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ABSTRACT

We study theoretically two electron −hole pair states (biexcitons) in core/shell hetero-nanocrystals with type II alignment of energy states,
which promotes spatial separation of electrons and holes. To describe Coulomb interactions in these structures, we apply first-order perturbation
theory, in which we use an explicit form of the Coulomb-coupling operator that takes into account interface-polarization effects. This formalism
is used to analyze the exciton −exciton interaction energy as a function of the core and shell sizes and their dielectric properties. Our analysis
shows that the combined contributions from quantum and dielectric confinement can result in strong exciton −exciton repulsion with giant
interaction energies on the order of 100 meV. Potential applications of strongly interacting biexciton states include such areas as lasing,
nonlinear optics, and quantum information.

Introduction. The use of semiconductor hetero-nanostruc-
tures opens interesting opportunities for controlling materials’
properties via direct manipulation of electronic wavefunc-
tions. This concept of “wavefunction engineering” has been
extensively explored in the case of epitaxial quantum wells
and superlattices. Heterostructuring is also becoming more
common in the field of chemically synthesized semiconductor
nanocrystals (NCs) or nanocrystal quantum dots. One typical
approach in this case is the use of a wide-gap semiconductor
for overcoating a core made of a narrower-gap material,
which allows one to significantly improve emission quantum
yields by reducing surface-related nonradiative carrier losses.1-7

In such NCs, both an electron and a hole reside in the same
part of the heterostructure (the NC core), which corresponds
to the type I localization regime.

There are also several recent examples of type II core/
shell NCs, in which the alignment of energy states at the
interface between two semiconductors promotes spatial
separation of electrons and holes between the core and the
shell.8-11 The type II regime provides new means for tuning
both spectral and dynamical responses of NCs. Specifically,
in this case one can control radiative decay by tuning the
overlap between the electron and hole wavefunctions.9

Further, type II NCs can be engineered to emit at energies
that are lower than the band gap of either semiconductor
comprising a heterostructure, which is a useful capability
for the development of, e.g., new infrared-emitting chro-
mophores.8

Type II structures also provide interesting opportunities
for tuning carrier-carrier interactions in NCs, which is an
important capability for such applications as lasing,10,12

nonlinear optics,13,14 and photodetectors and photovoltaic
cells utilizing carrier multiplication.15,16 For example, a
serious complication for lasing applications of NCs arises
from nonradiative multiparticle Auger recombination, which
leads to short, picosecond lifetimes of optical gain.12,17

Recently we experimentally demonstrated that using ZnSe-
(core)/CdSe(shell) NCs tunable between type I and type II
localization regimes we could control Auger recombination
rates.18 Specifically, we observed suppression of Auger decay
in the case of shell localization of electrons, which resulted
in decreased Coulomb coupling between photoexcited car-
riers.

Another strategy for improving the lasing performance of
NCs involves realization of strong exciton-exciton (X-X)
repulsion, which can be utilized for displacing an “absorbing”
transition in singly excited NCs with respect to the emission
line.10 This approach can potentially allow lasing in the
single-exciton regime, for which Auger recombination is
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simply inactive. This concept, however, cannot be realized
using traditional type I NCs, in which the X-X interaction
is attractive (as shown, e.g., experimentally19) and hence the
interaction energy (∆XX) is negative. On the other hand, by
separating electrons and holes spatially, one can increase the
repulsive component of the interaction energy, which can
reverse the sign of∆XX as was previously demonstrated for
type II double quantum-well structures.20 In the case of
strongly confined type II NCs, this strategy can lead not only
to overall X-X repulsion but also to large magnitudes of
interaction energies, which can be produced because of very
small separation between interacting charges. Large values
of ∆XX are important for practical realization of the concept
of single-exciton lasing, because in order to eliminate
interference from the “absorbing” transition its Coulomb shift
(determined by∆XX) should be comparable to or greater than
the transition line width. The latter is on the order of 100
meV even in the best highly monodisperse NC samples.

Previous theoretical studies of X-X interactions in
strongly confined quantum dots have focused exclusively on
type I nanostructures.21-26 One significant complication in
this case is the difficulty in applying standard perturbation
approaches. Specifically, because of almost identical spatial
distributions of electron and hole wavefunctions that are
obtained in the single-electron- and single-hole-band model
(referred below as the two-band model), the effective charge
density associated with a single exciton state is nearly zero,
which leads to a nearly zero value of the first-order
contribution to the X-X interaction energy. Therefore,
perturbative treatment in this case requires the use of more
complex computational schemes that account for higher-order
perturbation terms.

One approach to overcome this problem is the use of a
variational ansatz.23 However, for small-radius dots it predicts
positive values of the X-X interaction energy (i.e., effective
X-X repulsion) for both single and multiple hole bands.23,25,26

On the other hand, an asymptotic analysis using second-order
perturbation theory22 as well as experimental results19 show
that even for small quantum dots∆XX is negative, which
corresponds to X-X attraction. Because of these complica-
tions, theoretical treatment of X-X interactions in type I
strongly confined NCs still represents a significant challenge.
Paradoxically, this problem is less challenging in the case
of type II NCs despite their more complex multicomponent
structure. In this case, spatial separation of electrons and
holes significantly distorts charge quasi-neutrality existing
in type I systems and allows one to accurately evaluate X-X
interaction energies within first-order perturbation theory.

In this Letter, we analyze theoretically X-X interactions
in type II core/shell NCs within the two-band model and
using first-order perturbation theory to account for both
quantum and dielectric confinement. The latter effect is due
to discontinuity of the dielectric constant at the core-shell
interface, and we treat it within the image-charge approach.
Our modeling indicates that in type II hetero-NCs the X-X
interaction is indeed repulsive and can be characterized by
giant interaction energies up to ca. 100 meV. Large
magnitudes of∆XX that are comparable to typical transition

line widths of NC samples indicate the feasibility of single-
exciton NC lasing using X-X repulsion.

Description of the Model. In this work, we study small-
size semiconductor NCs, for which carrier confinement
(kinetic) energies are much greater than Coulomb interaction
energies, which hence can be treated using perturbation
approaches.25-27 In our calculations, we first evaluate wave-
functions of an electron and a hole without taking into
account Coulomb effects. Then, we calculate the Coulomb
correction to the energy of a single electron-hole pair state
(single-exciton state) using the first-order perturbation term,
which accounts for the electron-hole interaction. Finally,
we compute the X-X interaction energy by applying first-
order perturbation theory to the lowest-energy biexciton,
which comprises two ground-state electrons and two ground-
state holes. In our calculations of both single- and biexciton
energies, we explicitly account for dielectric-confinement
effects interpreted using the image-charge approach.

To describe quantum states in a spherically symmetric type
II core/shell NC (Figure 1) characterized by the core radius
R and the shell widthH, we use the effective mass
approximation. We assume the existence of single energy
bands for both electrons and holes. This assumption repre-
sents a simplification compared to multiband models that
explicitly take into account mixing between, e.g., different
valence sub-bands.27 However, this simplified approach still
allows us to capture the essential trends of core- and shell-
size dependences of exciton and biexciton energies. To find
electron and hole eigenstates and eigenvalues, we solve the
envelope-function Schro¨dinger equation using a spherically
symmetric confinement potential energy operator, which only
depends on the radial coordinater.27,28 In our calculations,
we consider type II core/shell NCs of two different geom-
etries illustrated in parts A and B of Figure 1. One geometry
(Figure 1A, referred to below as the e/h structure) corre-
sponds to the situation for which an electron is localized in
the core while a hole is in the shell. In the other geometry
(Figure 1B, the h/e structure), the electron and the hole switch
the regions of their localization. For the e/h structure, the
electron (Ûe(r)) and the hole (Ûh(r)) confinement operators
can be presented as follows (Figure 1A):Ûe(r) ) 0 for 0 e

r < R, Ûe(r) ) U0
e for R e r < R + H, andÛe(r) ) ∞ for

r g R + H; Ûh(r) ) U0
h for 0 e r < R, Ûh(r) ) 0 for R e

r < R + H, andÛh(r) ) ∞ for r g R + H. Corresponding
operators for the h/e structures have the following form
(Figure 1B): Ûe(r) ) U0

e for 0 e r < R, Ûe(r) ) 0 for R e
r < R + H, andÛe(r) ) ∞ for r g R + H; Ûh(r) ) 0 for 0
e r < R, Ûh(r) ) U0

h for R e r < R + H, andÛh(r) ) ∞ for
r g R + H. Both structures exhibit a “spatially indirect”
energy gap (Eg), which is determined by the separation between
the bottom of the conduction band of one semiconductor
comprising a hetero-NC and the top of the valence bands of
the other semiconductor.

First, we find solutions of the envelope-function Schro¨-
dinger equation for noninteracting electrons and holes using
boundary conditions according to which the radial wave-
function is finite at the center of the core and is zero outside
the shell. An additional boundary condition is imposed by
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the requirement of continuity of the current at the core-
shell interface, which translates into the requirements for
continuity of both the radial wavefunctions and their effec-
tive-mass-weighted derivatives at the heterointerface.28 In our
calculations, we only consider the lowest-energy, zero-
angular-momentum, conduction- and valence-band 1S states.
The solution of the Schro¨dinger equation that satisfies the
above boundary conditions is

wherea ) e, h for electrons and holes, respectively, andNa is
the normalization constant derived from the condition that the
integral of R a(r) over the hetero-NC volume is unity. In
the case of the e/h nanostructure, the electron wavevector
components areke ) (2mc

eEe/p2)1/2 and qe ) (2ms
e(Ee -

U0
e)/p2)1/2, whereas the hole wavevector components arekh

) (2mc
h(Eh - U0

h)/p2)1/2 and qh ) (2ms
hEh/p2)1/2, wheremc

a

andms
a (a ) e, h) are carrier effective masses for the core

(index c) and the shell (index s), andEa is the electron (a )
e) or hole (a ) h) energy. For h/e nanostructures, the electron
and hole wavevectors can be obtained by switching thee
andh superscripts in the above expressions. The 1S eigenen-
ergyEa, can be obtained as the lowest root of the following
equation30

In our modeling we use an energy criterion for defining
the boundaries between various localization regimes. Specif-
ically, in the case of the e/h structures (Figure 1A), we
assume that an electron is primarily localized in the core if
its lowest-energy level is located below the conduction band
offset at the interface given byU0

e. On the other hand, a
hole is shell-localized ifEh < U0

h. Similar conditions can be
obtained for the h/e structure (Figure 1B) to define regimes
that correspond to shell localization of electrons and core
localization of holes. Using the above considerations, we can
obtain the following equation for determining the minimum
core radiusRcl for which the electron (hole) becomescore-
localizedin the e/h (h/e) structure for a given shell widthH

Herekl
a ) (2mc

a U0
a)1/2/p andx1 < kl

aRcl < π, wherex1 is the
first root of the equationxcot(x) + ms

a/mc
a ) 1. According to

eq 3, the 1S level is below the shell step potentialU0
a for R

> Rcl(H). Similarly, the minimum value of the shell width,
Hsl, which results inshell localizationof the 1S state for a
given radiusR can be derived from the following equation

where ql
a ) (2ms

a U0
a)1/2/p and π/2 < ql

aHls < π. The
condition H > Hsl(R) corresponds to shell localization of
holes (a ) h) in e/h structures or shell localization of
electrons (a ) e) in h/e structures.

As a quantitative measure of the spatial separation between
electrons and holes in a hetero-NC, we use an overlap integral
between electron and hole wavefunctions defined as

This quantity also relates to imbalance between negative and
positive charges in the NC, and as shown below, the changes
in Θ directly correlate with changes in∆XX. Another meaning
of the overlap integral is that it determines the strength of
the interband 1S-1S optical transition.

On the basis of the conditions given by eqs 3 and 4, we
can map the regions of (R,H)-space that correspond to
different localization regimes, which results in the localiza-

Figure 1. Schematics of type II core/shell NCs along with typical
profiles of the valance (labeled V) and conduction (labeled C) band
confinement potentials. (A) The e/h nanostructure in which an
electron is localized in the core and a hole in the shell. (B) The h/e
nanostructure, in which the electron and the hole switch regions of
localization. (C) Biexciton state in h/e nanostructure comprising
two electrons, e1 and e2, and two holes, h1 and h2. The core-shell
interface polarization can be described in terms of additional fields
generated by the images of these four charges labeled as e1′, e2′,
h1′, and h1′. Arrows show different components of the Coulomb
interaction between the carriers that contribute to the X-X
interaction energy (see text for details).

R a(r) ) Na sin(kar)

r sin(kaR)
for 0 e r < R (1)

R a(r) ) Na sin(qa(R + H - r))

r sin(qaH)
for R e r < R + H

[1 - kaRcot(kaR)] ms
a/mc

a ) 1 + qaRcot(qaH) (2)

H ) -
mc

a/ms
a Rcl

1 - mc
a/ms

a + kl
aRcl cot(kl

aRcl)
, a ) e, h (3)

R ) -tan(ql
aHsl)ql

a, a ) e, h (4)

Θ ) |∫0

R+H
dr r 2 R e(r) R h(r)|2 (5)
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tion phase diagram displayed in Figure 2B. To illustrate the
effect of changes in carrier localization on the electron-
hole overlap integral, in the same figure we also indicate
theΘ values as a function ofH andR. In the type I regime,
which occurs forR < Rcl andH < Hcl, both an electron and
a hole are delocalized over the entire hetero-NC volume. In
the type II regime (R> Rcl andH > Hcl), electrons and holes
are localized in the core and the shell, respectively. In
addition to regions with well-defined type I and type II
regimes, the localization phase diagram also shows two areas
that correspond to partial separation between electron and
hole wavefunctions. This regime (labeled in Figure 2B as
quasi-type II) occurs forR > Rcl andH < Hcl (the electron
is core-localized but the hole is delocalized over the entire
NC) or R < Rcl andH > Hcl (the hole is shell-localized but
the electron is delocalized over the entire NC).

Next, we calculate the leading contribution to the Coulomb
corrections to the single-exciton energy. In a heterostructure
with dielectric interfaces the carrier-carrier interaction
operator has two components (see the diagram in Figure 1C,
which illustrates the different types of Coulomb interaction
terms in a core/shell NC). One of them is due to direct
Coulomb coupling screened by a dielectric medium, and it
can be represented as

The other component is due to the interface polarization
energy, which we describe by interactions between charges
and their images excluding the interaction between a charge
and its own image

In the above expressions,Fa(ra) ) |R a(r)|2 is the electron
or hole density anda, b ) e, h or h, e; Ŵ(ra,rb) is the
spherically symmetric component of the point charges direct
Coulomb interaction operator, andÛ(ra,rb) is the same
component of the polarization energy operator. To obtain
the explicit form of these operators, we solve analytically
the Poisson equation for a potential due to a point charge in
the core/shell structure with the standard boundary conditions
that account for discontinuity of the dielectric constant at
heterointerfaces.29 As a result, we obtain the following
solutions

wherer> ≡ max(ra,rb); 0 e (ra,rb) < R + H; ε1, ε2, andε3

are the dielectric constants of the core, the shell, and the
environment, respectively; andθ(x) is the Heaviside step
function.

The remaining contribution to the net Coulomb energy
(not shown in Figure 1C) comes from the self-interaction of
each charge with its own image, which is the so-called
dielectric solvation energy (Va, a ) e, h). As we demonstrate
below, this quantity does not affect the X-X interaction
energy; therefore, we do not provide an explicit expression

Figure 2. (A) A three-dimensional plot of the overlap integralΘ (eq 5) as a function of the core radiusR and shell widthH in the e/h
structure. (B) A reduced-scale contour plot of the electron-hole overlap integral and the localization phase diagram that shows the regions
of (R,H)-space that correspond to different localization regimes in e/h hetero-NCs. The black solid line, which goes from top to bottom,
represents the boundary between regimes for which the electron either is delocalized over the entire hetero-NC volume (left of the line) or
is core-localized (right of the line). This line is derived from eq 3 forRcl. The dashed vertical line is the asymptotic, large-H limit of Rcl.
The black solid line, which goes from left to right, separates the regimes for which the hole either is delocalized over the entire hetero-NC
volume (below the line) or is shell localized (above the line). This line is derived from eq 4 forHsl. The dashed horizontal line is the
asymptotic, large-R limit of Hsl.

Ŵ(ra,rb) ) θ(R - ra)θ(R - rb)
qaqb

ε1r>

+ [θ(ra - R) + θ(rb - R)]
qaqb

2ε2r>
(8)

Û(ra,rb) ) θ(R - ra)θ(R - rb)
qaqb(ε1/ε2 - 1)

ε1R

+
qaqb(ε2/ε3 - 1)

ε2(R + H)
(9)

Wab ) ∫0

R+H
dra ra

2 ∫0

R+H
drb rb

2Fa(ra) Ŵ(ra,rb) Fb(rb) (6)

Uab ) ∫0

R+H
dra ra

2 ∫0

R+H
drb rb

2Fa(ra) Û(ra,rb) Fb(rb) (7)
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for it. Taking into account all relevant Coulomb terms, we
can write the following expression for the energy of the 1S
single-exciton state that comprises the 1S electron and the
1S hole

Next, we consider the lowest-energy biexciton state, which
is composed of two 1S excitons. It is natural to describe it
in terms of a product of wavefunctions of two 1S electrons
and two 1S holes: ΨXX(re1,re2,rh1,rh2) ) R e(re1)R

e(re2)
×R h(rh1)R

h(rh2). Further, using first-order perturbation
theory we can obtain the following expression for the total
biexciton energy

Here, the first three terms on the right are due to the bulk
energy gap and carrier confinement (kinetic) energies. The
rest of the terms are due to the Coulomb interactions
described by eqs 6-9 and the carrier dielectric-solvation
energies. In this case, eqs 7 and 8 are used to calculate both
the electron-hole interaction energies (Weh andUeh) and the
energies of interaction between charges of the same sign (Waa

andUaa, wherea ) e, h).
Using eqs 10 and 11, we can calculate the X-X interaction

energy as∆XX ) EXX - 2EX. Note that the X-X interaction
energy∆XX defined in this way has the same amplitude but
the opposite sign compared to thebiexciton binding energy,
which is often introduced in studies of X-X interactions.
This expression indicates that the confinement and the
dielectric solvation energy terms that enterEXX are canceled
by identical terms in 2EX. The surviving contribution to∆XX

is

The first term on the right is direct Coulomb coupling, which
can be represented as

This term depends on the local differences between the
electron and hole densities (local charge imbalance) and on
the Coulomb operatorŴ(r1,r2) (eq 8), in which we setqa )
qb ) qe (bare electron charge). The second contribution to
∆XX comes from the core-shell interface polarization, which
is given by

Here, Pc
a ) ∫0

R dra ra
2 Fa(ra) denotes the probabilities of

finding an electron (a ) e) or a hole (a ) h) in the core.

Within the two-band model considered here, there is no
spatial separation between the electron and the hole charge
densities in type I NCs. In this case, the first-order contribu-
tion to ∆XX vanishes; therefore, calculations of the X-X
interaction energy require the use of higher-order perturbation
terms. The situation is, however, different in type II core/
shell NCs, in which electrons and holes are spatially
separated and, hence, the local charge density is nonzero. In
this case, first-order perturbation theory can be applied to
accurately evaluate∆XX.

Numerical Results and Discussion.Equations 12-14
indicate that in a core/shell NC, the X-X interaction energy
depends on both the spatial distribution of charges within
the nanostructure and dielectric properties of the core and
the shell. To study the main trends in the dependence of
∆XX on the geometrical and dielectric parameters of the NC,
we perform numerical simulations using eqs 12-14 for
calculating interaction energies and eqs 1 and 2 for calculat-
ing eigenstates and eigenenergies. We further use the criteria
given by eqs 3 and 4 for distinguishing between different
localization regimes. The overlap integral given by eq 5 is
used for quantifying the degree of spatial separation between
electron and hole wavefunctions.

In our numerical modeling, we use material parameters
that are close to those of “real” semiconductors (e.g., ZnSe,
ZnTe, CdSe, and CdS). The core radiusRand the shell width
H are varied between 2 and 100 Å. In both e/h and h/e
nanostructure cases, the energy offset at the heterointerface
(U0

e and U0
h) is assumed to be identical for both the

conduction and the valence band and is set to 0.5 eV. The
electron and hole effective masses used in these calculations
are 0.1me and 0.6me (me is the free electron mass), respec-
tively, and they are assumed to be the same for the core and
the shell. The core (ε1) and shell (ε2) dielectric constants are
varied in the range between 4 and 8. Within the adopted
formalism, the X-X interaction energy does not depend on
the band gapEg and the dielectric constant of the surrounding
medium (ε3).

We first consider the e/h geometry (Figure 1A). To
examine the effect of the geometrical parameters on the
electron-hole overlap integral and the X-X interaction
energy, we fix the dielectric constants (ε1 ) 4.0 andε2 )
6.0) and vary the core radius and the shell thickness. Figure
2A showsΘ as a function ofR andH. The general trend is
that the increase inR for a fixedH leads to a rapid decrease
of Θ indicating a progressive increase in separation of
electron and hole wavefunctions. Comparison of the overlap
integral and the phase diagram for type I and II localization
regimes in Figure 2B indicates that for core radiiR J 20 Å,
one can reach a true type II regime with a relatively thin
shell (Hsl ≈ 6 Å). For example, withR ) 25 Å, one can
obtainΘ < 0.5 using a shell withH J 8 Å. This is important
from the practical perspective because fabrication of core/
shell NCs with thinner shells is less challenging synthetically.

Figure 3A shows theR and H dependence of theWXX

component of the X-X interaction energy, which is due to
direct Coulomb coupling between charges (eqs 8 and 13).
For small radii and small shell thicknesses (R, H j 10 Å),

EX ) Eg + Ee + Eh + Weh + Ueh + Ve + Vh (10)

EXX ) 2Eg + 2Ee + 2Eh + Wee+ Uee

+ 4(Weh + Ueh) + Whh + Uhh + 2Ve + 2Vh (11)

∆XX ) WXX + UXX (12)

WXX ) ∫0

R+H
dr1 r1

2 ∫0

R+H
dr2 r2

2[Fe(r1) - Fh(r1)]

× Ŵ(r1,r2) [Fe(r2) - Fh(r2)] (13)

UXX ) (1
ε2

- 1
ε1

) qe
2

R
(Pc

e - Pc
h)2 (14)
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Θ = 1 (type I localization). In this case,WXX is nearly zero
as expected for our approach, which does not account for
higher-order perturbation terms. In the range of largerRand
H (J 10 Å), for whichΘ decreases,WXX rapidly increases
and ultimately reaches values that are as large as 100 meV.
Further, we observe that the sign ofWXX is always positive,
which indicates that spatial separation between negative and
positive charges during the transition to the type II regime
leads to the development of strong X-X repulsion which
dominates over attractive interactions.

The contribution to∆XX associated with the core-shell
interface polarizationUXX is shown in Figure 3B. According
to eq 14, its sign solely depends on the sign of the dielectric
constant prefactor (ε2

-1 - ε1
-1) and is negative (attractive

interaction) if ε2 > ε1, which corresponds to the situation
considered here. The scaling ofUXX with respect toR and
H is determined by the interplay between the 1/R multiplier
and the charge-imbalance factor (Pc

e - Pc
h)2. In the range of

R, H j 10 Å (type I localization), where the overlap integral
Θ = 1 (Figure 3A,B), the polarization contribution vanishes
because of a nearly zero charge-imbalance factor. In the
region of 10j (R, H) j 20 Å (transition from type I to II
localization) whereΘ becomes smaller than unity and,
consequently (Pc

e - Pc
h)2, significantly deviates from zero,

the polarization term depends on bothR andH. Finally, for
R, H J 30 Å (type II localization) whereΘ = 0 and the
charge-imbalance factor approaches its maximum value of
1, UXX becomes independent ofH and scales as 1/R. In this
region, the magnitude of the polarization contribution reaches
its maximum value of∼30 meV.

The total interaction energy,∆XX (Figure 3C), is a sum of
WXX andUXX (eq 12) and is mainly determined by a positive
contribution fromWXX while UXX provides a relatively small
negative correction which does not exceed 20-30% ofWXX.
As indicated by our numerical modeling the dependence of
∆XX on R andH is qualitatively similar to that in Figure 3C
for the whole range of dielectric constants from 4 to 8 studied
here. In the case ofε1 ) ε2 the contribution from interface
polarization is zero (UXX ) 0). For ε1 > ε2, UXX changes
sign but is still only 20-30% of the total value of of∆XX.
For the entire parameter space investigated here, the sign of
∆XX is positive indicating that excitons tend to repel each
other in the core/shell nanostructures studied in this work.

To gain a better understanding of the effect of the spatial
distribution of charges and dielectric confinement on∆XX,

we analyze slices of the dependenciesΘ ) Θ(R,H) (Figure
4) and∆XX ) ∆XX(R,H) (Figure 5) by fixing eitherH or R.
We perform calculations for both the e/h and the h/e
nanostructures withε1 andε2 varied from 4 to 8.

In Figure 4, we show the behavior of the overall integral
Θ for fixed values of the core radius (R ) 20 Å; panel A)
and the shell thickness (H ) 20 Å, panel B). From Figure
4A, we can see that the initial increase ofR from 0 to Rcl

(electron core localization radius) induces a faster drop in
Θ in h/e structures compared to that in e/h structures (Θh/e

< Θe/h). This behavior reflects the fact that heavier particles
(holes in our case) localize more readily within a potential
well (i.e., localization is produced by a “shallower” well)
than lighter particles (electrons). When both particles are
already localized (R > Rcl), a further increase inR then has
an opposite effect. In this range of core radii, the electron-
hole overlap is primarily due to penetration of the tail of a
wavefunction of a shell-localized carrier into the core.
Therefore, the drop inΘ in the range ofR> Rcl occurs faster
in e/h structures (shell-localized holes) than in h/e structures
(shell-localized electrons). The trends observed in Figure 4B
(R is fixed andH is varied) can be explained by similar
arguments applied to the case of a varied shell-confinement
potential.

As evident from Figures 2 and 3 the strength of X-X
repulsion (i.e., the X-X interaction energy) can be enhanced
by providing better electron-hole spatial separation. There-
fore, the e/h nanostructures that show faster initial drop of

Figure 3. A three-dimensional plot of dependencies on the core radiusR and shell widthH for (A) the direct Coulomb couplingWXX (eq
13), (B) the core-shell interface polarization energyUXX (eq 14), and (C) the biexciton interaction energy∆XX (eq 12) (calculated forε1

) 4.0 andε2 ) 6.0).

Figure 4. The overlap integral (eq 5)Θe/h (Θh/e) for the e/h (h/e)
nanostructure, as (A) a function of core radiusR for a fixed shell
width (H ) 20 Å) and (B) a function ofH for a fixed core radius
(R) 20 Å). The point of intersection ofΘe/handΘh/eapproximately
corresponds toRcl (panel A) andHsl (panel B) calculated for
electrons.
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Θ with increasingRshould also show a faster initial increase
in ∆XX compared to the h/e structures. This trend is clearly
seen in parts A and B of Figure 5. More complex trends are
observed for larger core radii for which the magnitude of
∆XX is determined by the interplay between the electron-
hole spatial separation (increases∆XX) and the effective
reduction in the density of interacting charges (decreases
∆XX). This interplay produces a faster decrease in∆XX with
increasingR in the case of the h/e structures compared to
that in the e/h structures. Analogous considerations can be
applied in the analysis of correlations between behaviors of
∆XX (Figure 5C,D) andΘ (Figure 4B) for the case whereR
is fixed andH is varied.

In order to better understand the dependence of∆XX on
the dielectric parameters of NCs, we rewrite the expression
for the X-X interaction energy (eq 12) by separating the
ε1- andε2-dependent contributions

Assuming that the carriers are completely separated between
the core and the shell, we can present∆XX

(1) as

where Fc is the electron (e/h structures) or the hole (h/e
structures) density. In eq 16, the first term is a negative

(attractive) contribution from the core-shell interface po-
larization (UXX), and the second term is a positive contribu-
tion from the repulsive Coulomb interaction between the
same type of particles (two electrons or two holes) localized
in the core. The∆XX

(2) component in eq 15 can be calculated
as

whereFs is the density of shell-localized charge, which is
an electron in the h/e structures and a hole in the e/h
structures. Here, the first term is the contribution from the
interface polarization, which has a positive sign (repulsive
interaction). The second term is a negative (attractive)
contribution due to direct Coulomb coupling between
electrons and holes separated between the core and the shell.
Finally, the third term is a positive (repulsive) energy due
to the Coulomb interaction between the same sign particles
that reside in the shell region.

A numerical analysis of eqs 16 and 17 indicates that both
∆XX

(1) and ∆XX
(2) are always positive. Therefore, the decrease

in either of the dielectric constantsε1 or ε2 results in
increasing values of∆XX. Furthermore, we find that∆XX

(1) is
significantly greater than∆XX

(2) (∆XX
(2) /∆XX

(1) < 0.2). This result
implies that for the structures considered here the dielectric
parameter that affects the X-X interaction in the largest
degree is the dielectric constant of the core as also seen in
Figure 5.

Conclusions.In conclusion, we have performed analytical
and numerical analysis of X-X interactions in type II core/
shell NCs. These nanostructures can provide almost complete
spatial separation between electron and hole wavefunctions,
which leads to a significant nonzero local charge density
associated with a single electron-hole (exciton) state. Under
this condition, the X-X interactions can be accurately treated
using first-order perturbation theory, while this approach is
not appropriate in the case of type I structures, in which
nearly identical spatial distributions of electron and hole
wavefunctions leads to local charge quasi-neutrality.

In our modeling, we account for contributions from both
the direct Coulomb coupling between charge carriers and
the interface polarization. Both of these contributions vary
in correlation with the electron-hole overlap integralΘ, and
specifically, they increase asΘ decreases. This result
indicates enhancement in the X-X Coulomb interaction with
increasing degree of spatial separation between electrons and
holes. We observe that direct Coulomb coupling in the case
of charge-separated states always leads to strong X-X
repulsion.

On the other hand, the contribution from interface polar-
ization can be either repulsive or attractive depending on
the relationship between the core and the shell dielectric
constants. However, the latter only provides a relatively small
(j30%) correction to the total X-X interaction energy.

Figure 5. The X-X interaction energy∆XX plotted for different
values of dielectric constantsε1 (coded by line type) andε2 (coded
by line color): ε1 ) 4 (solid lines),ε1 ) 6 (dashed lines),ε1 ) 8
(dotted lines);ε2 ) 4 (black),ε2 ) 6 (red), andε2 ) 8 (green).
Panels A and B show∆XX as a function of core radiusR for a
fixed shell width (H ) 20 Å) for e/h and h/e nanostructures,
respectively. Panels C and D show∆XX as a function ofH for a
fixed core radius (R ) 20 Å) for e/h and h/e nanostructures,
respectively.
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Therefore, the sign of∆XX is always positive indicating
overall X-X repulsion. Further, our calculations show that
the X-X interaction in these structures can be characterized
by giant energies on the order of 100 meV. These values
are comparable to or greater than typical transition line widths
in NC samples, indicating the feasibility of the situation for
which the Coulomb shift of optical transitions in singly
excited NCs almost completely suppresses absorption at the
emission wavelength. Under these conditions optical ampli-
fication in NCs can be achieved in the single-exciton regime,
which should allow one to eliminate the complication
associated with ultrafast optical gain decay induced by
multiparticle Auger recombination.
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