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Electronic-oscillator analysis of femtosecond four-wave mixing in conjugated polyenes
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Equations of motion which describe the nonlinear optical
response of conjugated polyenes using a collective electronic-
oscillator representation are derived. Specific signatures of
electronic correlations which enter as anharmonicities and
scattering between oscillators are predicted in ultrafast res-
onant four-wave mixing. Only few resonant oscillators need
to be considered explicitely; effects of the remaining (off reso-
nant) oscillators are introduced via renormalized anharmonic
coupling coefficients. The connection with inorganic semicon-
ductors is established.

PACS numbers: 42.50.Md, 78.66.Qn, 71.35.+z

I. INTRODUCTION

Nonlinear optical spectroscopy of organic materials is an
intensively developing field. It constitutes both fundamental
interest and potential practical applications. Compared to
inorganic semiconductors, investigations of organic molecules
are more difficult theoretically due to the complicated elec-
tronic structure and experimentally due to problems related
to sample-quality, controlled synthesis and poor solubility
of large molecules [1,2]. Resonant time domain nonlinear
spectroscopy provides direct information on the creation of
carriers and excitons and their subsequent dynamics [3–7].
Femtosecond time-resolved absorption spectroscopy revealed
the strong coupling between electronic and vibrational states
in excited state dynamics of the singlet exciton of polydi-
acetylene [3]. Time-resolved gain and absorption measure-
ments have been performed to study the quantum yield of
poly(paraphenylenevinylene) for films, dilute blends and so-
lutions, the defect quenching of luminescence, the formation
and decay of excitons [4], and the energy relaxation and field-
induced exciton dissociation [5]. Degenerate four-wave mix-
ing measurements have been performed in perylenes [6](b).
Recently, the dephasing dynamics of vibronic states in poly-
diacetylene films has been investigated [7]. These experiments
are usually interpreted by simply applying kinetic equations
for excited state populations using phenomenoligical decay
rates.

The calculation of electronic excitations in conjugated
polyenes constitutes a complex many-body problem due to
the strong correlation effects expected for one dimensional
electronically delocalized systems. Ab initio quantum chem-
istry methods are limited to small systems [8–10] and usually
look at effects of correlations on positions of energy levels.

In this paper we investigate how ultrafast resonant four-
wave mixing (FWM) can be used to provide some alterna-
tive, dynamical, signatures of electronic correlations. Our
analysis is based on the recently developed coupled electronic
oscillator representation of the optical response, obtained by
following the dynamics of the reduced single electron den-
sity matrix [11]. We expand the equations of motion for the
density matrix in terms of amplitudes of the various electron-
hole oscillators. With these equations the optical response is
mapped onto a set nonlinear equations; optical nonlinearities
are attributed to anharmonicities and scattering of oscillators
[11–13]. The equations of motion derived here hold for the
optical response up to the third order in the incoming field.
However, extending the present framework to higher order
nonlinearities is straightforward.

We have applied this technique to the calculation of a spe-
cific resonant time-domain experiment, namely degenerate
FWM in the two-pulse self diffraction set-up. We consider
the signal generated in the 2k2 − k1 direction, where k2 and
k1 are the incoming wavevectors. We assume resonant ex-
citation of the lowest 1Bu oscillator and identify the oscilla-
tors which contribute to this signal. Electronic correlations,
which manifest themselves as nonlinear couplings between os-
cillators, lead to distinct signatures in the FWM signal. Our
analysis shows that for the signal considered here, only 2 os-
cillators have to be considered explicitely, which allows for a
very clear and intuitive description of the various nonlinear-
ities [14]. We shall refer to these as the primary oscillators.
All other oscillators are excited off-resonance. Their dynamics
follows adiabatically the excitation and therefore they can be
eliminated from the equations, which results in new anhar-
monic couplings as well as renormalizations of the existing
anharmonicities of the primary oscillators.

To analyze the time-domain signatures of correlations we
compare calculations made using the simple Hückel (SSH)
model [15], which includes no correlations in the optical
response, with the Pariser-Parr-Pople (PPP) model, where
Coulomb interactions are included. We find some unique sig-
natures of correlations in the ultrafast signals: First, due to
correlations the shape of the FWM amplitude is changed from
a free-induction decay, which has a maximum immediately af-
ter the excitation, to one which displays a delayed maximum
as function of time. The results are compared with inorganic
semiconductor nanostructures, where such effects have been
predicted [16–18] and observed [19,20]. Second, the correla-
tions also strongly affect the dynamics of the phase of the
FWM signal. The relative phase of the FWM signal with re-
spect to the exciting pulses changes from π

2
for the Hückel

model to about 0 or π, depending on the signs of the anhar-
monic coupling coefficients. Third, for the PPP model we
find strong signals for negative delays (pulse k2 comes first),
which are absent in a simple two-level model. Such signals
reflect the contributions of a third level which could either be
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a two-photon Ag oscillator or a many body effect of two Bu

oscillators [21,22]. Our calculations show, that anharmonici-
ties due to many-particle interactions dominate these signals
in conjugated polyenes. This state of affairs is reminiscent of
molecular aggregates and was recently analyzed for photosyn-
thetic antenna complexes [23].

II. THE COUPLED ELECTRONIC OSCILLATOR
REPRESENTATION

We consider a system of many π-electrons described by
the tight-binding PPP Hamiltonian, which reproduces many
important properties of conjugated polyenes [24].

bH =
X

m,n,σ

tmnc+
m,σcn,σ +

1

2

X
m,n,σ,σ′

Vnmc+
m,σc+

n,σ′cn,σ′cm,σ

− E(t)
X
n,σ

µnnc+
n,σcn,σ (1)

where c+
m,σ(cm,σ) is the annihilation (creation) operator of a

π-electron on site m with spin σ and ρ̂σ
nm = c+

m,σcn,σ is the
reduced single-electron density matrix.

The first term is the Hückel hamiltonian where tnn is the
Coulomb integral at the n-th atom: tnn =

P
m Vnm; tmn

(m 6= n) is the nearest-neighbor transfer integral between n-
th and m-th atoms: tn,n±1 = β0−β1ln and ln is the deviation
of the n-th bond length from the mean bond length along the
chain. The second term includes electron-electron Coulomb
interactions The repulsion between the n-th and m-th sites
Vnm is given by the Ohno formula:

Vnm =
Up

1 + (rnm/a0)2
(2)

representing the variation of the repulsion between the n-th
and m-th site with distance; here the on-site Hubbard repul-
sion between the n-th and m-th sites U is given by U = U0/ε,
and ε is the static dielectric constant. The last term represents
the coupling to and external electric field E(t). We assume
a localized basis set so that the dipole moment is diagonal
µnm = eznδnm. The dipole operator is given by

µ =
X
n,σ

µnnc+
n,σcn,σ . (3)

We further assume that ground state is a singlet, and can be
described by the HF single electron density matrix ρ̄nm, so
that the spin variables may be eliminated [11].

The parameters used were adjusted to reproduce the en-
ergy gap for polyacetylene (2.0eV ): U0 = 11.13eV , β0 =

−2.4eV, β1 = −3.5eV Å
−1

, ε = 1.5, a0 = 1.2935Å [12]. For
comparison we also performed calculations using the Hückel
model where the Coulomb interaction is neglected U0 = 0. In
this case we used β1 = −5eV Å

−1
in order to reproduce the

PPP band edge.
The time-dependent Hartree-Fock (TDHF) technique [25]

maps the calculation of the optical response onto the dynam-
ics of coupled electronic oscillators representing the electron-
hole pair components of the reduced single electron density

matrix [11]. We first find the Hartree-Fock (HF) ground state.
The stationary HF density matrix ρ̄ satisfies

[h(ρ̄), ρ̄] = 0 , (4)

where

h(ρ̄) = t + V (ρ̄) , (5)

V (ρ̄)mn = −Vmnρ̄mn + 2δmn

X
l

Vmlρ̄ll . (6)

h is the Fock operator, V is the Coulomb operator. Eq. (4) can
be solved by an iterative diagonalization. We have calculated
the geometry optimized HF ground state [26] as described in
Ref. [12].

When the polyene is driven by an external field, the density
matrix becomes time dependent. We shall represent it as

ρ(t) = ρ̄ + ξ(t) + T (ξ(t)) (7)

Here ξ represents the particle-hole and T (ξ) is the particle-
particle and the hole-hole parts of deviation of the reduced
single-electron density matrix from the ground state ρ̄. All
quantities in Eq. (7) are N×N matrices, where N is the basis
set size. In this scheme, which is valid in the absence of pure
dephasing, the particle-particle and hole-hole components of
the density matrix need not to be considered as independent
variables, since they can be expressed in terms of the particle-
hole part [11]. Therefore only the particle-hole components
of the density matrix, ξ, need to be calculated explicitely.

T can be expanded in a Taylor series which contains only
even powers of ξ. For optical signals not higher than χ(3) it
is sufficient to retain only the lowest (second order) term.

T (ξ) =
1

2
[[ξ, ρ̄], ξ] . (8)

The equation of motion for the particle-hole part of the
density matrix is given by (~ = 1):

i
∂

∂t
ξ(t) = L(ξ) − E[µ, ρ̄ + ξ + T (ξ)] + [V (ξ), ξ]

+ [V (ξ), T (ξ)] + [V (T (ξ)), ξ] + [V (T (ξ)), ρ̄], (9)

where the Liouville space operator (superoperator) L repre-
sents the linear part of the equation [12]

L(ξ) = [t + V (ρ̄), ξ] + [V (ξ), ρ̄] . (10)

The induced-polarization (neglecting the equilibrium polar-
ization Tr(µρ̄), which does not affect in the optical response)
is given by the sum of its particle-hole and particle-particle
contributions

P (ξ(t)) = Tr(µξ(t)) + Tr(µT (ξ(t))) , (11)

where µ is the dipole operator defined in Eq. (3), and ξ(t)
is the time-dependent driven electron-hole part of the density
matrix.
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A. Equations of motion for electron-hole oscillators

As shown in Ref. [11] the particle-hole part of the density
matrix can be expanded on terms of modes ξα

ξ(t) =
X
α>0

(ξαzα(t) + ξ+
α z∗

α(t)) . (12)

Each oscillator α is described by two operators ξα and ξ+
α .

These oscillator variables are related to the oscillator coordi-
nate Qα = 1√

2
(ξα+ξ+

α ) and the momentum Pα = i√
2
(ξα−ξ+

α )

[11]. As in Ref. [11] we define ξ−α = ξ+
α . zα and its complex

conjugate z−α = z∗
α will be denoted complex oscillator am-

plitudes. The oscillator variables, are the eigenmodes of the
linear part of Eq. (9) and satisfy:

L(ξα) = Ωαξα, L(ξ−α) = −Ωαξ−α . (13)

They are normalized using the condition:

Tr(ρ̄[ξ−α, ξα]) = 1 . (14)

Inserting the expansion Eq. (12) into Eq. (9) gives the follow-
ing equations for the complex amplitude zα(t) of the oscillator
variable ξα:

i
∂

∂t
zα = Ωαzα − Eµα − E

X
β

µα,βzβ − E
X
βγ

µα,βγzβzγ

+
X
βγ

Vα,βγzβzγ +
X
βγδ

Vα,βγδzβzγzδ , (15)

with

µα = Tr([ρ̄, ξ−α][µ, ρ̄])

µα,β = Tr([ρ̄, ξ−α][µ, ξβ])

µα,βγ = Tr([ρ̄, ξ−α][µ,
1

2
[[ξβ , ρ̄], ξγ ]])

Vα,βγ = Tr([ρ̄, ξ−α][V (ξβ), ξγ ])

+ Tr([ρ̄, ξ−α][V (
1

2
[[ξβ , ρ̄], ξγ ]), ρ̄])

Vα,βγδ = Tr([ρ̄, ξ−α][V (
1

2
[[ξβ , ρ̄], ξγ ]), ξδ])

+ Tr([ρ̄, ξ−α][V (ξβ),
1

2
[[ξβ , ρ̄], ξγ ]]) . (16)

Eq. (15) constitutes the equations of motion for zα with
α > 0. The amplitudes for the adjoint (negative frequency)
variables are simply the complex conjugates, see Eq. (12).
The summation indices β, γ, and δ on the right hand side
of Eq. (15) run over all (positive and negative frequency)
oscillator variables.

The first two term in the right hand side of Eq. (15) rep-
resent a linearily driven harmonic oscillator. The other terms
are anharmonicities describing coupling among electronic os-
cillators. We label field-induced and purely material anhar-
monic coefficients by µ and V , respectively. Note that the
summations on the right hand side include terms where the
summation indices are equal (β = γ = δ) (diagonal anhar-
monicities). It is important to note that, as is evident from
Eq. (16), all the anharmonic coefficients can be calculated
using the ground state density matrix ρ̄ as well as the eigen-
modes ξα of the linearized TDHF equation.
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FIG. 1. Frequencies of all Bu and Ag oscillators for the
Hückel model of a 30 carbon atom polyacetylene chain. There
are 113 Bu and 112 Ag oscillators. The frequencies of the first
eight Bu (Ag) oscillators are: 2.28, 3.35, 3.46, 3.46, 4.63, 4.66,
4.66, and 4.79eV (2.82, 2.82, 3.99, 3.99, 4.13, 4.13, 5.30, and
5.30eV ).

The optical polarization is given by:

P (t) =
X

β

µ̃βzβ(t) +
X
βγ

µ̃βγzβ(t)zγ(t) , (17)

with

µ̃β = Tr(µξβ)

µ̃βγ = Tr(µ
1

2
[[ξβ , ρ̄], ξγ ]) . (18)

Like in Eq. (15) also in Eq. (17) the summation indices β
and γ run over all oscillator variables. Eqs. (15) and (17)
may be used to compute the optical response of our many-
electron system. This task has therefore been mapped onto
finding the oscillators and the nonlinear couplings µ and V . µ
describes optical transitions between the oscillators whereas V
describes scattering between oscillators, induced by the many-
body Coulomb-interaction.

For a polyacetylene chain with N carbon atoms and N

π-electrons there are N2

4
particle-hole oscillators. Eq. (15)

therefore represents the equations of motion for the N2

4
com-

plex amplitudes of oscillator variables associated with positive
frequencies. In Ref. [11] equivalent equations of motion have
been given for the coordinate Qα and the momentum Pα of
the oscillators. In the analysis of resonant optical nonlinear-
ities it is more convenient to use the complex amplitudes,
rather than coordinates and momenta. The expansion of the
density matrix in the wave-vectors of the exciting fields, which
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corresponds to an expansion with respect to the central ex-
citation frequencies, is simpler in this case. The equations
used in Ref. [27] contain also particle-particle and hole-hole
oscillators to a total number of N2. These equations are also
equivalent to the present ones, since within the TDHF the
additional oscillators carry no information and can be elimi-
nated rigorously [11].

B. Two-oscillator representation of resonant
four-wave mixing

In Appendices A and B we show how our equations of mo-
tion can be applied to compute optical nonlinearities induced
by a multiple-pulse excitation. A major advantage of the os-
cillator representation is that in practical applications it is
usually necessary to include only very few oscillators. For
off-resonant susceptibilities these are the oscillators that cou-
ple most strongly to the ground state density matrix. A tree
diagram scheme for identifying the dominant oscillators for
the nonlinear response, order by order, has been developed in
Ref. [27]. In this article we consider resonant response, and
the most natural way to select the relevant oscillators is by in-
cluding those oscillators whose frequencies are close to various
combinations of the incoming field frequencies. The selectiv-
ity is expected to be more pronounced in the resonant case,
which enables us to discuss the response using very few pa-
rameters (frequencies and anharmonic coefficients) connected
to the relevant oscillators.

The exciting field is given by:

E(t) =
X

j=1,2

Êje
−((t−τj)/t̄j)2(eikj ·r−iωjt + e−ikj ·r+iωjt). (19)

Here Êj is the real amplitude, τj the time delay and ωj the
central frequency of pulse j. In our numerical calculations
we have assumed that the central frequencies of both exciting
pulses coincide with that of the 1Bu oscillator, which has the
largest oscillator strength, i.e.: ωL = ω1 = ω2 = Ω(1Bu) =
Ω1, and we used a duration of t̄1 = t̄2 = 20fs for the Gaus-
sian pulse envelopes. Since the spectral width of even these
very short laser pulses (about 0.1eV ) is small compared to the
frequency spacing between the oscillators, only a few oscilla-
tors will be excited resonantly. Our calculations show that
the first and third order response is to very good accuracy
dominated by the 1Bu oscillator. In second order there may
be one Ag oscillator which appears as resonantly excited two-
photon transition. This will be discussed later using Figs. 1
and 7.

In Appendix C we have developed equations which retain
only two resonantly excited primary oscillators, the 1Bu and
one Ag oscillator, explicitely. The off-resonant contributions
from all other virtual Ag oscillators in second order, were
adiabatically eliminated from the equations of motion, which
results in renormalization of anharmonicities and scattering
constants. We thus obtain the following equations of motion
for the complex amplitudes of the two primary oscillators.

i
∂

∂t
z1 = (Ω1 − ωL − i

1

T2
)z1 − µ1E

− E2(Y1 + X1)z1 − E2X−1z−1 − Eµ12z2

− E(s2 + Y3 + X3)z1z1 − E(s1 + Y2 + X2)z−1z1

+ 2V12z2z−1 + (V1 + Y4 + X4)z−1z1z1 (20)

z−1 = z∗
1

i
∂

∂t
z2 = (Ω2 − 2ωL − i

1

T ′
2

)z2 − Eµ12z1 + V12z1z1 (21)

Here we have added phenomenological dephasing times T2

and T ′
2 for the two-oscillators and z−1 denotes the amplitude

of the negative frequency variable ξ−1 of the 1Bu oscillator,
see Appendix A. We assume that the relaxation times for
the populations, i.e. particle-particle and hole-hole compo-
nents of the density matrix, are given by T1 = T2/2. We thus
do not include pure dephasing processes. To investigate pure
dephasing one needs to consider additional dynamic variables
[28]; This goes beyond the present treatment. In principle the
inclusion of dephasing times for the off-resonant oscillators re-
sults in imaginary contributions to the renormalization terms
Xi, Yi. Since in our case the detuning for the off-resonant
terms is very large compared to the dephasing rate, those
imaginary parts can be neglected.

All parameters appearing in Eqs. (20) and (21) have been
defined in Eqs. (C5-C10). In Appendix C we also present
the equations in more detail, including indices denoting the
propagation directions. To obtain the FWM signal we solve
Eqs. (20) and (21) order by order. In first order one has to
solve the equation for z1 keeping just the µ1E terms on the
right hand side. This represents a linearily driven harmonic
oscillator with frequency Ω1 and transition dipole µ1. The so-
lution of this equation yields z1 for the propagation directions
k1 and k2. z−1 is then the complex conjugate of z1 with the
inverse directions −k1 and −k2 (see Appendices). Then we
solve the equation for z2 in second order, keeping inhomogen-
ities representing two-photon resonances, which correspond
to the direction 2k2. In the equation for z2 the first term
represents an oscillator with frequency Ω2. The other terms
are nonlinear sources. µ12 is a transition dipole coupling the
two oscillators and V12 a many-body induced nonlinear cou-
pling. Finally, the first and second order terms are inserted
again into the equation for z1 to calculate the third order
kS = 2k2 − k1 component. The induced polarization in this
direction is given by:

PS(t) = e−iωLt(µ1z1 +
X

β

µ−1βz−1zβ +
X

β

µ1βz1zβ). (22)

As shown in Appendix C the amplitudes for the virtual Ag

oscillators be evaluated analytically. Inserting these expres-
sions, Eqs. (C1)-(C4), into Eq. (22) simplifies the expression
for the polarization.

PS(t) = e−iωLt(µ1z1 + µ12z−1z2 + (A1 + B1)z−1(z1)
2

+ (A2 + B2)Ez−1z1 + A3E(z1)
2)

= e−iωLt|PS(t)|e−iϕ′(t). (23)

The anharmonic constants A1, A2, A3, B1, and B2 arise
from the elimination of the virtual oscillators, see Eq. (C11).
|PS(t)| is the time-resolved amplitude and ϕ′(t) the slowly
varying part of the phase. The total phase of the signal is
given by ϕS(t) = −(ωLt + ϕ′(t)) = −ϕL(t) − ϕ′(t), where
ϕL(t) is exactly the phase of the exciting laser pulses, see Eq.

4
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(19). We later examine the relative phase of the signal with
respect to the exciting pulses [29]

∆ϕ(t) = ϕL(t) − ϕS(t) = ϕ′(t) . (24)

This phase can be measured using heterodyne detection. The
time-integrated FWM signal is given by

SINT (τ ) =

Z
|PS(t)|2dt , (25)

where τ is the time delay between the two-pulses.
The interpretation of the various terms in Eq. (20), which

generate the FWM signal are as follows. First we discuss the
terms which only involve the 1Bu oscillator. s1 is the only
nonlinearity which is also present in a simple two level system
[30]. It represents the creation of a FWM signal by scattering
of the field off a transient grating (k2−k1). It has its origin in
the fact that electrons are Fermions and is usually referred to
as Pauli blocking or phase-space filling nonlinearity [16,17,19].
s2 describes a similar process, where now the field is scat-
tered off a term rotating with twice the transition frequency
of the 1Bu oscillator (−2ω2), instead of a transient grating
term (ω1−ω2), which has no optical rotation frequency, since
ω1 = ω2. V1 formally appears as a local-field like nonlinearity
[16,28]. It describes self-scattering of the excitation of the 1Bu

oscillator induced by the many-particle Coulomb-interaction.
Next we discuss the terms resulting from the Ag oscillator,
which is excited resonantly in second order. µ12 is the tran-
sition dipole which couples the Ag and 1Bu oscillators. It
describes the creation of a third order polarization associated
with the 1Bu oscillator, created from the excitation of the Ag

oscillator times a field. µ12 also appears in the definition of
the polarization. This term comes from the particle-particle
part of the density matrix. V12 describes the many-particle in-
duced coupling between the Ag and the 1Bu oscillator, which
gives rise to nonlinear signals. All other terms (Xi and Yi)
come from the elimination of off-resonant second order contri-
butions. X1, Y1, X−1 describe the creation of a FWM signal
by scattering of a linear term by two-fields. In the defini-
tion of these coefficients it follows that they are determined
only by dipole moments between oscillators. All other terms
resulting from the elimination process involve many-particle
interactions between oscillators, which means that they are
zero for the Hückel model. By inspection of the equations of
motion one finds that all these terms lead to renormalizations
of already existing nonlinear coupling coefficients s1, s2, V1.
Finally, the particle-particle part of the density matrix leads
to the quadratic terms in the polarization, Eq. (22).

Depending on the time delay, the FWM technique consid-
ered here yields information about different anharmonic cou-
plings. For positive delay (pulse k1 comes first) this technique
is known as photon echo, since in an inhomogeneously broad-
ened system the amplitude of the signal will have an echo-like
envelope [30,31]. As can be analyzed using Eq. (C7), for a
positive delay larger than the pulse duration, when the over-
lap between the two pulses can be neglected, only few of the
inhomogentities in Eq. (20) contribute to the signal. Like in a
two-level system, the phase-space filling s1 and its renormal-
izations Y2 and X2, only contribute for positive delay [30,31].
Also the small renormalization term X−1 only contributes for
positive delay. All of these inhomogenities explicitely contain

pulse k2 multiplying a term which is present after both pulses
have excited the system, see Eq. (C7). This only leads to a
nonvanishing results, if pulse k2 comes after pulse k1. For
positive delays also the many-particle induced terms repre-
sented by the nonlinear scattering potentials V12 and V1, as
well as its renormalizations Y4 and X4 contribute [16,17]. The
sources of these terms do not contain an electric field, but are
given by products of complex amplitudes. These amplitudes
do not vanish as fast as the exciting pulses, but decay slowly
as determined by the dephasing times. Therefore these many-
particle terms will contribute to the signal for any time delay
[16–18].

For large negative delay the two-photon resonances induce
FWM signals even if many-particle interactions are neglected
[21,22]. (Note that for a linearily driven harmonic three-level
system, i.e. equal energy spacing and dipole moments scal-
ing like

√
2, all nonlinear terms cancel identically, and the

optical response is purely linear.) This is represented by µ12

and s2, as well as its renormalizations Y3 and X3. These in-
homogeneties contain pulse k1 multiplying a term which is
present after pulse k2 has excited the system, see Eq. (C7).
Such terms are nonvanishing only if pulse k1 comes after k2.
For a small (positive or negative) delay, when the two pulses
temporarily overlap, all of the inhomogeneties in Eq. (20)
contribute. In addition to the ones discussed before, also the
small source terms Y1 and X1, may contribute to the signal.
Since they contain explicitely both pulse k1 and k2 they van-
ish unless both pulses overlap.

III. NUMERICAL RESULTS

In this section we compare the calculated FWM signals for
the Hückel and the PPP models for a 30 carbon atom poly-
acetylene chain. The signal will be analyzed in terms of the
anharmonicities and scattering of the oscillators as described
in the previous section. We tabulate all relevant coupling con-
stants and show how many virtual oscillators are needed for
calculating the renormalized anharmonicities.

A. The Hückel model

We first discuss the properties of the geometry optimized
ground state for the Hückel model [12,26]. The ground state
is characterized by a uniform charge density ρ̄nn = 0.5 at each
carbon atom. The second quantity, which is closely related to
the stabilization mechanism of the ground state, is the bond
order defined by

pn = ρ̄n,n+1 + ρ̄n+1,n . (26)

We further introduce the bond order alternation parameter
p′

n

p′
n =< pn > −(−1)npn (27)

where < pn > is the average bond order, which is 0.64 in our
calculation. The geometry optimized ground state is a bond
order wave, where pn alternates between every two bonds
[12,13]. Except for boundary effects near the chain ends it

5
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TABLE I.

Hückel PPP

Ω(1Bu) 2.28eV 2.28eV

Ω(5Bu) 3.99eV 4.52eV

µ1 3.86eÅ 4.80eÅ

s1 -3.86eÅ -2.81eÅ

s2 0.0eÅ 0.017eÅ

V1 0.0eV 0.063eV

µ12 0.0eV 0.66eÅ

V12 0.0eV -0.021eV

X1 21.99eÅ2V −1 5.36eÅ2V −1

X−1 0.0eÅ2V −1 0.078eÅ2V −1

X2 0.0eÅ 0.26eÅ

X3 0.0eÅ 0.13eÅ

X4 0.0eV -0.082eV

Y1 -36.16eÅ2V −1 -23.0eÅ2V −1

Y2 0.0eÅ -1.33eÅ

Y3 0.0eÅ -0.67eÅ

Y4 0.0eV 0.035eV

has an almost uniform bond order alternation parameter of
p′

n = 0.21. The average bond length is 1.06 ± 0.11Å. Thus
the transfer integral can be approximated by tn,n±1 = β̄(1 −
(−1)nδ), with β̄ = −3.9eV and δ = 0.13.

For the Hückel model most of the coupling constants ap-
pearing in the equations of motion, Eqs. (20) and (21), are
zero, since the Coulomb matrix vanishes, see Table I. The
surviving terms µ1, s1, s2, µ1n do not include the Coulomb in-
teraction. As can be seen in Appendix C, most of the terms
arising from the elimination of the off-resonant Ag oscillators
involve the Coulomb interaction. Therefore only X1, X−1, Y1

are finite. Additionally, for the Hückel model we find no Ag

oscillator which can be resonantly excited as a two-photon
resonance. This can be seen from Fig. 1, which displays
the frequencies of all oscillators. The frequency of the lowest
1Bu oscillator is 2.28eV . The Ag oscillators which are clos-
est in frequency to twice the frequency of the 1Bu are the
6Ag and 7Ag oscillators at 4.13eV . The frequency difference
2Ω(1Bu) − Ω(6Ag) = 0.43eV is already larger than the spec-
tral width of the exciting 20fs laser pulses, which is about
0.1eV . Therefore all contributions from Ag oscillators can be
assumed to be off-resonant and the only primary oscillator
is the 1Bu. In the numerical calculations of the FWM sig-
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FIG. 3. Convergence of anharmonicities for the Hückel

model as function of number of virtual Ag oscillator variables.
Shown is the relative percent difference of the quantity to its
converged value.

nal we have included the phenomenological relaxation times
T2 = 80fs for the Bu and T ′

2 = 40fs for the Ag oscillators.
In Fig. 2 we show the density matrices of the ground-state

and of the 1Bu oscillator using the π orbital (real-space) ba-
sis. The diagonals of these plots represent the charge density
ρnn, the off diagonal elements shows the electronic coherences
in the system. The ground state is more localized along the
diagonal than the oscillator, which shows that the optical ex-
citation creates electronic coherence in the system.

In Table I we give the relevant coupling constants for the
Hückel model. It turns out that µ1 = −s1; this resembles a
simple two-level model, where the inhomogenity of the optical
Bloch equation for the polarization reads µE(1−n) (here n is
the population) [30]. We also find that s2 is zero, indicating
that no two-photon resonance involving solely the 1Bu oscil-
lator contributes to the signal, which again mimics a simple
two-level system. Therefore the only nonlinearity, involving
just the 1Bu oscillator, is given by s1, which represents a
scattering of the field off a transient grating.

Looking at the coupling coefficients arising from the elim-
ination of the Ag oscillators, it turns out that X−1 vanishes,
and X1 and Y1 are finite. Both of these coefficients represent
the scattering of two fields of the linear excitation. These
terms result in small contributions to the FWM signal and,
as can be seen from Eq. (C7), they only contribute when the
two pulses overlap in time.

To find out how many virtual oscillators contribute to these
two terms, we show in Fig. 3 the convergence of X1 and Y1

with the number of virtual Ag oscillator variables taken into
account. The summations over the Ag oscillators, see Eq.
(C10), have been made in such a way that we start with the
largest term and then one by one include the smaller coupling
terms. We see that by taking just 2 (out of 224) Ag oscillators
variables into account to obtain a 0.5% accuracy for X1 and
2.5% for Y1. The two oscillators most strongly coupled to the
1Bu oscillator are the 2Ag and 3Ag oscillators; both have a
frequency of 2.82eV .

In Fig. 4 we display the amplitude and the relative phase
of the time-resolved FWM signal for time-delay τ = 0fs for

6
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FIG. 2. (a) Ground state density matrix and (b) absolute value of density matrix representing the 1Bu oscillator for the
Hückel model. (c) Ground state density matrix and absolute value of density matrix representing the 1Bu (d), 3Ag (e), and
5Ag (f) oscillators for the PPP model. (Large=blue, green, yellow, red=small)
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FIG. 4. (a) Time-resolved amplitude and (b) phase of the
FWM signal for time-delay τ = 0fs for the Hückel model.
Solid line: model IH, dashed: model IIH, dotted: model IIIH,
and dashed-dotted: laser pulse envelope.

three different models. Model IH is a full calculation which
includes all oscillators explicitely, according to Appendix B.
In models IIH and IIIH only the 1Bu oscillator has been con-
sidered explicitely. The off resonant Ag oscillators enter via
renormalizations of the anharmonic couplings in model IIH
(see Appendix C), while in model IIIH they are neglected. We
find that all three calculations are very similar. Only during
the excitation process, when the signal is still small, there are
slight differences in the phase of the signals. This analysis
shows that the resonant FWM signal for the Hückel model
is well described by the 1Bu oscillator alone, which can also
be described using a simple two-level model. The shape of
the amplitude of the FWM signal represents a free-induction
decay, which means that the signal reaches its maximum im-
mediately after the excitation by the pulses, and subsequently
decays [30]. We also compute the relative phase ∆ϕ of the
FWM signal, which is given in Fig. 4(b), is after the exci-
tation process (t > 20fs) equal to π

2
. This means that, like

in a resonantly excited classical oscillator, the optically ex-
cited polarization follows the laser pulse with a phase shift of
π
2
, which is in agreement with analytical solution of optical

Bloch equations performed for ultrashort pulses [16,30]. It
has been shown that in this limit the FWM signal caused by
phase-space filling has a negative imaginary prefactor, which
gives a relative phase of π

2
.

The second order density matrix has a k2 − k1 (transient-
grating) and a 2k2 (two-photon) component. The latter is

negligible in the present calculation. Fig. 5(a) shows the
second order density matrix representing a transient-grating
in real space

ρ(−1|1)(t) = ei(ω1−ω2)t

0
@1

2
([[ξ1, ρ̄], ξ−1] +

X
β

ξβz
(−1|1)
β (t)

+ [[ξ−1, ρ̄], ξ1])z
(−1|0)
−1 (t)z

(0|1)
1 (t)

�
, (28)

here the upper indices refer to the propagation directions,
see Appendix A. Due to the symmetry of this expression the
density matrix ρij representing this term is zero if i+j is even
(this is indicated by the red squares in Fig. 5(a), where we
have used a different plot style but the same color code as in
Fig. 2). The Ag oscillator amplitudes (z

(−1|1)
β ) are small, and

the odd index combinations show therefore a profile similar
to the 1Bu oscillator shown in Fig. 2(b).

Since we have shown that the Hückel model behaves like a
simple two-level system, we expect no time-integrated FWM
signal for negative delays. This is verified by Fig. 6, where
we compare model IH and IIIH. While the signal for positive
delays decays with T2/2, as expected for a homogeneously
broadened two-level system, the signal decays much faster for
negative delays. The small signals for negative delays solely
originate from the finite pulse width. The dashed line in Fig.
6 represents the time-integrated signal for model IIIH, it lies
almost exactly on the solid line representing model IH.

We should however point out, that the absence of the sec-
ond primary oscillator, appearing as a two-photon resonance
is not an intrinsic property of the Hückel model. For other
sizes or bond alternation parameters there may be Ag oscil-
lators with frequencies in the vicinity of twice the frequency
of the 1Bu oscillator, which may then also contribute to the
nonlinear response. For the same parameters used here, we
find that for a chain containing 22 carbon atoms the 6Ag and
7Ag oscillators can be resonantly excited as two-photon res-
onances (Ω(1Bu) = 2.56eV , Ω(6Ag) = Ω(7Ag) = 5.11eV ).
Our calculations show, that compared to the 1Bu oscillators,
even for this case, the Ag oscillators contribute only weakly
for the signal. For zero delay they are responsible for only
0.8% of the signal (for the 30 carbon atom chain this value is
0.2%). However, for large negative delays, when the contri-
butions from the 1Bu oscillator vanish, the two-photon reso-
nances induce a finite FWM signal. For the chain of 22 carbon
atoms these signals for negative delays are very weak. The
time-integrated FWM signal for τ = −100fs is five orders of
magnitude smaller than the one for zero delay. We therefore
believe that our conclusions drawn for the resonant response
of Hückel model, regarding the weak coupling of the 1Bu to
the Ag oscillators, are of general nature.

B. The PPP model

We shall now explore the role of electronic correlations
by repeating the previous calculations for the PPP model.
Similar to the Hückel model, the geometry optimized HF
ground state is characterized by a bond order wave with a
uniform charge density [12,26]. This structure is stabilized

8
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FIG. 5. Absolute value of second-order density matrix ρ(2)(t) at t = 20fs representing transient-grating (k2 − k1) for (a)
model IH, Eq. (27), (b) model IP, Eq. (28), (c) model IIP, Eq. (27), and (d) two-photon resonances (2k2) for model IIIP, Eq.
(29).
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FIG. 6. Time-integrated FWM for the Hückel model. Solid line: model IH, dashed: model IIIH, and dashed-dotted: laser

pulse envelope.
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FIG. 7. Bu and Ag oscillator frequencies for the PPP model
for a 30 carbon atom polyacetylene chain. There are 113 Bu

and 112 Ag oscillators. The frequencies of the first eight Bu

(Ag) oscillators are: 2.28, 3.49, 4.10, 4.57, 4.59, 4.95, 5.48, and
5.62eV (2.89, 3.73, 4.06, 4.52, 5.05, 5.12, 5.13, and 5.37eV ).

by the electron-phonon and the Coulomb exchange interac-
tions. The calculated ground state has an average bond order
< pn >= 0.63 and alternation parameter p′

n = 0.24. The
average bond order alternation is a little larger than in the
Hückel model. The average bond length is 1.31±0.05Å, where
the alternation is due to the larger force constant smaller than
in the Hückel model [26]. The average transfer integral can be
approximated by tn,n±1 = β̄(1 − (−1)nδ), with β̄ = −2.7eV
and δ = 0.07.

All of the coupling constants in Eqs. (20) and (21) can
contribute once the Coulomb interaction is incorporated, see
Table I. The frequency of the lowest 1Bu oscillator is again
2.28eV . The Ag oscillator which is closest in frequency to
twice the frequency of the 1Bu is the 5Ag at 4.52eV , see Fig.
7. The frequency difference 2Ω(1Bu) − Ω(5Ag) = 0.049eV
is smaller than the spectral width of the exciting 20fs laser
pulses. All other contributions from Ag oscillators can be
assumed to be off-resonant. So the two primary oscillators,
which are considered explicitely, are 1Bu and 5Ag .

In Fig. 2(c) and 2(d) we show the density matrices of the
HF ground-state and of the 1Bu oscillator. Compared to the
1Bu oscillator, see Fig. 2, calculated for the Hückel model,
which is strongly delocalized in the off-diagonal direction, the
many-particle Coulomb-interaction leads to localization of the
oscillator towards the diagonal. Still the ground state is again
more localized along the diagonal than the oscillator, which
shows that the optical excitation creates electronic coherence

in the system. Also shown in Fig. 2 are the most strongly con-
tributing Ag oscillators, (e) the 3Ag, which gives the strongest
off resonant contribution, and (f) the 5Ag, which appears as
a two-photon resonance.

In Table I we give the relevant coupling constants for the
PPP model. To simplify the analysis of these numerous term,
we split the discussion into three parts. In model IP, like
in model IIIH for the Hückel model, we neglect all contribu-
tions except for the ones involving only the 1Bu oscillator. In
addition to these contributions we include in model IIP the
renormalization originating from the elimination of the Ag

oscillators appearing as transient-gratings (Xi). Finally, in
model IIIP we also add the explicitely considered 5Ag oscilla-
tor, as well as all renormalizations induced by Ag oscillators
appearing as two-photon resonances (Yi).

In model IP only the following terms contribute:
µ1, s1, s2, V1. s1 describes the phase space filling, unlike the
Hückel model, due to correlations its magnitude is not equal
to the magnitude of the dipole µ1 but is somewhat smaller.
s2 describes a similar process, where now the field is scattered
off a term rotating with twice the transition frequency of the
1Bu oscillator, instead of a transient grating term like in s1,
which basically has no rotation. In the absence of correlation
(the Hückel model) s2 was zero, here s2 is finite, but still very
small, only 0.6% of s1, and can therefore be neglected. V1 rep-
resents a many-particle induced scattering potential, which
formally appears like a local field correction [16–18]. Actu-
ally it includes all many-particle contributions involving only
the 1Bu oscillator. Neglecting the small s2 contribution, the
equation is equivalent to a nonlinear wave-equation, which has
been extensively used for the description of nonlinear optical
properties of inorganic semiconductors [16,17,19,29]. In this
sense the nonlinear wave-equation appears as a special case
of the present oscillator equations, obtained when some terms
are neglected. This nonlinear wave equations can be derived
by expanding the semiconductor Bloch equation [32,33] in an
excitonic basis, keeping only the 1s exciton. In the language
of the semiconductor Bloch equations the nonlinear scatter-
ing potential includes energy and field renormalization terms,
which are induced by the many-particle Coulomb interaction
[18,29].

The FWM signal for model IP is given by the solid lines
in Fig. 8 , where both the amplitude of the FWM signal and
its relative phase are plotted. Compared to the Hückel model
calculations, the amplitude changes its shape. It is no longer a
free-induction decay, but has a maximum at later times, which
are determined by the dephasing times. This is the same sig-
nature that has been observed in time-resolved FWM exper-
iments on inorganic semiconductor nanostructures [19,20,34].
In semiconductors these signal shapes have been interpreted
by a nonlinear Ginzburg-Landau like wave equation for the
1s exciton amplitude [16,17,19,29]. If we only consider the
1Bu oscillator and further neglect the small s2 term, we ob-
tain an identical wave equation as a special case of the os-
cillator equations. Besides the phase-space filling (s1) in-
duced by the many particle Coulomb interaction it has an
additional nonlinearity (V1), which formally appears like a
local field correction. This nonlinear scattering potential de-
scribes scattering of the induced polarizations, resulting in
a FWM signal. According to analytical solutions of optical
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FIG. 8. (a) Time-resolved amplitude and (b) phase of the
FWM signal for time-delay τ = 0fs for the PPP model: Solid
line: model IP, dashed: model IIP, dotted: model IIIP, and
dashed-dotted: laser pulse envelope.

Bloch equations including a local field, this contribution has
a real positive prefactor [16,29]. Since V1 itself is positive and
since the many-particle induced FWM signal is like in inor-
ganic semiconductors larger than the phase-space filling, the
relative phase of the FWM signal, solid line in Fig. 8, is about
0, i.e. the induced polarization is in phase with the exciting
pulse.

Fig. 5(b) shows the second-order density matrix in real
space, representing a transient-grating (k2 − k1) formed by
the 1Bu oscillator

ρ(−1|1)(t) = ei(ω1−ω2)t 1

2
([[ξ1, ρ̄], ξ−1]

+ [[ξ−1, ρ̄], ξ1])z
(−1|0)
−1 (t)z

(0|1)
1 (t). (29)

Due to the symmetry of this expression, like in the Hückel
model, the density matrix ρij representing this term is zero if
i + j is even (this is indicated by the red squares). The odd
index combinations show a profile similar to the 1Bu oscillator
shown in Fig. 2(d). Accordingly, like the 1Bu oscillator, also
the corresponding transient-grating is more localized in the
PPP than in the Hückel model.

In model IIP the off resonant transient grating contribu-
tions X1-X4 are included. The convergence of these param-
eters with the number of oscillator variables is shown in Fig.
9. The value for X1, which is a small contribution, since it
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FIG. 9. Convergence of the X anharmonicities for the PPP
model as function of number of virtual Ag oscillator variables.
Shown is the relative percent difference of the quantity to its
converged value.
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FIG. 10. Same as Fig. 9 but for the Y anharmonicities.

describes scattering of a linear term off two-fields, is to 2.7%
accuracy given by the coupling to the 3Ag oscillator. For X−1,
we have to keep five Ag oscillator variables to get 5% accuracy.
X2, which acts as renormalizations of s1 is to within 5% given
by the coupling to the 3Ag oscillator alone. For X3, which acts
as renormalizations of s2 we have to keep contributions from
three Ag oscillators variables to get it to 3% accuracy. To get
X4, the renormalization of the nonlinear scattering potential
V1 also within 5%, we have to keep 16 oscillators variables The
expression for X4 it is entirely determined by the Coulomb-
interaction between different oscillators. Its slow convergence
as function of the number of oscillators variables compared to
the other quantities indicates, that the Coulomb-interaction
couples the oscillators much less selectively than the dipole
coupling, which is present in the expressions for the other
terms.

The FWM signal for model IIP is given in Fig. 8 (dashed
lines), where the absolute value as well as the relative phase
of the FWM signal are plotted. The most notable changes
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between the signal involving only the 1Bu oscillator and the
present one are the decrease in amplitude and the change in
phase. These features can be simply explained by consider-
ing the values of V1 and its renormalization X4. While V1 is
positive +0.063eV , X4 is calculated to be negative and larger
in absolute value −0.082eV . Therefore the effective nonlin-
ear scattering potential V1 + X4 = −0.019eV is negative and
about a factor 3 smaller than V1. This reduces the ampli-
tude of the interaction-induced contribution to the signal and
changes its phase, which in turn explains the observed dif-
ferences. This change of phase has strong influence on the
spectrally resolved FWM signal. While the Fourier transform
(FT) of the signal originating from the 1Bu oscillator is, like
in inorganic semiconductors [29,35], slightly asymmetric with
respect to detuning with a tail towards lower frequencies, the
FT of the signal for model IIP, is asymmetric with tails to-
wards higher frequencies. These spectral features can also be
nicely analyzed using a Wigner spectrogram [36,37] as dis-
cussed in Ref. [14].

Fig. 5(c) shows the transient-grating (k2 − k1) part of the
second order density matrix in real space. It is formed by the
1Bu oscillator and some Ag oscillators and given by Eq. (28).
The density matrix contains contributions from the 1Bu and
about eight Ag oscillators, which contribute most strongly to
X4. ρij is again zero if i + j is even (this is indicated by
the red squares). Due to the contributing Ag oscillators, the
resulting density matrix extends further to the off-diagonal
than the one originating from the 1Bu oscillator alone.

So far, our analysis demonstrated that the off-resonant
terms involving transient gratings contribute significantly. In
addition to the previous terms we include in model IIIP all
renormalizations arising from terms representing two-photon
resonances Y1-Y4. Their convergence with the number of vir-
tual oscillators variables is shown in Fig. 10. The value for
Y1 (which is a small contribution, since it describes scattering
of a linear term off two-fields) is to 0.7% given by the cou-
pling to the 3Ag oscillator. The value for Y2 (Y3), which act
as renormalizations of s1 (s2) is to 0.1% (0.2%) given by the
coupling to the 3Ag oscillator. The reason that we essentially
only need the 3Ag oscillator to determine Y1-Y3 is that in ad-
dition to its strong dipole coupling to the 1Bu oscillator, it is
not too much off resonant compared to most other oscillators.
To get Y4, the renormalization of the nonlinear scattering po-
tential V1 also within 5%, we have to keep two oscillators the
3Ag and the 8Ag. As a two-photon resonance we also keep
the 5Ag explicitely. It is dipole and Coulomb coupled to the
1Bu oscillator by µ12 and V12.

The FWM signal for model IIIP is given in Fig. 8 (dotted
line). Compared to the model IIP, the amplitude increases
again and the phase is close to 0. In order to explain these
changes we have to consider two effects. First, like before,
the renormalization of V1. The effective nonlinear scattering
potential is now given by V1 + X4 + Y4 which is 0.016eV , a
positive but quite small value. Second, the increase in am-
plitude is caused by the contribution from the two-photon
resonance represented by V12, which describes the Coulomb
coupling between the 1Bu and the 5Ag oscillator.

This change of phase will again influence the spectrally
resolved FWM signal, which is now again be asymmetric with
respect to the detuning with tails towards negative detuning.
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FIG. 11. (a) Time-resolved amplitude and (b) phase of the
FWM signal for time-delay τ = 0fs for the PPP model. Solid
line: model VP, dashed: model IVP, and dashed-dotted: laser
pulse envelope.

This is the same signature which appears when we keep only
the 1Bu oscillator, and is also the typical signature in the FT
FWM signal of inorganic semiconductors [29,35].

Fig. 5(d) shows the two-photon resonance (2k2) part of
the density matrix in real space, which is formed by the 1Bu

oscillator and some Ag oscillators, and given by

ρ(0|2)(t) = e−2iω2t

 
1

2
([[ξ1, ρ̄], ξ1] + [[ξ1, ρ̄], ξ1])(z

(0|1)
1 (t))2

+
X

β

ξβz
(0|2)
β (t)

!
. (30)

The density matrix consists of small contribution from the
1Bu and about mainly two Ag oscillators, namely 3Ag and
5Ag. Its shape is essentially a superposition of the density
matrices representing the 3Ag and the 5Ag oscillators, shown
in Fig. 2.

Having analyzed the different contributions to the nonlin-
ear optical response within the PPP model, we propose a
simplified two-oscillator model [14], which to a good accuracy
reproduces the signal. Compared to the model resulting from
the elimination of off-resonant contributions, we further ne-
glect small contributions like X1, X−1 and Y1, and also s2

and its renormalization X3, and Y3. We further neglect the
anharmonic constants A1, A2, A3, B1, and B2 that appear
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FIG. 12. Time-integrated FWM for the PPP model. Solid
line: model VP, dashed: model IVP.

in the definition of the polarization. So now the off-resonant
oscillators only enter in renormalizations of s1 and V1. The
equations considered within this reduced model are [14]

i
∂

∂t
z1 = (Ω1 − ωL − i

1

T2
)z1 − µ1E

− Eµ12z2 − E(s1 + Y2 + X2)z1z−1

+ 2V12z2z−1 + (V1 + Y4 + X4)z−1z1z1 (31)

z−1 = z∗
1

i
∂

∂t
z2 = (Ω2 − 2ωL − i

1

T ′
2

)z2 − Eµ12z1 + V12z1z1 (32)

The induced polarization is given by:

PS(t) = e−iωLt (µ1z1 + µ12z2z−1) . (33)

We compare the results obtained for this model (IVP) with
results obtained by a full calculation (VP), where we have
kept all oscillators explicitely (in practice these results were
obtained by a real-space calculation), see Appendix B. The
good agreement between the two calculations shown in Fig.
11, confirms the validity of this simplified description. There
are only slight differences in the amplitude and the phase of
the FWM signal mainly during the initial excitation process.

Another important effect is the existence of strong FWM
signals for negative delays, which may be induced by either
two-photon Ag oscillator variables, or by many-body anhar-
monicities of the Bu oscillators. Our calculations show that,
as for positive delay, the many-body anharmonicities con-
tribute most strongly to the signal for negative delays. The
time-integrated signals in Fig. 12 decay for positive delays
with T2/2, and for negative delays with about T2/4 [16,17].
The very weak modulations, which can be seen for negative
delays, are due to quantum beats with a frequency determined
by 2Ω(1Bu)−Ω(5Ag). The results for the full model VP (solid
line) and the reduced model IVP (dashed line) are again in
very good agreement.

IV. SUMMARY

In summary, we have modeled resonant two-pulse four-
wave mixing experiments in conjugated polyenes using the
electronic-oscillator representation. We found that it is only
required to consider two electronic oscillators explicitely. The
role of electronic correlations has been clarified by compar-
ing calculations done in the absence of electronic correlations
(Hückel model) and with strong electronic correlations (PPP
model). While both models have similar linear optical prop-
erties, i.e. a strong lowest transition at the same spectral
position, their nonlinear optical properties are very different.
For the PPP model we predict signatures of electronic corre-
lations, which should be observable in ultrafast optical spec-
troscopy, in both the phase and the amplitude of the signal.
We expect analogous effects to be observable using frequency-
domain resonant four-wave mixing techniques [38]. The cou-
pling coefficients leading to the nonlinear optical response as
well as the calculated signals have been compared to theo-
retical and experimental treatments for inorganic semicon-
ductors. The present approach provides a unified theoretical
analysis of resonant nonlinear experiments in organic and in-
organic materials.
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APPENDIX A: EQUATIONS OF MOTION FOR
TWO-PULSE NONLINEAR OPTICAL

RESPONSE

In this appendix, we show how the oscillator equations of
motion can be used to describe multiple-pulse optical experi-
ments. We consider a two-pulse nonlinear optical experiment,
where the exciting field is given by

E(t) = E1(t)(e
ik1·r−iω1t + e−ik1·r+iω1t)

+ E2(t)(e
ik2·r−iω2t + e−ik2·r+iω2t)

= E+
1 (t)e−iω1t + E−

1 (t)eiω1t

+ E+
2 (t)e−iω2t + E−

2 (t)eiω2t. (A1)

E1,2(t) are the pulse envelopes. The term E+
i (E−

i ) refer
to the components of E with direction +ki (−ki). Such an
exciting field will create excitations associated with different
directions eiK·r, K = nk1 +mk2, where n, m can be any inte-
gers [18,39]. We label these different directional components
by (n|m), which refers to the excitation associated with the
direction nk1 + mk2. Inserting this decomposition into the
equations of motion Eq. (15) and transforming to the rotating
frame, leads to

i
∂

∂t
z(n|m)

α = (Ωα − nω1 − mω2)z
(n|m)
α

− µα(δn=1δm=0E
+
1 + δn=−1δm=0E

−
1 + δn=0δm=1E

+
2 + δn=0δm=−1E

−
2 )

− E+
1

X
β

µα,βz
(n−1|m)
β − E−

1

X
β

µα,βz
(n+1|m)
β − E+

2

X
β

µα,βz
(n|m−1)
β − E−

2

X
β

µα,βz
(n|m+1)
β

− E+
1

X
n′m′βγ

µα,βγz
(n−n′−1|m−m′)
β z(n′|m′)

γ − E−
1

X
n′m′βγ

µα,βγz
(n−n′+1|m−m′)
β z(n′|m′)

γ

− E+
2

X
n′m′βγ

µα,βγz
(n−n′|m−m′−1)
β z(n′|m′)

γ − E−
2

X
n′m′βγ

µα,βγz
(n−n′|m−m′+1)
β z(n′|m′)

γ

+
X

n′m′βγ

Vα,βγz
(n−n′|m−m′)
β z(n′|m′)

γ +
X

n′m′n′′m′′βγδ

Vα,βγδz
(n−n′−n′′|m−m′−m′′)
β z(n′|m′)

γ z
(n′′|m′′)
δ (A2)

The polarization is given by:

P (n|m)(t) = ei(nk1+mk2)·r−i(nω1+mω2)t

0
@X

β

µ̃βz
(n|m)
β +

X
n′,m′,βγ

µ̃βγz
(n−n′|m−m′)
β z(n′|m′)

γ

1
A , (A3)

These equations can be used to describe two pulse experi-
ments; the generalization to experiments with more than two
exciting pulses is straightforward. In Eq. (A2) we have only
to solve explicitely for the complex amplitudes of the oscilla-
tor variables associated with positive frequency (α > 0). The
amplitudes for the corresponding modes with negative fre-
quencies are determined by: z

(n|m)
−α = (z

(−n|−m)
α )∗, here −α

refers to the adjoint mode of α. All oscillator variables and
amplitudes have to be included in the summations appearing
in right hand sides of Eqs. (A2) and (A3).

APPENDIX B: ITERATIVE CALCULATION OF
THE FOUR-WAVE MIXING SIGNAL

In the following we perform a detailed analysis of FWM
in self-diffraction geometry, where the third-order signal is
monitored in the direction 2k2 − k1. Only Bu oscillators can
be excited in the linear response.

i
∂

∂t
z(1|0)

α = (Ωα − ω1)z
(1|0)
α − µαE+

1

i
∂

∂t
z(−1|0)

α = (Ωα + ω1)z
(−1|0)
α − µαE−

1

i
∂

∂t
z(0|1)

α = (Ωα − ω2)z
(0|1)
α − µαE+

2

i
∂

∂t
z(0|−1)

α = (Ωα + ω2)z
(0|−1)
α − µαE−

2

z
(1|0)
−α = (z(−1|0)

α )∗

z
(−1|0)
−α = (z(1|0)

α )∗

z
(0|1)
−α = (z(0|−1)

α )∗

z
(0|−1)
−α = (z(0|1)

α )∗ (B1)

The second order response consists of different contribu-
tions. The particle-particle part is given by T (ξ) and has not
to be calculated separately, but is completely determined by
the linear response [11]. Additionally Ag oscillators can be
excited in second order, representing the particle-hole part of
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the response. To calculate the FWM signal in the direction
2k2−k1 in third order, we have to consider a transient-grating
(k2 − k1; ω1 − ω2) and a two-photon (2k2; −2ω2) response.

i
∂

∂t
z(−1|1)

α = (Ωα + ω1 − ω2)z
(−1|1)
α − E−

1

X
β

µα,βz
(0|1)
β − E+

2

X
β

µα,βz
(−1|0)
β +

X
βγ

(Vα,βγ + Vα,γβ)z
(−1|0)
β z(0|1)

γ

i
∂

∂t
z(1|−1)

α = (Ωα − ω1 + ω2)z
(1|−1)
α − E+

1

X
β

µα,βz
(0|−1)
β − E−

2

X
β

µα,βz
(1|0)
β +

X
βγ

(Vα,βγ + Vα,γβ)z
(1|0)
β z(0|−1)

γ

i
∂

∂t
z(0|2)

α = (Ωα − 2ω2)z
(0|2)
α − E+

2

X
β

µα,βz
(0|1)
β +

X
βγ

Vα,βγz
(0|1)
β z(0|1)

γ

i
∂

∂t
z(0|−2)

α = (Ωα + 2ω2)z
(0|−2)
α − E−

2

X
β

µα,βz
(0|−1)
β

+
X
βγ

Vα,βγz
(0|−1)
β z(0|−1)

γ

z
(−1|1)
−α = (z(1|−1)

α )∗

z
(1|−1)
−α = (z(−1|1)

α )∗

z
(0|2)
−α = (z(0|−2)

α )∗

z
(0|−2)
−α = (z(0|2)

α )∗ (B2)

In third order again only Bu oscillators can be excited:

i
∂

∂t
z(−1|2)

α = (Ωα + ω1 − 2ω2)z
(−1|2)
α − E−

1

X
β

µα,βz
(0|2)
β − E+

2

X
β

µα,βz
(−1|1)
β

− E−
1

X
βγ

µα,βγz
(0|1)
β z(0|1)

γ − E+
2

X
βγ

(µα,βγ + µα,γβ)z
(−1|0)
β z(0|1)

γ

+
X
βγ

(Vα,βγ + Vα,γβ)z
(0|2)
β z(−1|0)

γ +
X
βγ

(Vα,βγ + Vα,γβ)z
(−1|1)
β z(0|1)

γ

+
X
βγδ

(Vα,βγδ + Vα,γβδ + Vα,γδβ)z
(−1|0)
β z(0|1)

γ z
(0|1)
δ

i
∂

∂t
z(1|−2)

α = (Ωα − ω1 + 2ω2)z
(1|−2)
α − E+

1

X
β

µα,βz
(0|−2)
β − E−

2

X
β

µα,βz
(1|−1)
β

− E+
1

X
βγ

µα,βγz
(0|−1)
β z(0|−1)

γ − E−
2

X
βγ

(µα,βγ + µα,γβ)z
(1|0)
β z(0|−1)

γ

+
X
βγ

(Vα,βγ + Vα,γβ)z
(0|−2)
β z(1|0)

γ +
X
βγ

(Vα,βγ + Vα,γβ)z
(1|−1)
β z(0|−1)

γ

+
X
βγδ

(Vα,βγδ + Vα,γβδ + Vα,γδβ)z
(1|0)
β z(0|−1)

γ z
(0|−1)
δ

z
(−1|2)
−α = (z(1|−2)

α )∗

z
(1|−2)
−α = (z(−1|2)

α )∗ (B3)

The polarization in the 2k2 − k1 direction is finally given by:

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t

0
@X

β

µ̃βz
(−1|2)
β +

X
βγ

(µ̃βγ + µ̃γβ)(z
(−1|0)
β z(0|2)

γ + z
(0|1)
β z(−1|1)

γ )

1
A . (B4)

Eqs. (B3) and (B4) include all resonant and nonresonant
pathways that can contribute to the two-pulse FWM experi-
ment considered here.

APPENDIX C: ELIMINATION OF
OFF-RESONANT OSCILLATORS

Below we describe how the general equations of motion
of Appendix B can be reduced to include only the relevant
oscillators, which are needed for the description of resonant
FWM. In our numerical calculations we have assumed that
the central frequency of both exciting pulses is in resonance
with the transition to the 1Bu oscillator, i.e.: ωL = ω1 =
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ω2 = Ω(1Bu). The pulse envelopes are assumed to be Gaus-

sian, E(t) ∝ e−((t−t̂)/t̄)2 , with a width of t̄ = 20fs. Since the
spectral width of even these very short laser pulses (about
0.1eV ) is small compared to the frequency spacing between
the dominant oscillators, only a few oscillators will be ex-
cited resonantly. Our calculations show that the first and
third order response is to very good accuracy dominated by
only the 1Bu oscillator. In second order there may be one
Ag oscillator which appears as resonantly excited two-photon
transition. We now develop equations which only retain two
primary oscillators, the 1Bu and one Ag oscillator explicitely.
The off-resonant contributions from all other Ag oscillators
in second order, can be eliminated from the equations of mo-
tion and will result in renormalization of anharmonicities and
scattering constants.

The elimination of the off-resonant oscillators goes as fol-
lows: In the equation of motion for the two-photon resonances
z
(0|2)
α we assume that the amplitude adiabatically follows its

inhomogenity on the right hand side of the equation. So we
can set ∂

∂t
z
(0|2)
α = 0 and then solve the equation, which gives:

z(0|2)
α =

1

Ωα − 2ωL
(E+

2 µα,1z
(0|1)
1 − Vα,11z

(0|1)
1 z

(0|1)
1 ). (C1)

The contributions of Ag oscillator variables associated with
negative frequency are given by:

z
(0|2)
−α =

1

Ωα + 2ωL
(E+

2 µα,−1z
(0|1)
1 − Vα,−1−1z

(0|1)
1 z

(0|1)
1 ). (C2)

Here the index 1 refers to the positive frequency oscillator
variable of 1Bu oscillator and −1 to its adjoint, i.e. the neg-
ative frequency variable.

The similar elimination can be done for the transient-
grating like terms. Here all oscillators can be assumed to
be off resonant, since there is no particle-hole oscillator with
zero frequency.

z(−1|1)
α =

1

Ωα
(E−

1 µα,1z
(0|1)
1 + E+

2 µα,−1z
(−1|0)
−1

− (Vα,1−1 + Vα,−11)z
(−1|0)
−1 z

(0|1)
1 ) (C3)

and

z
(−1|1)
−α =

1

Ωα
(E−

1 µα,−1z
(0|1)
1 + E+

2 µα,1z
(−1|0)
−1

− (Vα,−11 + Vα,1−1)z
(−1|0)
−1 z

(0|1)
1 ). (C4)

These expressions for the off-resonant second order quan-
tities can be inserted into the equation for the third order
amplitude, which leads to the renormalization of some nonlin-
ear coupling constants and a few additional terms. After this
elimination, keeping just two oscillators explicitely (1 refers
to the 1Bu oscillator and 2 the Ag considered as a two-photon
resonance), the FWM signal is determined by the following
set of equations. In first order:

i
∂

∂t
z
(1|0)
1 = (Ω1 − ωL)z

(1|0)
1 − µ1E

+
1

z
(−1|0)
−1 = (z

(1|0)
1 )∗

i
∂

∂t
z
(0|1)
1 = (Ω1 − ωL)z

(0|1)
1 − µ1E

+
2

z
(0|−1)
−1 = (z

(0|1)
1 )∗ (C5)

In second order:

i
∂

∂t
z
(0|2)
2 = (Ω2 − 2ωL)z

(0|2)
2 − E+

2 µ12z
(0|1)
1 + V12z

(0|1)
1 z

(0|1)
1

(C6)

And in third order:

i
∂

∂t
z
(−1|2)
1 = (Ω1 − ωL)z

(−1|2)
1 − E−

1 E+
2 (Y1 + X1)z

(0|1)
1

− (E+
2 )2(X−1)z

(−1|0)
−1

− E−
1 µ12z

(0|2)
2 − E−

1 (s2 + Y3 + X3)z
(0|1)
1 z

(0|1)
1

− E+
2 (s1 + Y2 + X2)z

(−1|0)
−1 z

(0|1)
1 + 2V12z

(0|2)
2 z

(−1|0)
−1

+ (V1 + Y4 + X4)z
(−1|0)
−1 z

(0|1)
1 z

(0|1)
1 (C7)

The polarization in the direction is given by:

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t

�
µ1z

(−1|2)
1

+
X

β

µ1βz
(−1|0)
−1 z

(0|2)
β +

X
β

µ−1βz
(0|1)
1 z

(−1|1)
β

�
.

(C8)

In these equations we have used some abreviations:

µ1 = µ̃1

µ1n = µ1,n = µn,1 = (µ̃−1n + µ̃n−1)

s1 = (µ1,−11 + µ1,1−1)

s2 = µ1,11

V1 = (V1,11−1 + V1,1−11 + V1,−111)

V12 = V2,11 =
1

2
(V1,−12 + V1,2−1) (C9)

The quantities Xi and Yi result from the elimination of
the transient grating and two-photon resonances, respectively.
They are given by the following summations over the Ag os-
cillator variables β:

X1 =
X

β

µ1,βµβ,1 + µ1,−βµβ,−1

Ωβ

X−1 =
X

β

µ1,βµβ,−1 + µ1,−βµβ,1

Ωβ

X2 =
X

β

−1

Ωβ
(µ1,β(Vβ,−11 + Vβ,1−1) + µβ,−1(V1,β1 + V1,1β)

+ µ1,−β(Vβ,1−1 + Vβ,−11) + µβ,1(V1,−β1 + V1,1−β))

X3 =
X

β

−1

Ωβ
(µβ,1(V1,β1 + V1,1β) + µβ,−1(V1,−β1 + V1,1−β))

X4 =
X

β

−1

Ωβ
((Vβ,−11 + Vβ,1−1)(V1,β1 + V1,1β)

+ (Vβ,1−1 + Vβ,−11)(V1,−β1 + V1,1−β))

Y1 =

′X
β

1

Ωβ − 2ωL
µ1,βµβ,1

+
X

β

1

Ωβ + 2ωL
µ1,−βµβ,−1

Y2 =
′X
β

−1

Ωβ − 2ωL
µβ,1(V1,β−1 + V1,−1β)
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+
X

β

−1

Ωβ + 2ωL
µβ,−1(V1,−β−1 + V1,−1−β)

Y3 =
′X
β

−1

Ωβ − 2ωL
µ1,βVβ,11

+
X

β

−1

Ωβ + 2ωL
µ1,−βVβ,−1−1

Y4 =

′X
β

−1

Ωβ − 2ωL
(V1,β−1 + V1,−1β)Vβ,11

+
X

β

−1

Ωβ + 2ωL
(V1,−β−1 + V1,−1−β)Vβ,−1−1

(C10)

The primes over the sum symbols for Yi indicate, that the
summations exclude the positive frequency variable of the one
Ag oscillator, which is explicitely considered as a two-photon
resonance. In Section III we show, that to a very good ac-
curacy the approximate equations derived in this Appendix
reproduce the full results calculated using Eqs. (B1-B4).

Inserting the expressions for the amplitudes of the virtual
oscillators Eqs. (C1)-(C4) into Eq. (C9) allows to perform
the summations over β and simplifies the expression for the
polarization. Like in the equations of motion this procedure
results in some new anharmonic couplings.

P (−1|2)(t) = ei(−k1+2k2)·r−i(−ω1+2ω2)t[µ1z
(−1|2)
1

+ µ12z
(−1|0)
−1 z

(0|2)
2 + (A1 + B1)z

(−1|0)
−1 (z

(0|1)
1 )2

+ (A2 + B2)E
+
2 z

(−1|0)
−1 z

(0|1)
1 + A3E

−
1 (z

(0|1)
1 )2].

(C11)

Here A1, A2, and A3 are obtained via elimination of the
transient-grating terms involving virtual oscillators, and B1,
as well as B2 from the corresponding two-photon terms.
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