.19!

The minimum always exists, since the HF stability conditi
Eq. ~2.27! keeps the numerator positive. The denomina
can be arbitrarily small, and therefore, the expression has
maximum.

The product of Eq.~3.5! can be calculated directly with
out constructing and storing the full matrixL in the computer
memory. In addition, the existence of a scalar product
~3.13! and a variational principle Eq.~3.19! make possible
development of fast Krylov space methods74,75 for solution
of the RPA eigenproblem, such as modified Lanczos76–78and
Davidson algorithms,39,67,79,80the IDSMA procedure,59 etc.,
which show a formal scaling;K3 in time and ;K2 in
memory of computational effort with system size. These
gorithms became standard in computational chemis
codes56,58allowing efficient calculations of the excited stat
with effort comparable to the ground-state calculations.

Finally, we formulate several useful identities whic
hold for any interband matricesj and z and directly follow
from Eqs.~A1!, ~3.2!, and~3.13!:

j5rj1jr, ~3.20!

rj25j2r, ~3.21!

@j,r#5~ I 22r!j, ~3.22!

j~ I 22r!j52~ I 22r!j2, ~3.23!

1
2 @@j,r#,j#5~ I 22r!j2, ~3.24!

@@j,r#,z#5~ I 22r!~jz1zj!. ~3.25!

The effective linear Coulomb-exchange operatorṼ is Her-
mitian and, therefore, obeys

~juṼ~z!!5~Ṽ~j!uz!, ~3.26!

where the round brackets denote the standard~Hermitian!
scalar product of two vectors.

IV. NONLINEAR RESPONSE OF A COUPLED SYSTEM
OF ELECTRONIC OSCILLATORS

Equation~3.4! can be envisioned as an equation of m
tion for coupled harmonic oscillators. In particular, th
TDHF approximation is usually considered as a class
limit of the original many-electron system. Each oscillatora
is described by two conjugated modesja and ja

† . We
define14,81,82 j2a5ja

† and V2a52Va , so that equation
LVa5Vaja would hold for a52M ,...,M , M5N3(K
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



li-
d

m

ity
-

ic

n

all

is
tem

nes

e
in

Ap-

de-
ri-
rst

8814 J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 S. Tretiak and V. Chernyak
2N). To transform Eq.~3.4! into the oscillator variables we
will further introduce complex oscillator amplitudesza as

j~ t !5(
a

jaza~ t ! a52M ,...,M . ~4.1!

Inserting expansion~4.1! into Eq. ~3.4! and using Eq.~3.2!
we obtain the following equations for the complex amp
tudes, when retained terms that contribute to the third-or
optical response:14,81

i
]za

]t
5Vaza2E~ t !•m2a2E~ t !•(

b
m2a,bzb

2E~ t !•(
bg

m2a,bgzbzg1(
bg

V2a,bgzbzg

1(
bgd

V2a,bgdzbzgzd ,

a51,...,M , b,g,d52M ,...,M . ~4.2!

The amplitudes for the adjoint variables are simply the co
plex conjugates. Equation~4.2! is the same for both TDDFT
and TDHF, and all information about the underlying dens
functional ~or Hamiltonian! is hidden in the excitation ener
gies Va and the anharmonicitiesma , mab , mabg , Vabg ,
and Vabgd , which describe coupling among the electron
oscillators mediated by Coulomb-exchange-correlationṼ
and dipolem interactions. These quantities are given by

ma5Tr~@ r̄,ja#@m,r̄ # !, ~4.3!

mab5Tr~@ r̄,ja#@m,jb#!, ~4.4!

mabg5Tr~@ r̄,ja#@m, 1
2 @@jb ,r̄ #,jg#!, ~4.5!

Vabg5Tr~@ r̄,ja#~@Ṽ~jb!,jg#1@Ṽ~ 1
2 @@jb ,r̄ #,jg#!,r̄ #

1@v (2)~jb ,jg!,r̄ # !!, ~4.6!

Vabgd5Tr~@ r̄,ja#~@V~ 1
2 @jb ,r̄ #,jg#!,jd#

1@V~jd!, 1
2 @@jb ,r̄ #,jd##1@v (2)~jb ,jg!,jd#!

1[v ~2!(([[ jb,r̄] jg]),jd),r̄]

1@v (3)~jb ,jg ,jd!,r̄ #)). ~4.7!

Here Ṽ, v (2), andv (3) are given by Eqs.~2.25!, ~2.17!, and
~2.18!, respectively. Note that tensorsma , mab , mabg are
vectors with the spatialx, y, andz components~e.g.,ma is
the transition dipole from the ground state to thea excited
state!. Using identities~3.21!–~3.26! these expressions ca
be written in a compact form

ma5Tr~mja!, ~4.8!
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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-

mab5 (
ab

perm

Tr~m~ I 22r̄ !jajb!, ~4.9!

mabg52
1

3 (
abg

perm

Tr~mjajbjg!, ~4.10!

Vabg5
1

2 (
abg

perm

Tr~~ I 22r̄ !jajbṼ~jg!!

1
1

6 (
abg

perm

Tr~jav (2)~jb ,jg!!, ~4.11!

Vabgd5
1

12 (
abgd

perm

Tr~~ I 22r̄ !jajbṼ~~ I 22r̄ !jgjd!!

2
1

12 (
abgd

perm

Tr~jajbjgṼ~jd!!

1
1

12 (
abgd

perm

Tr~~ I 22r̄ !jajbv (2)~jg ,jd!!

1
1

12 (
abgd

perm

Tr(jav (2)(((I 22r̄)jbjg),jd))

1
1

24 (
abgd

perm

Tr~jav (3)~jb ,jg ,jd!!, ~4.12!

where all tensors have been symmetrized with respect to
permutations of their indices.

The response of this effective oscillator system
equivalent to the response of the original electronic sys
within the underlying TDDFT~or TDHF! approximation. In
particular, the time-dependent polarization which determi
all optical properties is given by

P~ t !5Tr~mdr~ t !!. ~4.13!

Using Eqs.~4.1! and~3.2! and retaining terms that contribut
to the third-order optical response, the optical polarization
terms of the oscillator amplitudes can be represented as14,81

P~ t !5(
b

mbzb1
1

2 (
bg

mbgzbzg , b,g52M ,...,M .

~4.14!

Linear and nonlinear optical responses are defined in the
pendix B and may be calculated by expandingz(t) in powers
of the external fieldE(t) to solve Eq.~4.2! as

z~ t !5z(1)~ t !1z(2)~ t !1z(3)~ t !1¯ . ~4.15!

The expressions for the polarizabilities have been
rived in Ref. 14. Here we give the results and outline de
vations in Appendices C–E. Frequency dependent fi
a(v), secondb(v1 ,v2), and thirdg(v1 ,v2 ,v3) order op-
tical polarizabilities are given by

a i j ~v!5 (
a52M ,...,M

Sam2a
( i ) ma

( j )

Va2v

5 (
a51,...,M

2Vam2a
( i ) ma

( j )

Va
22v2 , ~4.16!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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b i jk~v1 ,v2!52 (
abg

V2abgma
( i )m2b

( j ) m2g
(k) SaSbSg

~Va2v12v2!~Vb2v1!~Vg2v2!
1

1

2 (
ab

mab
( i ) m2a

( j ) m2b
(k) SaSb

~Va2v1!~Vb2v2!

1
1

2 (
ab

m2ab
( j ) ma

( i )m2b
(k) SaSb

~Va2v12v2!~Vb2v1!
1

1

2 (
ab

m2ab
( j ) ma

( i )m2b
(k) SaSb

~Va2v12v2!~Vb2v2!
, ~4.17!

g~v1 ,v2 ,v3!5
1

3! (
v1v2v3

perm

~g (I )1g (II )1g (III )1...g (VIII )!, ~4.18!

where

g i jkl
(I ) 5 (

abg

m2ab
( j ) m2bg

(k) ma
( i )m2g

( l ) SaSbSg

~Va2v12v22v3!~Vb2v22v3!~Vg2v3!
, ~4.19!

g i jkl
(II )5 (

abgd

2m2ab
( j ) V2bgdma

( i )m2g
(k) m2d

( l ) SaSbSgSd

~Va2v12v22v3!~Vb2v22v3!~Vg2v2!~Vd2v3!
, ~4.20!

g i jkl
(III )5 (

abg

m2abg
( j ) ma

( i )m2b
(k) m2g

( l ) SaSbSg

~Va2v12v22v3!~Vb2v22v3!~Vg2v3!
, ~4.21!

g i jkl
(IV)5 (

abgd

22V2abgm2gd
(k) ma

( i )m2b
( j ) m2d

( l ) SaSbSgSd

~Va2v12v22v3!~Vb2v1!~Vg2v22v3!~Vd2v3!
, ~4.22!

g i jkl
(V) 5 (

abgdh

2V2abgV2gdhma
( i )m2b

( j ) m2d
(k) m2h

( l ) SaSbSgSdSh

~Va2v12v22v3!~Vb2v1!~Vg2v22v3!~Vd2v2!~Vh2v3!
, ~4.23!

g i jkl
(VI)5 (

abgd

2V2abgdma
( i )m2b

( j ) m2g
(k) m2d

( l ) SaSbSgSd

~Va2v12v22v3!~Vb2v1!~Vg2v2!~Vd2v3!
, ~4.24!

g i jkl
(VII )5 (

abg

mab
( i ) m2bg

(k) m2a
( j ) m2g

( l ) SaSbSg

~Va2v1!~Vb2v22v3!~Vg2v3!
, ~4.25!

g i jkl
(VIII )5 (

abgd

2mab
( i ) V2bgdm2a

( j ) m2g
(k) m2d

( l ) SaSbSgSd

~Va2v1!~Vb2v22v3!~Vg2v2!~Vd2v3!
. ~4.26!
m
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Here indicess5 i , j ,k,l label the spatial directions (x, y, and
z), indicesn5a,b,g,d,h52M ,...,M run over the excited
states, andVn is positive ~negative! for all n.0 (n,0)
according to the conventionV2n52Vn , Sa5sign(a), and
the other variables are given by Eqs.~4.8!–~4.12!. Note, that
in Eq. ~4.17! the permutations overv1 and v2 are written
explicitly.

Using Eqs. ~4.16!–~4.18! for computing frequency-
dependent polarizabilities in the adiabatic TDDFT formalis
involves several steps:

~1! Solve the ground state Kohn–Sham equations~2.8! and
~2.27! for ground-state density matrixr̄ using the SCF
procedure;

~2! obtain a set of transition densities$ja% and transition
frequencies$Va% from the RPA eigenproblems~3.10!
and ~3.7! using the fast Krylov diagonalizers;

~3! calculate anharmonicity tensors~4.8!–~4.12! using $ja%
and functional derivatives given by Eqs.~2.25!, ~2.17!,
and ~2.18!;

~4! perform summation over states using Eqs.~4.16!–~4.26!
to compute the desired response.
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
Steps~3! and ~4! may be combined together to compute t
response on the fly at reduced numerical cost.

V. EXCITED-STATE DIPOLE MOMENTS
AND THE SOS EXPANSION

Expressions~4.16!–~4.18! for polarizabilities remind the
standard sum-over-states equations by Ward and Orr8,9 for
computing resonant polarizabilities@e.g., the expansion forb
is given by Eq.~G18! in Appendix G# since they include the
summation over the contributions from the individual excit
electronic states, however, there are significant differen
Equations~4.16!–~4.18! do not include the dipole moment
between the excited states. Instead, the coupling among
electronic states enters indirectly through dipolarm and
Coulomb-exchange-correlation termsṼ defined by Eqs.
~4.8!–~4.12!, where ma is the transition dipole betwee
ground andua& excited states and the other terms descr
couplings between two~or more! states.

On the other hand, all first order properties, including t
dipole moments between the excited states, can be calcu
variationally using the analytic gradient technique for t
TDDFT linear response properties developed in Refs. 43
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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48 Appendix F outlines this derivation to obtain the excit
state dipole moments in a modified form. In principle, the
dipole moments could be further used in the SOS exp
sions to obtain nonlinear polarizabilities of any order, inste
of Eqs.~4.16!–~4.18!. To clarify the subtleties and the limi
tations of the SOS approach for TDDFT~or TDHF! we out-
line in the Appendix G an alternative way of obtaining t
transition dipole moments among the excited states. Nam
we could calculate the excited electronic states wave fu
tions in the quantum oscillator system associated with
TDDFT equation of motion~4.2!. Subsequently, the dipole
in this auxiliary system that reproduce the second order
sponse Eq.~4.17! using the SOS expressions can be cal
lated following82 as well ~Appendix G!. Finally, we end up
with a complete set of the oscillator states required for
second-order response. These states include all excited s
$ua&% calculated using the linear response theory by dia
nalizing Eq.~3.10!. In particular, the expressions for the d
pole moments of the excited states derived in Appendice
and G are identical. However, in addition to the states t
show up in the linear response we observe the appearan
the statesu1a1b& with the transition frequenciesVa1Vb

that correspond to the doubly excited oscillators82 and con-
tribute to the second-order response with nonzero dipole
well.

To understand the significance of these newu1a1b&
states we further appeal to the interpretation of the SOS
pression as the summation over the Liouville spa
paths.6,7,22 Figures 1~A! and 1~B! show paths correspondin
to mgnmnn8mn8g and mgnmnnmng dipole combinations, re-
spectively, in the SOS expression Eq.~G18!. Similar inter-
pretation can be applied to Eqs.~4.16!–~4.18! using the ef-
fective oscillator system. Using our notation, we define t
for a.0 ma with Va (m2a with V2a52Va) corresponds
to a transition from the ground state to theua& excited state
~from the ua& excited state to the ground state! to interpret
positive and negative indices. For example, Fig. 1~C! shows
the paths for the linear response corresponding to Eq.~4.16!.
Subsequently, the terms in the second-order response@Eq.
~4.17!# that involve mab , can be described by the path
shown in Figs. 1~D!–1~F!. Here Figs. 1~D! and 1~E! are re-
lated to the contributions from the linear response sta
whereas Fig. 1~E! show the contributions from the doubl
excited effective oscillators. These extra terms may not
derived from the linear response theory. We rather nee
tailor a specific manifold of the excited states to interpret
exact second-order response Eq.~4.17! with the adiabatic
TDDFT theory. Theu1a1b& states are no longer releva
within the Tamm–Dancoff approximation52 when the matri-
cesB andY @Eq. ~3.7!# are set to zero. This leads to vanis
ing of themab terms when both indices are either positive
negative. In addition, the Coulomb termsVabg also vanish.
Subsequently, the unrelaxed density@@ja

† ,r̄ #jb# becomes an
exact transition density between the excited statesua& andub&
with the corresponding transition dipolem2ab , and Eq.
~4.17! coincides with Eq.~G18!.

The third-order response Eq.~4.18! in the TDDFT in-
clude a new manifold of contributing oscillator stat
u1a1b1g&. Furthermore, we also note that the expressi
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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for the excited state dipole moments and the transition
poles between the excited states do not include specific
harmonicitiesmabg andVabgd @Eqs. ~4.9! and ~4.12!# char-
acteristic for the third-order optical response. Repeating
procedure outlined in the Appendix G for the third-ord
response will result in the additional terms in equations
the transition dipoles between the excited states, includ
mabg , Vabgd , and second order cross termsmabmbg ,
mabVbgd , and VabgVgdh . The higher-order optical re
sponses will modify the expressions for the dipole mome
@Eqs. ~G10!–~G12!# even further and add a new set of d
poles associated with the higher oscillator states~e.g.,
u1a1b1g&). The same arguments are applicable to the
spective transition densities@Eqs.~G13!–~G17!#. Thus, each
order of the nonlinear optical response will be associa
with the different expressions for the excited state dip
moments~densities! and transition dipoles~densities! be-
tween the states. In addition the manifold of the contribut
excited state would extend with each next order of the

FIG. 1. Liouville space pathways.~A! and~B! show the interpretation of the
SOS for the second-order response,~C! displays the representation of th
linear TDDFT response@Eq. ~4.16!#, ~D! and~E! show paths over the state
from the linear response theory and~F! shows paths over the doubly excite
oscillator states contributing to the second-order TDDFT response@Eq.
~4.17!#.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sponse. A study of the role of multiply excited states in t
higher-order optical responses, in particular within the no
diabatic TDDFT approach, will be published elsewhere.

VI. CONCLUSION

The density matrix formulation of the time-depende
Kohn–Sham equations26,43,44 allows to treat the adiabati
TDDFT on the same footing as TDHF theory, not on
within the linear response theory, but also to an arbitr
order in the external perturbation. This originates from
fact that the adiabatic TDDFT evolution can be interpreted
a Hamilton classical mechanics, whose phase space is re
sented by a Grassman manifold with a canonical Pois
bracket in it ~that corresponds to the canonical symplec
structure in a Grassman manifold!.26 The same is true for the
TDHF dynamics.25 The difference is due to different class
cal Hamiltonians~these, according to the Hamilton picture
classical mechanics, are just functions in phase space re
sented by idempotentr25r single-electron density matri
ces!. In the TDHF case, the classical Hamiltonian is rep
sented by first- and second-order terms inr. Whereas in the
adiabatic TDDFT case, the expansion of the classical Ha
tonian in powers ofr contains generally all orders because
a nontrivial form of the exchange-correlation function
Even though both TDDFT and TDHF are described by
actly the same equations of motion for a driven density m
trix @Eq. ~3.4!#, which originates from the same dynamic
structure of the phase space, special care should be tak
account for a complex nature of exchange-correlation fu
tional Exc@n# that enters the equation coefficients as high
order functional derivatives@Eqs.~2.20!–~2.22!#.

Subsequently, in terms of response, Eq.~3.4! can be
treated as dynamics of a set of weakly coupled classical
monic oscillators@Eq. ~4.2!#,14,81,82where the transition den
sities provide a convenient coordinate system in the vicin
of a stationary point that describes the relevant ground-s
properties. Linear and nonlinear response of a real electr
system is thus mapped by adiabatic TDDFT~or TDHF! to
the corresponding response of this effective oscillator s
tem. This allows us to obtain closed expressions for the
ear @Eq. ~4.16!#, second@Eq. ~4.17!#, and third@Eq. ~4.18!#
order frequency-dependent optical polarizabilities. The q
siparticle representation is universal and very convenient
computing the spectroscopic probes~such as four-wave-
mixing spectra!,81 building related effective reduced model
and coupling molecular system to the thermostat.22 Our sub-
sequent studies show that the results of calculations, w
use these equations for computing the third-order optical
sponse in extended molecular systems, agree well with
periment, in particular, for two-photon absorptio
properties.83,84 Further applications of the adiabatic TDDF
for computing nonlinear molecular properties will be r
ported elsewhere.

Expressions~4.16!–~4.18! require a set of transition den
sities $ja% with the corresponding frequencies$Va %, that
can be obtained from the linear response theory by diago
izing the Liouville operator@Eq. ~3.10!#, and the correspond
ing functional derivatives@Eq. ~2.15!#. Application of the
traditional SOS expressions8,9 @e.g., Eq.~G18!# for calculat-
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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ing nonlinear responses is problematic since the dipole
ments of the excited states and the transition dipoles betw
excited states are not well defined, i.e., quantities obtai
within the linear response theory are suitable for calculat
the second order response, whereas treatment of the h
order responses in the frame of the SOS approach requ
redefinition of the dipoles. In addition, the manifold of co
tributing states includes states (u1a1b& and u1a1b1g&)82

that may not be obtained in the linear response theory.
The variation of the number of excited states with

order of nonlinear response is an indication of the fundam
tal limitation of the adiabatic TDDFT theory. This deficienc
is lifted in the nonadiabatic TDDFT formulation where th
solution of the spectral problem instead of the eigenva
problem @Eq. ~3.10!# has the number of electronic state
equals to the number of states in the related many-elec
problem.26,55 This is accounted for by a complex frequen
dependence of the Liouville operatorL̂(v) in the case of the
nonadiabatic spectral problemL̂(v)j5vj.

Finally we note that, as opposed to the approximate c
of the adiabatic TDDFT, the transition dipoles between
excited states should be naturally well-defined in the cas
exact TDDFT. This creates a set of requirements that can
interpreted as sum rules the exact time-dependent den
functional should satisfy. These sum rules can be either u
as a test for approximate time-dependent density function
or, alternatively, they can be applied for building tim
dependent density functionals with the sum rules built
This will be published elsewhere.
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APPENDIX A: RELATIONS BETWEEN
THE INTER- AND INTRABAND COMPONENTS
OF THE DENSITY MATRIX

The single-electron reduced density matrix satisfies
idempotency conditionr25r, i.e.,

~ r̄1j~ t !1T~j~ t !!!25 r̄1j~ t !1T~j~ t !!, ~A1!

at all times.
To simplify this expression it is possible to use followin

relations: r̄25 r̄, j5 r̄j1jr̄, and Tr̄5 r̄T. A simple rule
may be applied to separate the remaining terms: Produc
two inter- ~or two intra-! band matrices gives an intraban
matrix, whereas product of inter- into intra-~or intra- into
inter-! band matrices results in an interband matrix. Fina
the intraband part of Eq.~A1! is

~T~j!!21~2r̄2I !T~j!1j250, ~A2!

whereI is a unit matrix. The formal solution of this quadrat
equation, with the conditionT(j50)50 yields14
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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T~j!5S I

2
2 r̄ D ~ I 2AI 24j2!. ~A3!

A Taylor series expansion of this expression inj finally gives

T~j!5~ I 22r̄ ! (
m51

`
2m~2m23!!!

2m!
j2m. ~A4!

An alternative expansion is25,59

T~j!5
1

2!
@@j,r̄ #,j#1

1

4!
@@j,r̄ #,@@j,r̄ #,@@j,r̄ #,j###1¯ .

~A5!

Whenj is small

T~j!'~ I 22r̄ !j25
1

2!
@@j,r̄ #,j#, ~A6!

is quadratic inj which is sufficient for calculating nonlinea
responses up to the third order in the driving field.

APPENDIX B: DEFINITION OF NONLINEAR
RESPONSE FUNCTIONS

Optical polarizabilities are induced by the deviation
the one electron density matrix from its equilibrium valuer̄
expanded in powers of the external fieldE(t). Following
Refs. 22, 25 we define time domain response functi
R(q)(t,t1 ,...,t j ) up to the third order (q51,2,3):

P(1)~ t !5E
2`

t

dtE~t!R(1)~ t,t!, ~B1!

P(2)~ t !5E
2`

t E
2`

t

dt1dt2E~t1!E~t2!R(2)~ t,t1 ,t2!, ~B2!

P(3)~ t !5E
2`

t E
2`

t E
2`

t

dt1dt2dt3E~t1!E~t2!E~t3!

3R(3)~ t,t1 ,t2 ,t3!. ~B3!

The corresponding frequency domain polarizabilit
R(q)(2vs ;v1 ,...,v j ) (q51,2,3) are given by

P(1)~vs!5E
2`

` dv

2p
R(1)~2vs ;v!E~v!, ~B4!

P(2)~vs!5E
2`

` E
2`

` dv1

2p

dv2

2p

3R(2)~2vs ;v1 ,v2!E~v1!E~v2!, ~B5!

P(3)~vs!5E
2`

` E
2`

` E
2`

` dv1

2p

dv2

2p

dv3

2p

3R(3)~2vs ;v1 ,v2 ,v3!E~v1!E~v2!E~v3!.

~B6!

Here E(v) is the Fourier transform of the time-depende
external fieldE(t) defined as

f ~v![E dt f~ t !eivt, f ~ t ![
1

2p E dv f ~v!e2 ivt.

~B7!
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For clarity in Appendices B–E we suppress the indices of
spatial directions (x,y,z). One spatial index tensors~vectors!
are P(q), E, ma , mab , and mabg . R(1) @a(v)#, R(2)

@b(v1 ,v2)#, and R(3) @g(v1 ,v2 ,v3)# are two, three, and
four indices tensors, respectively. The multiplication of the
tensors assumes the summation over the respective sp
indices according to the usual convention in the ten
algebra @e.g., Pk

(2)(vs);R(2)(2vs ;v1 ,v2)E(v1)E(v2)
5( i j Ri jk

(2)(2vs ;v1 ,v2)E ( i )(v1)E ( j )(v2), wherei , j , andk
run over the spatial (x, y, andz) components#.

The relations between response functions and pola
abilities are obtained by comparing Eqs.~B1!–~B3! with
Eqs.~B4!–~B6! and using the Fourier transform Eq.~B7!

R(1)~2vs ;v!5E
2`

`

dteivstE
2`

t

dte2 ivtR(1)~ t,t!, ~B8!

R(2)~2vs ;v1 ,v2!5E
2`

`

dteivstE
2`

t

dt1e2 iv1t1

3E
2`

t

dt2e2 iv2t2R(2)~ t,t1 ,t2!, ~B9!

R(3)~2vs ;v1 ,v2 ,v3!5E
2`

`

dteivstE
2`

t

dt1e2 iv1t1

3E
2`

t

dt2e2 iv2t2

3E
2`

t

dt3e2 iv3t3R(3)~ t;t1 ,t2 ,t3!.

~B10!

The linear, second- and third-order polarizabilities are u
ally denoteda, b, andg, respectively,

R(1)~vs5v;v!52pd~2vs1v!a~v!, ~B11!

R(2)~vs5v11v2 ,v1 ,v2!

52pd~2vs1v11v2!b~v1 ,v2!, ~B12!

R(3)~vs5v11v21v3 ;v1 ,v2 ,v3!

52pd~2vs1v11v21v3!g~v1 ,v2 ,v3!, ~B13!

whered(v) is the Dirac delta function.

APPENDIX C: LINEAR RESPONSE

To calculate the linear response we start with the eq
tion of motion forza

(1) obtained from Eq.~4.2! using expan-
sion Eq.~4.15!

i
]za

(1)

]t
5Vaza

(1)2E~ t !m2a , a51,...,M . ~C1!

The solution of this equation forza
(1) and its complex conju-

gateza*
(1) is

za
(1)5 i E

2`

t

E~t!m2aGa~ t2t!, a.0, ~C2!
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za*
(1)5z2a

(1) 52 i E
2`

t

E~t!maGa* ~ t2t!, a.0, ~C3!

where we introduce time-domain Green function

Ga~ t !5u~ t !e2 iVat,
~C4!

G2a~ t !5u~ t !e2 iV2at5u~ t !eiVat,

andu(t) is the Heavyside step function. Using the notati
Sa5sign(a), Eqs. ~4.2! and ~4.2! can be represented in
compact notation.

za
(1)5 iSaE

2`

t

E~t!m2aGa~ t2t!, a52M ,...,M ,

~C5!

where positive and negativea correspond toza
(1) andza*

(1) ,
respectively.

Inserting Eq.~C5! into Eq. ~4.14! we finally obtain for
the linear polarizability

P(1)~ t !5 (
a52M ,...,M

za
(1)ma

5 (
a52M ,...,M

iSaE
2`

t

E~t!m2amaGa~ t2t!.

~C6!

The linear response function@Eq. ~B1!# is then

R(1)~ t,t!5 i (
a52M ,...,M

iSam2amaGa~ t2t!. ~C7!

Using Eqs.~B8! and~B11! we obtain the linear polarizability
given by Eq.~4.16!.

APPENDIX D: SECOND-ORDER RESPONSE

The equation of motion forza
(2) is

i
]z(2)

]t
5Vaza

(2)2E~ t !(
b

m2a,bzb
(1)

1(
b,g

V2abgzb
(1)zg

(1) ,

a51,...,M , b,g52M ,...,M . ~D1!

and its solution, which includes complex conjugate, is

za
(2)5 i E

2`

t

dt1SaGa~ t2t1!Ga
(2)~t1!, a52M ,...,M ,

~D2!

where

Ga
(2)~t1!5(

bg
V2abgE

2`

t1 E
2`

t1
dt2dt3E~t2!E~t3!

3m2bm2gSbSgGb~t12t2!Gg~t12t3!

1 iE~t1!(
b

m2abE
2`

t1 E~t2!m2bSbGb~t12t2!,

a,b,g52M ,...,M . ~D3!
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
Inserting Eqs.~C5! and~D2! into Eq. ~4.14! and keeping all
terms up to the second order we find that the second-o
response function has three contributions:

R(2)~ t,t1t2!5RI
(2)1RII

(2)1RIII
(2) , ~D4!

where

RI
(2)~ t,t1t2!52(

ab
m2a,bmam2bSaSbGa~ t2t1!

3Gb~t12t2!, ~D5!

RII
(2)~ t,t1t2!5 i E

t2

t

dt (
abg

V2abgmam2bm2gSaSbSg

3Ga~ t2t!Gb~t2t1!Gg~t2t2!, ~D6!

RIII
(2)~ t,t1t2!52(

ab
mabm2am2bSaSbG~ t2t1!G~ t2t2!.

~D7!

Using Eq.~B9! we finally obtain the second-order polariz
ability @Eq. ~4.17!#.

APPENDIX E: THIRD-ORDER RESPONSE

The equation of motion forza
(3) is

i
]za

(3)

]t
5Vaza

(3)2FE~ t !(
b

m2abzb
(2)

1E~ t !(
bg

m2abgzb
(1)zg

(1)22(
bg

V2abgzb
(1)zg

(2)

2(
bgd

V2abgdzb
(1)zg

(1)zd
(1)G ,

a51,...,M , b,g,d52M ,...,M . ~E1!

and its solution, which includes the complex conjugate, i

za
(3)5 i E

2`

t

dt1SaGa~ t2t1!Ga
(3)~t1!, a52M ,...,M ,

~E2!

where

Ga
(3)~t1!5E~t1!(

b
m2abzb

(2)~t1!

1E~t1!(
bg

m2abgzb
(1)~t1!zg

(1)~t1!

22(
bg

V2abgzb
(1)~t1!zg

(2)~t1!

2(
bgd

V2abgdzb
(1)~t1!zg

(1)~t1!zd
(1)~t1!. ~E3!

Here a,b,g,d52M ,...,M and z(1)(t1) and z(2)(t1) are
given by Eqs.~C5! and ~D2!. Inserting Eqs.~C5!, ~D2!, and
~E2! into Eq. ~4.14! and keeping all terms up to third orde
we obtain the following 8 term expression for the third-ord
response function:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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R(3)~ t,t1t2t3!5RI1RII 1RIII 1RIV1RV1RVI1RVII

1RVIII , ~E4!

where

RI
(3)~ t,t1t2t3!52 i (

abg
m2abm2bgmam2gSaSbSg

3Ga~ t2t1!Gb~t12t2!Gg~t22t3!, ~E5!

RII
(3)~ t,t1t2t3!52 (

abgd
m2abV2bgdmam2gm2dSaSbSgSd

3E
t3

t

dtGa~ t2t1!Gb~t12t!

3Gg~t2t2!Gd~t2t3!, ~E6!

RIII
(3)~ t,t1t2t3!52 i (

abg
m2abgmam2bm2gSaSbSg

3Ga~ t2t1!Gb~t12t2!Gg~t12t3!, ~E7!

RIV
(3)~ t,t1t2t3!522 (

abgd
V2abgm2gdmam2bm2dSaSbSgSd

3E
t3

t

dtGa~ t2t!Gb~t2t1!

3Gg~t2t2!Gd~t22t3!, ~E8!

RV
(3)~ t,t1t2t3!52i (

abgdh
V2abgV2gdhmam2bm2dm2h

3SaSbSgSdShE
t3

t

dtE
t3

t

dt8Ga~ t2t!

3Gb~t2t1!Gg~t2t8!Gd~t82t2!

3Gh~t82t3!, ~E9!

RVI
(3)~ t,t1t2t3!5 (

abgd
V2abgdmam2bm2gm2dSaSbSgSd

3E
t3

t

dtGa~ t2t!Gb~t2t1!

3Gg~t2t2!Gd~t2t3!, ~E10!

RVII
(3)~ t,t1t2t3!522i (

abg
mabm2bgm2am2gSaSbSg

3Ga~ t2t1!Gb~t2t2!Gg~t22t3!, ~E11!

RVIII
(3) ~ t,t1t2t3!522 (

abgd
mabV2bgdm2amgm2dSaSbSgSd

3E
t3

t

dtGa~ t2t1!Gb~ t2t!

3Gg~t2t2!Gd~t2t3!. ~E12!

Using Eqs.~B10! and~B13! we obtain 8 term expression fo
the third-order polarizability~symmetrized with respect to
v1 , v2 , andv3 permutations! given by Eq.~4.18!
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
APPENDIX F: VARIATIONAL DERIVATION OF THE
EXCITED-STATE DIPOLE MOMENTS

To derive the excited-state dipoles we use the variatio
formulation of the TDDFT introduced in Refs. 43 and 4
However, instead of varying the MO coefficients, we sho
that the same result could be obtained by varying the den
matrix. The excited states are obtained variationally from
functional

L~j,V,Z,r̄ !5^juLj&2V~^juj&21!1^Zu@F,r̄ #&, ~F1!

required to be stationary with respect to all paramet
(j,V,Z, andr̄). Here the angular brackets denote the sca
product Eq.~3.13!. Variation ofL with respect toj leads to
the eigenvalue problem Eq.~3.10! and the Lagrangian mul
tiplier V ensures the RPA scalar product Eq.~3.13!. In addi-
tion, the Hartree–Fock condition Eq.~2.27! is satisfied by
Lagrangian multiplierZ. ~The orthonormality of the basis se
imposes an additional condition which is important for an
lytic gradient technique but not essential for the purposes
current paper. For clarity we postulated the second condi
from the beginning and refer to the full derivation given
Refs. 43 and 48.! Subsequently, the derivatives of th
excited-state energyV with respect to an external perturba
tion x ~e.g., an external fieldx5E) can be expressed in term
of L as

Vx5Lx5^juLxj&, ~F2!

where the derivatives ofj vanish due to the variational prin
ciple at stationary point ofL.

Variation of L with respect tor̄ determinesZ

dL~r̄ !5^judLj&1^Zud@F,r̄ #&50. ~F3!

Using

d@F,r̄ #5@F~ r̄ !,dr#1@Ṽ~dr!,r̄ #, ~F4!

dLj5@Ṽ~dr!,j#1@Ṽ~j!,dr#1@v (2)~j,dr!,r̄ #, ~F5!

and after rearranging the terms under the scalar product,
~F3! can be written as

^dru@~@@ r̄,j†#,Ṽ~j!#1Ṽ~ 1
2 @@j†,r̄ #,j#!1@v (2)~j,j!!,r̄ #

1^druLZ&50. ~F6!

In turn, this leads to the linear equation forZ

LZ52@~@@ r̄,j†#,Ṽ~j!#1Ṽ~ 1
2 @@j†,r̄ #,j#!

1v (2)~j,j!!,r̄ #, ~F7!

which is identical to Eq.~18! in Ref. 48 given in the basis se
of the momentumuX2Y& coordinateuX1Y& variables. Note
that the variation of the stationary point Eq.~2.27! leads to
the linear Liouville operatorL in Eq. ~F6! and the variation
of the linear Liouville operator results in the second-ord
terms@compare the r.h.s. of Eq.~F7! with the second order
terms in Eq.~3.4!#. Using an expansion~4.1!, the interband
matrix Z for the statea can be further expanded into a set
transition densities$jb% as

Za52(
b

V2aab

uVbu
j2b , b52M ,...,M . ~F8!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Finally, the derivative of the excited-state energyVa @Eq.
~F2!# becomes

Va
x 5Lx5Tr~ t̃ (x)pa!1Tr~V(x)~ r̄ !pa!

1Tr~Ṽ(x)~ja
† !ja!, ~F9!

where

pa5@@ja
† ,r̄ #,ja#1Za5@@ja

† ,r̄ #,ja#2(
b

V2aab

Vb
,

~F10!
b52M ,...,M ,

and (x) denotes the derivative of the Hamiltonian matr
elements while holdingr̄ constant.

The difference between excited- and ground-state dip
moments is defined as]Va /]E and] t̃ i j /]E5mi j @assuming
that the perturbationE(t)•m is included in the one electro
part t̃ ]. Subsequently,pa1 r̄ is the density matrix of the
excited statea. Even though this route represents a sim
and convenient way for computing the excited-state dip
moments and the transition dipoles between states in the
DFT, the current derivation was obtained with the linear
sponse theory@i.e., R term in Eq.~3.4! was neglected alto
gether# and, therefore, holds only up to the second-or
optical responses.

APPENDIX G: SECOND-ORDER OPTICAL RESPONSE
OF THE EFFECTIVE MULTILEVEL SYSTEM

Following Ref. 82, Eq.~4.2! can be interpreted as th
classical Hamilton equation of motionż5$H,z% of the sys-
tem of classical coupled oscillators with the Hamiltonian~up
to the second order!

H~z!5 (
a.0

Vaz2aza1
1

3 (
abg52M ,...,M

Va,bgzazbzg

2E~ t !•P~z!, ~G1!

with the polarizationP given by Eq.~4.14! and tensorVabg

is given by Eq.~4.11!.
A quantum oscillator model whose classical limit

given by Eqs.~4.2! and~G1! can be obtained by associatio
with each classical variableza an annihilation operatoraa

(za5^aa&, a.0), andz2a5za* is a creation operatoraa
†

(za* 5^aa&†).82 aa and aa
† satisfy the boson commutatio

relations:

@aa ,ab
† #5dab ; @aa

† ,ab
† #5@aa ,ab#50. ~G2!

The respective quantum HamiltonianH1 , when preserving
normal ordering, is given by

H15 (
a.0

Vaaa
†aa1

1

3! S (
abg.0

Vabgaaabag

13 (
abg.0

V2abgaa
†abag1h.c.D

2E~ t !•P~aa
† ,aa!, ~G3!

with
Downloaded 28 Oct 2003 to 128.165.156.80. Redistribution subject to A
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P~aa
† ,aa!5 (

a.0
~maaa1h.c.!1

1

2! S (
ab.0

mabaaab

1 (
ab.0

m2abaa
†ab1h.c.D , ~G4!

where h.c. denotes Hermitian conjugate. TheH1 Hamil-
tonian representsM quantum oscillators with the harmoni
frequenciesVa that are subject to inter oscillator coupling
Vabg and the polarizability operatorP(aa

† ,aa). Using the
perturbation theory we next calculate the wavefunctions
this oscillator system to first order inV:82

f (0)5ug&02
1

3! (
abg.0

V2a2b2g

Va1Vb1Vg
aa

†ab
†ag

†ug&0 ,

~G5!

fa
(1)5aa

† ug&01
1

2! (
bg.0

Va2b2g

Va2Vb2Vg
ab

†ag
†ug&0 , ~G6!

fbg
(2)5ab

†ag
†ug&01

1

2! (
a.0

2V2abg

2Va1Vb1Vg
aa

† ug&0

1
1

2! (
dz.0

S Vg2d2z

Vg2Vd2Vz
ab

†

1
Vb2d2z

Vb2Vd2Vz
ag

†Dad
†az

†ug&0 , ~G7!

where ug&0 , aa
1ug&0 , aa

1ab
1ug&0 , and aa

1ab
1ag

1ug&0 denote
the ground, single, double, and triple excited states of
uncoupled system, respectively.

The transition dipoles among the ground and the fi
two excited states~to the first order inV) are given by

^f (0)uPuf (0)&50, ~G8!

^f (0)uPufa
(1)&5ma , ~G9!

^f (0)uPufab
(2)&5mab1 (

g.0
S Vab2gmg

Va1Vb2Vg

2
Vabgm2g

Va1Vb1Vg
D , ~G10!

^fa
(1)uPufb

(1)&5m2ab1 (
g.0

S V2ab2gmg

2Va1Vb2Vg

1
Va2b2gm2g

Va2Vb2Vg
D , ~G11!

^fa
(1)uPufab

(2)&5mb . ~G12!

Using our notation, the respective transition densities
represented as

^gucj
†ci ug&5~ r̄ ! i j , ~G13!

^gucj
†ci ua&5~ja! i j , ~G14!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^gucj
†ci uab&5~@@ja ,r̄ #,jb#! i j

2 (
g52M ,...,M

VabgSg

Va1Vb1Vg
~j2g! i j ,

~G15!

^aucj
†ci ub&5~ r̄ ! i j dab1~@@j2a ,r̄ #,jb#! i j

2 (
g52M ,...,M

V2abgSg

2Va1Vb1Vg
~j2g! i j ,

~G16!

^aucj
†ci ubg&5~jg! i j dab1~jb! i j dag . ~G17!

Here Eq.~G14! is identical to Eq.~3.11! which defines the
transition densities of the linear response. Settinga5b in
Eq. ~G16! recovers the excited stateua& densitypa1 r̄ given
by Eq. ~F10!.

Finally, substituting the transitions dipoles Eqs.~G8!–
~G12! in the usual SOS expression for the second-order
sponse given by8,9

b~v1 ,v2!52
1

4 (
v1 ,v2

perm

(
n,n8

mgnmnn8mn8g

3S 1

~vn8g1v11v2!~vng1v1!

1
1

~vn8g2v12v2!~vng2v1!

1
1

~vn8g1v1!~vng1v11v2!

1
1

~vn8g2v1!~vng2v12v2!

1
1

~vn8g2v2!~vng1v1!

1
1

~vn8g1v2!~vng2v1! D , ~G18!

we obtain expressions for the second-order polarizab
which coincide with Eq.~4.17!. This proves the equivalenc
of the second-order response of the quantum oscillator
tem calculated in the classical limit and using the sum-ov
states expression.
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