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The collective electronic oscillators method is used to construct an effective Frenkel exciton
Hamiltonian for conjugated dendrimers with fractal geometry. Self-similarity and the high degree of
symmetry utilized by decomposing the space of optical excitations into irreducible representations
make it possible to compute the one-exciton states and the linear optical response with reduced
numerical effort that scales linearly rather than exponentially with the number of generations. The
linear optical response is dominated by localized excitons belonging to the peripher{99®
American Institute of Physic§S0021-960609)51916-§

I. INTRODUCTION sorption spectrum of each member of this dendrimeric fam-
ily is dominated by a single peak at frequency close to that of
Advances in organic synthesis yield supermolecules witta linear segment, in agreement with experinférif.This has
precisely defined structures. These include molecular rodseen attributed to the localization of optical excitations on
and wires;® dendrimeric nanostructurés® higher the linear segment, i.e., electréand hol¢ exchange among
fullerenes and metallofullerend3? giant cagelike segments is blocke. Since charge transfer across meta-
receptors;"** and organic superlatticés.In addition, mo-  substitutions is negligible, the optical excitation can be mod-
lecular aggregates are common in biological processes su@ted as a collection of weakly interacting two-level chro-
as light-harvesting complexes in photosynthé$X:ray and  mophores. The weak exciton transfer across meta-
NMR techniques provide the geometry of these structuresubstitutions and the charge localization on the segments
which contain thousands of atorhs.*® justifies the modeling of optical excitations as Frenkel exci-
Optical spectroscopy is an important tool in the study oftons, which are tightly bounded electron-hole pd#se bot-
photophysics and photochemistfy,charge and energy tom panel in Fig. 1
transfer?® intermolecular interactions, and bonding in these In Sec. I, we construct the Frenkel exciton Hamiltonian
systems. The theoretical investigation is complicated by thend calculate its parameters by using the CEO technique.
delocalized nature of electronic excitations, strong electrorrhe properties of one-exciton states are discussed in Sec. IIl.
correlations, and vibronic couplirfd:?? Application of quan-  In Appendix C we demonstrate how the one-exciton eigen-
tum chemistry methods to calculate the electronic structuregalue problem is simplified considerably by decomposing the
is limited by computational power to small systefi$°The  Frenkel exciton Hamiltonian onto a set of Hamiltonians of
problem is simplified considerably for molecular aggregatesnuch lower dimensionality. The symmetry properties of
made of well separated chromophores, whose interactiongendrimeric molecules described in Appendix B and in Sec.
are purely Coulombic. Electron exchange is then negligible|ll A make this decomposition possible. The absorption
each chromophore retains its own electrons, and the systegpectra are calculated in Sec. IV, where we further analyze
may be described using the Frenkel exciton Hamiltoief.  the nature of optical localization and the types of excitons
The electronic states and spectra of aggregates are sirsentributing to the absorption spectra. The absorption line
ply related to those of their chromophore units. The situatiorshape and other physical quantities are expressed in terms of
is much more complex when the electronic states are delayavefunctions of an effective linear chain using a mapping
calized across the entire molecule such as in the family o0bf the one-exciton wavefunctions described in Appendix A.
dendrimeric molecules shown in Fig.(fop panel. The lin-  The self-similar properties of dendrimers lead to unusual
ear absorption spectra of these dendrimers have recentphysical properties. As an example, in Sec. V, we show that
been calculated using the collective electronic oscillatothe superradiant coherence size has a unique scaling depen-
(CEO) approach, which only requires a moderate computadence with molecular size. Finally, our results are summa-
tional effort>>?® The resulting electronic normal modes are rized in Sec. VI.
directly related to excited stgste charge distributions and mo-
IIOI’IS. of electrons anq holéé: Real—space analysis then lde— Il_ERENKEL EXCITON MODEL FOR DENDRIMERS
termines the underlying coherence sizes such as the sizes of
electron-hole pairs created upon optical excitation, and helps The first five members of the family of compact phe-
identify the “pieces” of the whole molecule where these nylacetylene dendrimer$®*2are presented in the top panel
pairs (excitong are confined. of Fig. 1. The treelike molecules are formed by phenylacety-
Our previous calculations had shown that the linear ablene segments connected at the meta-position. We denote
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FIG. 1. Upper trace: Structures of the compact phenylacetylene dendrimers
family made of the same linear building unit. Lower trace: Schematic rep-
resentation of the Frenkel exciton model in molecular aggregates. The
weakly coupled two-level chromophores have frequenfles andJ;; de-
notes their coupling strength.

FIG. 2. Upper trace: The nearest-neighbor interaction m@dil) for the
chromophores and the spatial orientation of the transition dipoles. The

he dendri ith . | ictl Ki shaded dots denote the two-level chromophores, arrows represent the dipole
the dendrimer with generations a®l. Strictly speaking, orientation. Lower trace: Dual Bethe lattice with triangular cycles of

the dendrimeric geometry is three-dimensional and packingearest-neighbor interactions.
considerations require it to become nonplanar, i.e., spheroi-
dal, as the number of its generations incredédsowever,

since rotational symmetry along the acetylene unit is main-
tained, we shall model the optical properties assuming a twostate to the excited state of theth chromophore. The Cou-

dimensional planar geometry. lomb interaction between chromophores determines the hop-
As shown in Ref. 28, optical excitations in these den-PiNg parametersyy,.
drimers are localized and involve no charge transfer between The exciton model is depicted in Fig. 2, where the chro-
different segments. The Frenkel exciton model should therenophores are denoted by shaded circles. All chromophores
fore be applicable, i.e., each segmémdnd can be consid- have the same transition frequencieés= () since the acety-
ered as a two-level chromophotthe ground and excited lene units are identical. The mteractldm decreases rapidly
states of a single phenylacetylene chaidowever, despite With distance(scaling as~1/r&, when the distance
the localization of electron-hole pairs on single segments, theetween them-th and n-th chromophores is much larger
optically induced charge redistributions on different seg-than the chromophore sigewe can therefore neglect all
ments do interact. This Coulomb interaction gives rise toColoumb interactions between chromophores other than the
coherent energy transfer between chromophores, as illugearest neighbor¢NN) (i.e., chromophores whose linear
trated in the bottom panel of Fig. 1. The relative motion ofunits are connected through a phenyl jinGonnecting the
the electron and hole in each pair is localized on the variougearest neighbors with lines leads to the dual Bethe lattice
chromophores whereas their center of mass is delocalize§hown in the bottom panel of Fig. 2, which differs from the
Such excitations are known as Frenkel excitoiré:3° original Bethe lattice since it has triangle cycles. We thus
The Frenkel exciton Hamiltonian for an assembly of describe optical excitations of a dendrimer by a Frenkel ex-

two-level chromophores coupled by Coulomb interactionstiton aggregate with the dual Bethe lattice geometry.

has a fornt32435 By symmetry, the absolute magnitude &f; between
NN chromophores is the same. Determination of their signs
H= 2 Q—B—B—+ > JWBT TR (1) is a more delicate matter. We first note that the excited state
n#m of any chromophoren, and therefore the creatigannihila-

whereBg; (B is the annihilation(creation operator of an ~ tion) operatorsBL; (Bi) and the transition dipoleuy, are
excitation localized on thel-th chromophore. These opera- defined up to a phase. The phase can be fixed up to a sign by

tors satisfy the commutation relations requiring the transition dipoles to be rdake Eq(23)]. The
+ + transition dipoles of the chromophores are directed along
[Br. Bl = dnm(1—2B;Br), (2 their corresponding linear unitgig. 2). A sign change of the
excited state wavefunction will reverse the direction of the
[Br.Brl=[B1.Br]=(Bh)?=(Br)?=0. 3

transition dipole. Any choice of signs for the excited states
We label the chromophores using Latin indices with an overgenerates a pattern of arrows of the same magnitude, which
bar. Qi represents the transition energy from the groundorm 120 degrees angles. We have chosen to align the
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m-th dipole to point from the center of the dendrimer to its
periphery as shown Fig. 2.

Since a sign change of a single arrow reverses the sign
of the By and B% operators of the corresponding chro-
mophore, the sign of any NN interaction is determined by the
relative orientation of the corresponding arrows. In particu-
lar, chromophore A in Fig. 2 interacts with four chro-
mophores, B, C, D, and E. The signs of the AC, AD, and AE
interactions are the same since they have the same relative
configurations of the arrows with respect to the vertex rep-
resenting the common phenyl ring: “one in, one out.” For
the AB interaction, both arrows point out. This configuration
can be transformed into “one in, one out” by changing the
direction of the A-arrow. Since this procedure reverses the
sign of the interactions we havé,c=Jp=Jae=J and
Jag=—J. In summary: The hopping parameter is given by
J (—J) for chromophores belonging to differetthe samg
generations.

In molecular aggregates the chromophores are well sepa-
rated in space and their interactioh€an, therefore, be cal-
culated using electrostatic, e.g., dipole-dipole coupling. This
is not the case for dendrimers where the chromophores over-
lap (they share a common phenyl ringnd are tightly
bonded chemically. To computewe examined the mono-
mer (M), dimer (D), and trimer ) dendrimeric units
shown in Fig. 3 using the CEO procedure. The dimer and
trimer have degenerat@r near degeneratdocalized low-
frequency electronic excitations whose weak interactions re-
sult in splitting of the spectrum. The remaining high-
frequency electronic states are well separated and do not
interfere with the lower transitions.

Poliakov et al. 8163

We start with the solution of the Frenkel exciton Hamil- FiG. 3. Structures and atom labeling of phenyl acetylene mondvher

tonian for the dimer and trimdsee Fig. 3. This leads to the
eigenvalue problem for:2 2 and 3< 3 Hamiltonian matrices
with all diagonal elements equal @@ and all off-diagonal
elements equal ta.

dimerD, and trimerT. Optimized AM1 level geometry yields the acetylene
group parameters afg,=rgo=1.407 A, r;g=1.200 A and phenyl group
ri,="rg1=1.403 A. Each monomeric unit is labeled starting from the out-
side phenyl. Note that the labels of the common phenyl are different for
different linear units.

The dimerD has the symmetric and antisymmetric states

1

Qp1=0+J ¢01:E(¢1+¢z)' (48
1

Qpr=0-J ‘/’02:5(_¢1+¢2)- (4b)

The trimerT has three states; one is symmetric,

1
Qr=0+2J ¢T1:‘/_§(¢1+¢2+¢3): (59

and the other two are degenerate,

1
Qr=0-1J ¢T2:E(_¢l+¢2): (5b)

2
Qr3=Q—=J 3= \@(¢l/2+ $2l2— b3). (50

Here ¢1, ¢,, and ¢35 are the orthogonal excited state

wavefunctions of the monomeric units.

We have used the same average geometric parameters
obtained at the AM1 level for all moleculgsee Fig. 3.
Note that even though the optical excitations are well local-
ized within the linear segments, in the computations we re-
tained the acetylene group at theetapositions of the edge
phenyls to model the chemical environmentsrdtacarbon
atoms. The numerical procedure has been described in detail
elsewheré>~2 The ZINDO code was first used to generate
the INDO/S Hamiltoniar®° We next calculated the
Hartree-Fock ground-state density matrf@@&which are the
input to the CEO/DSMA procedut@?® which computes the
linear absorption spectra and the relevalgctronic normal
modesé, . Each mode is a matrix representing the electronic
transition between the ground sta@® and an electronically
excited statde,). Its matrix elements are given by

(gv)mn:<¢v|cr:r10n|0>v (6)

where ¢, (c,) are creation(annihilation operators of an
electron at them-th atomic orbital, and0) (|¢,)) is the
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TABLE |. Calculated low-frequency spectra of molecules displayed in Fig.
3. The dimeD and trimerT have two and three near-degenerate transition
with central frequency) close to the monomevl band-edge transition. The
splitting allows us to compute the coupling paramelem the Frenkel
exciton modelEg. (1)].

M D T
Q; (eV) 3.603723 3.594 700 3.586 112
Q, (eV) 3.611811 3.611 160
Q5 (eV) 3.611 160
Q (eV) 3.603723 3.603 255 3.602811
A=Qy—Q (cm™ 0 3.77 7.35

J (em™h —69.0 —67.3

ground (excited state many-electron wavefunction. The
eigenfrequencies) , of these equations provide the optical
transition frequencie®:%®

The calculated low-frequency spectra summarized in
Table | show an excellent agreement with predictions of the

Frenkel mode[Egs.(4) and(5)]. The band-edge transition in

the dimer spectrum splits into two peaks. This Davydov

splitting (2|J]) gives |J|=69cm L. The central frequency
shift (3.77cm?) is much smaller thard and reflects the

weak coherence between linear units. The trimer calculations

provide the sign ofl (which is not available from the dimer
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and further confirm our model. The sign is negative since the

higher transition frequency corresponds to the doubly dege
erate excited state. This molecule has three low-frequen

H:_IG. 4. Variation of the diagonal elements of low-frequency electronic

modes listed in Table |. The axis represents the carbon atofis-14) as

CMbeled in Fig. 3. Each panel displays a single mode of dimer or trimer,

transitions; two are completely degenerate as predicted byhown solid[£(1)], dashed £(I)], or dot-dashed ling (1) ] for each

the Frenkel model. The calculated negative couplihg
—67.3cm * agrees with that calculated for the dimer and
is very close to the experimental estimake 50 cm * for
M.*? The central frequency shift (7.37 ¢} is also much

smaller thanJ. The one-exciton band-edge energy for the

dimers and the trimers ©~23.60eV. In all subsequent cal-
culations, we have sgt=—68cm 1.
We next turn to the electronic modés [Eq. (6)]. If the

monomer unit. The dotted line represents the diagonal elements of the
monomerM mode multiplied by correspondent facfsee Eqs(4) and(5)].
Linear units I, II, and I-Ill of the dimer and trimer, respectively, are shown
in Fig. 3.

symmetric statgsee Eq(4a)] and the coupling is therefore
negative. The monoméy mode virtually coincides with the
dimer mode in units | and Il outside the common phenyl.

Frenkel model holds, then each electronic mode of the agfhe difference on this phenyl is the result of superposition
gregate should be a linear superposition of monomerigind interference. The mode &2 is antisymmetridcom-

modes, for example,
(ér1)mn={(#71lCmCn|0)

1
:‘73<(¢1+ $2+ ¢3)|cmCnl0)

1
=— (&1t 1 &). (7

V3

pare with Eq.(4b)] and similar to the monome¥ mode.
The lowest frequency modEl is symmetridcompare with

Eqg. (5a)]. The next modd 2 is antisymmetric on the | and Il
units of the trimer and vanish on the unit Ill outside the
common pheny[see Eq.5b)]. Mode T3 is symmetric and
equal on | and Il units, and antisymmetric with respect to
unit Il [compare with Eq(5c)]. The electronic modes of the
dimer and the trimer are thus given by linear superpositions
of the monomeric modes, in agreement with Ed$and(5).

To test this relation we display the diagonal elements of the hese results confirm the applicability of the Frenkel exciton
electronic modes in Fig. 4 using the carbon atom labeling ofnodel.

Fig. 3. The numbering for each linear unit starts at the exter-

nal phenyl and ends on the common phenyl. Note that thg|. PROPERTIES OF ONE-EXCITON STATES

same carbon atom on the common phenyl has different Iabe!&
for different monomers. Panel D1 shows the diagonal ele-

ments of the electronic modes Dfl in the dimer andV in
the monomer. The latter is multiplied by factow2/[see Eq.

. Symmetry and classification of excitons

The one-exciton states can be found by diagonalizing the
one-exciton subspace of the HamiltonifEq. (1)]. The

(4@)]. The solid and dashed lines show units 1 and 2 ofstrong symmetry allows us to reduce the diagonalization

moleculeD, respectively. The dotted line displays the mol-
eculeM. This plot shows that modB1 corresponds to the

of a huge 3(2'—1)x3-(2'—1) matrix, wherd is the num-
ber of generations, to the diagonalization of matrices no
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larger than X 1. Each generation is formed by a collection of
phenylacetylene units separated by a fixed number of meta-
conjugations. A walker which starts at the center should turn
60 degrees on the meta-conjugated linear units to reach to
the next generation. The number of phenyls on the surface of
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A (s>m)

ﬁ ; ; : . ! \

<p“’(j)'§ (p(l)(j)li 90G) ig «pﬁﬁ(j) —(p(li)(j) ,_(p(i)(j:? —giG); _¢m0j: —o0G)

a given generatiofand linear chromophore segmergsales
with generation number as

N;=3-21"1, (8

The total number of chromophores Il is N=E}:1Nj
=3(2'-1).

Interaction among chromophores results in delocaliza-
tion of the optical excitations over the entire molecule, and

W0 | Pl o8 | _g0p)

o)1) A —glX(1)
mn

the formation of excitons. We label the one-exciton eigen- 09(0)=0

states by Greek indices with an overbar, eq.,The one-
exciton wavefunctions are

|¢2)=2 ¢a(1)B/10). 9)

We denote the set of chromophores of tledendrimer

by X,. The space of one-exciton states denoted in Appendix
B by W, is, according to Eq(9), a vector space with basis set

X;. The one-exciton spad®, naturally forms a representa-
tion of the dendrimeric symmetry group, described in Ap-

q9(2)

pendix B. A standard procedure for making use of symmetry q=1 e-i2n/3 gi2n/3
to diagonalize the Hamiltonian H starts with decomposing ’ ’

W, into a direct sum of irreducible representation<spfand
applying the Schur’s lemnf&. The decomposition o, is
carried out in Appendix BEq. (B6)], and the application of

Schur’s lemma is explained in Appendix C. Combining the
results of these appendices vyields the following structure o

FIG. 5. Upper panel: The antisymmetric exciton of lengthiThe exciton
wavefunction ¢, is represented byj=I—|m| nonzero numbers
$0(1),...,09(j) (energy quantum number's are droppe)l Lower panel:
Symmetric exciton and the representation of its wavefunction forlxBe
rfnolecule.(The subscripts fog, and indexa are dropped.

one-exciton states. The excitons can be partitioned into anti-

symmetric and symmetric classes which belong to the repr

sentationsv; andV,, respectively, in the decomposition of

Eq. (B6). The antisymmetric excitons can be labeled by pairstum numb
of indicesmea, wherem is the chromophore where an exci-
ton starts, whilex is energy quantization number. For each

me X,, |m| denotes the generation number to whiahbe-
longs (see Appendix B for an exact definitibrand «
=1,2,...,|—|m|. The wavefunction of an exciton which
originates atm is shown in Fig. 5 wherg =1—|m]. All
wavefunctionsgp,,(n) which originate inm are nonzero for
n>m only (see Appendix B for the formal definition af

>m), i.e., forn which belong to the branches which start at

m. As shown in the top panel in Fig. 5, a wavefunctiog,
is determined byj =|—|m| numbers¢((1), ... ,¢0(j).
The Schrdinger equation fokp given by Eq.(9),

Hl¢2) = eal ), (10)

results in the system of equatiofig. (Al1)] for the coeffi-
cientsg{’(1), ... .,6"(j). In Appendix A we map the aux-
iliary eigenvalue problentAl) onto the one-exciton states of
an effective linear chain of length with nearest-neighbor
hopping[Eqg. (A6)]. We, therefore, refer to the excitorsy,

with |m|=1—j as excitons of the length Since an exciton
of lengthj with a given quantum number («=1,2,...j)
can originate at any chromophora with |m|=1—j, we

have 3 2'71~* excitons with energy!)). This corresponds
to the number of chromophores in the j generationsee

eEq. (8)]. The total number of excitons of lengjhs therefore

-27171j, where the lastj( factor is related to the quan-
era. According to the classification of Appendix
B, excitons of lengtm form the spaceV, in the decompo-
sition of Eq.(B6). The degeneracy of any system of length
according to Appendix C is given by diw,=3-2'"""1,
whereas the facton gives the number of different energy
values. Stated differently, there aredistinct excitons of
length n whose wavefunctions are expressed in terms of
linear chain wavefunctiong!!’ (or ¢\)) as illustrated in the
top scheme in Fig. 5. Each of the distinct states has a 3
.2!="=1fold degeneracy.

The structure of the symmetric excitons is presented in
the bottom scheme of Fig. 5. These excitons belong to the
spacdV,@IV,®1V; in the decomposition of E4B6). They
are labeled by the quantum numbegs=e'27(t:" 13 with t
=1,2,3 in Eq.(A3) which correspond to the excitons belong-
ing tolV4, IV, andIV; with energies,, , ,t=1,2,3, respec-
tively, anda=1,2,.. . |. The auxiliary wavefunctiong"
which determine the exciton wavefunctions in the dendrimer
satisfy Egs.(A2). Equations(A2) are obtained by substitut-
ing the exciton wavefunction represented in terms of the
auxiliary functions¢") in Fig. 5 into the Schidinger equa-
tion. The eigenvalue problefiEq. (A2)] is mapped in Ap-
pendix A onto an effective linear chajiq. (A6)]. Symmet-
ric excitons are nondegenerate except of a trivial double
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degeneracy with respect to the quantum numibe2,3 (i.e., 1fF T T T ]
€42~ 6a,3)' - D2

In summary, we have classified all one-exciton states of 0.5+ .
DI by their symmetry and expressed their wavefunctions in - L//M 8
terms of auxiliary wavefunctions of excitons in effective lin- 0

ear chains with nearest-neighbor hopping. We next discuss r D3

the density of states and the distribution of exciton sizes.

D4 |
B. Density of one-exciton states

The density of state@OS) provides the simplest char-

acteristic of excitons. We consider three types of DOS. The D5
(11 0

local density of states at the-th chromophore is given by

1
pr( @)= —IM[ G @) ].

D6 |

Herew is the energywe setw=0 for the ground stajeand 051
the one-exciton Green’s function is given by -

—100 0 100 200 300
Aw (cm™)

0 I "y
—-300 —200
(o) pa(M) p=(M) .
w)= —_— .

mn e w—e+ill
_ . . . FIG. 6. The density of states as a function of frequency detuning from the
a runs over a!l one-exciton state;, ahds a de_phasmg rate- resonancé w=w— ) for dendrimers with different number of generations:

The density of states for thieth generationp;(w), i D2-D6. The dephasing rate of all one-exciton states s 0.1]J|
=1,... ] is given by the sum over the density of states of all~8 cm™.

the chromophores belonging to that generation,

Tl éa()]? [y~ 9(i—s)|?
b= 3 =N —e)

(w—€!"9)2412
ﬁ Ok
t=1 a=1 (w_ea,t)z—'_rz .

i—-1 1l-s
P T i(w)=TN;, 25"
T (0—e)’+I? (13 pie) I(s§=:1 a§=:l
whereN; (number of chromophores in theth generatiopis
given by Eq.(8).
Finally, the total density of states(w) for the entire
aggregate is given by

OOII—\

17

Combining Egs(8) and(14) in (17), the density of states

for the individual generations is given by

N |

1 I-s I-s)/: 2
_ =S (o), 14 e 2(i-9)]
(w) Nm 1p Nz (w) ( ) P|(w) (E 25 12 (w_e(l—s))2+1—‘2
with the normalization | e
. iy UROE a8
f plw)do=1. (15) 351 &1 (0=, )+ 12"

The density of states for the entire molec{i&y. (14)] as a

Using the exciton classification introduced in Sec. Ill A, function of the frequency detuninglo=w—1, is dis-

we can separate E@L3) into the contributions of antisym- played using Fig. 6. We have calculaigdw) using Eq.(18)
metric and symmetric exciton states with I'~8 cm ! and then found the density of states) by
applying Eq.(14). To that end, we first diagonalizédma-

< < |p(i)]2 trices of type(A6): |—1 matrices withQ,=0+J and J
pi(@)=TN; = azl (0—eD)24 T2 —|J| of sizeiXi (i=1,...)—1) and thd x| matrix with
‘ QO=Q —2J andJ=—|J| to find the energies and wavefunc-
: |q§ M i)|? tions of linear chains. The one-exciton wavefunctions were

(16) then computed using Eq6A12) and (A13).
The DOS ofD2-D6 are displayed in Fig. 6. It follows
Only the antisymmetric excitons that start earlier thanfrom the self-similarity of dendrimers that the spectrum of

(w_ea’[) +I

the (i—1)-th generation(of lengths=1,...i—1) contrib-
ute to the first summation in E416). The exciton of length
s corresponds to the effective linear chain lenigtts. Using

the transformation§A12) and (A13) and the equivalence of

the symmetric exciton states for=2 andt=3, we obtain

higher generation molecules contains all the features of
lower generations. The DOS of a given generation contains
therefore all the peaks of earlier generations, and the number
of peaks increases with However, the DOS saturates lat
=5, andD5 andD6 are very similar.
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C. The participation ratio 10 ]-3 T T — T
2
The participation ratio provides a convenient measure of |
exciton sizé**~*® The participation ratid®; of an excitona ° l 1
is expressed in terms of its wavefunctigy, Ir | J
p__ Sl $aM|* 19 e ]
¢ Sqla(m)* 19 0 |
If a wavefunction is uniformly distributed ok chro- 3F ’I ! ‘ | 1
mophores, Eq(19) yields P~ 1=k, which implies that the N B by i
inverse participation ratid® ! constitutes a measure for 2l ]
the number of chromophores on which an exciton is delocal- A,
ized. The maximal valueP =N is achieved for a Sr }I. | ‘ | | N
wavefunction delocalized over the entire aggregate. In a den- 0T ps |
drimer it can be reached by symmetric excitons only. For an sk ]
antisymmetric exciton of length the wavefunction can oc-
cupy no more than 2(221) chromophoregsee Fig. 5, égj L T | I ‘ .
which gives the upper bound fd&® ! of antisymmetric ex- D6
citons of lengths. The minimal value ofP =1 corre- 30 .
sponds to an exciton which is fully localized on a single l ‘ ‘
chromophore. Expressing the exciton wavefunctions in terms 33'00 Y '“—1'00 | 0| ‘ 1L0| L lbo : 3'00
of the auxiliary linear chain wavefunctions by using Egs. B
(A12) and(A13) and substituting them into E¢19), yields Aw em™)
|¢(S)(i)|4 FIG. 7. The inverse participation rati#s * for D2—D6. The diamonds in
azz o | . a=1,...s, (20) the two tlott_om panels represent two—'foldidege_neracy of the dtate
=1 2 ~—70cmin D5 andD6: one state witlP~1=2 is “blocked” by the
other state withiP~1~31 in D5 and byP~!~20 in D6. The highest peak
for antisymmetric excitons and for D6 is off-scale P~ 1=180).
o T4
a:§i21|¢—“2$)—|, t=1,2, a=1,...), (21)
*
for symmetric excitons. The participation rafigg. (21)] is 5((1>(w)zz _’““# (24)
the same for ther-th state oft=2 andt=3 symmetric ex- @ w—etil

CitOI’]S, but differs fot=1 type due to the differences in the where the transition d|po|e moment of theth exciton is
wavefunctiond Eq. (A2)].

In Fig. 7, we display the inverse participation ratios for _ — b (M 25
D2-D6, calculated from Eqs(20) and (21), versus their Ha ; #indaM), @9

frequency detuninglw. They vary between the localized 4nq the direct product of the two vector dipoles in the right-
(P7*=2) and the delocalized(""=N) Va"_lfs- The figure  pang side(r.h.s) of Eq. (24) forms the tensor structure of
shows that one-exciton states with higher~ tend t0 oc-  +(1) " Restricting our calculations to unpolarized ligior to

cupy the band edges of the frequency interval. The frequenCé{n ensemble of randomly oriented moleciyéise absorption
range ofP~! increases witl, reflecting the appearance of coefficiento(w) = Im Tr[ ¥ (w)] is given by

one-exciton states close to the band edges.

T|pgl?
=2 7 2
o(w) ; (0= )T (26)
IV. LINEAR ABSORPTION We partition the absorption into the sums of contributions

Since the dendrimer size is typically much smaller thanfrom antlsymmetrlc_ and symmetric excitons denotedcw)
and o,(w), respectively,

the optical wavelength, its interaction with incident fi&ds

described in the dipole approximation, o(w)=0y(w)+ oy w). (27
Hinn=—P-E, (22 Details of the calculations af,(w) andoy(w) are given in
with the polarization operator Appendix D. Using Egs(D4) and (D9), we finally have
-1 s 2 | M2
M2 4 IMDj2r
= T g = -« 4 el
P zm: Hin(Brt+ Br), @3 olw) s§=:1 a§=:1 (0—€9)2+T? 3551 (w—€eD)2+T2

and ui=(m|«|0) denotes the transition dipole matrix ele- (28)
ment of them-th chromophore. In Fig. 8 we display absorption lineshapest»f to D6

The linear susceptibility of an aggregat€’)(w) can be  (divided by the total number of chromophoye€alculations
expressed in terms of one-exciton states, were made using the one-exciton wavefunctions and ener-
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FIG. 8. Linear absorptioiiper chromophornecalculated from Eq(28) for FIG. 9. The average oscillator strength per stateNp) is displayed versus

molecules with different number of generations. Peaks represent distinq}equency detuning for dendrimers of different generatidd@{D6).
one-exciton states.

gies given in Sec. llIB and the dephasing r&te:8 cm L.

The spectra converge BX5, and the spectra @5 or D6 as The number of peaks a@f/(Np) increases with. This is
well as higherDI (not shown look virtually identical. The because there are more one-exciton states in molecules with
high resolution(I'=0) stick spectra shown as well have somehigher |. As a result, the local maxima occur @éw
small differences in their weak peaks. ~100cmtin D4 in comparison with the absolute minima
The DI spectrum hag(l +1)/2 peaks representing the in D2 and D3. However, once a certain local maximum
various distinct one-exciton states. As a direct consequenceccurs atD(n—1), it is repeated for dendrimei3| with |
of self-similarity, the absorption spectrum of a given genera=n. This again follows from self-similarity.
tion shows all the features of lower-generation molecules  Figure 10 displays the normalized absorptiofiN, one-
plus| additional peaks. exciton density of statesp(w), the oscillator strength per
We also note that the spectra are nonsymmetric aroun@ne-exciton statar/(Np), and the inverse participation ratio
Aw=0. The highest peaks are located in the rAds0). P~ !(w) for D5. Using the figure, we can identify the exci-
This is a consequence of the negative valuelofas inJ tons that dominate the absorption and show where they re-
aggregated’ The magnitude of the normalized absorptionside. The bottom panel shows that the exciton resonances
does not vary with generation, except fbr2, where the span a 5.4| bandwidth (Aw varies between—2|J| and
absorption maxima are slightly stronger. This makes sens&.4J|). For an infinite dendrimerl (=), as a comparison,
since the total number of excitons which contribute to thethe exciton band spans the regidn-(1+2v2)J,(2v2
absorption increases as fast as the total number of chre-1)J], which gives a~5.8J| bandwidth.
mophoregboth double for successive generatipns The upper bound for the inverse participation ratio is
The oscillator strength per one-exciton state, given byobtained for a state uniformly delocalized over the entire
the ratio of normalized absorption and the one-exciton denmolecule and is equal to the total number of chromophores
sity, a/(Np), is displayed in Fig. 9 fob2-D6. Its variation ~N. For D5, this is the state ato~Q+3.4J| with P~?
over the entire frequency range is weak and does not exceed93. This state has a very weak contribution to the absorp-
~T7. tion (peakj). The strongest peaksandb correspond to the
Similar to Fig. 8,DI contains the peaks @ (I —1) plus  other extremes witiP '=3 and 2, respectivelyP =2
additional peaks. We further note that(Np) approaches 3 corresponds to a localized state where the exciton is equally
from below for large positive detuninga<0). The same distributed on the two chromophores. These antisymmetric
limiting value is reached from above for large negative de-excitons of unit length occupy the periphery of the molecule.
tunings. We have calculated/(Np) averaged oveAw for ~ Peaksc andh are produced by excitons of lengtk 3 with
D2-D6. The average ratios turn out to be close to 3 as wellP~1=6 and 13, respectively. Our analysis shows that local-
o/(Np)~2.84+0.60 for D5 and o/(Np)~2.91+0.40 for ized excitons which belong to the molecular periphery are
D6. responsible for the strong absorption peaks. The delocalized
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FIG. 10. Characteristics of the absorption spectrur® 5f The panelgfrom FIG. 11. Density of stateg;(w), of the various generations afb.

top to bottom are the absorption coefficient normalized to the total number
of chromophoresg/N, density of the one-exciton statggw), the average
dipole strengthg/(Np), and inverse participation rati® (o). The fre-
quencies and their participation ratias¢,P 1) of the absorption peaks are

Eg)) ((1_415202?&?((1;;01?EIC))((Zl1376)2€;d)G§3é3?9(3e) ;9,71’ ;-f:Dt’h((:)Z(;é%n?i the absorption and density of states does not always hold.

peak is off-scale P~ 1=93). For example, the high density does not result in strong
absorption in thef region (top panel since the oscillator
strength is very low. As seemw;/(Np)=<0.5 at frequencyw
states in contrast lead to a much weaker absorption. A simi=Q+v3|J| (Aw~120cnY), so that even the relatively
lar beh{:lvior has been4£)reviously found in biological light-large number of stated?2) for exciton of lengthj=2 does
harvesting complexe®: not lead to a peak in the absorption coefficicimpare the
It is instructive to note that for all four excitons which second and third pane|s from the top in F|g)1|0 contrast,
dominate the apso[pitmn spectrum the values of the inversge oscillator strengths of the shortest excitons are suffi-
participation ratioP ™~ are close to the maximal values al- ciently high, and combined with the high density of states,
lowed by the exciton symmetry determined by its length.iese excitons give the leading contribution to the absorption
The j=1 exciton (peak b) reaches its maximal possible o in Figs. 8 and 10
_1_ s . _1_ . . .
;/r?lue P . _f’ thej.t:lz ex;ntggl([ieg\k?) rlllasti t_3 Vftg Figures 11 and 12 display the individual generation den-
o ec'gszzm;kz(gs; deh Vﬁ: eP‘_l—' 6';2 yerses \tl\rll?ajn_"na . sity of statesp;(w). These quantities play a key role in the
Xcl P v ) Ver "=19,.3 Versus X real space picture of energy transfer in the excited stae
mal valueP ™ ~=14 for j =3 excitons. This implies that the S )
. o . the redistribution of excitons among generatjorGenerally
four excitons dominating the absorption spectrum are IocaI,Ehe density of states should be dominated by the contribution
ized over the entire regions allowed by their symmetry. "y u ' y toutl

Stated differently, the dominant excitons are localized be-Of the highest generatiop,(w) because of the exponential
’ rowth of the number of chromophores in a generafign

cause of the dendrimer symmetry rather than dynamical efd : -
fects. toward the periphery. Figure 11 demonstrates, however, that

Comparison of the top two panels in Fig. 10 shows thafn certain frequency regions the density of one-exciton states

the high density of one-exciton states usually correlates witfir the chromophores that belongite 4 and everi =3 can
strong absorption. The one-exciton densities for individuafocally dominate the one-exciton density, as shown in the
generation$i in D5 are d|Sp|ayed in F|g 11. The ﬁgure Second and the th|rd panels from the bottom in F|g 11. They
shows that the states which belong to the chromophores d¢ad to local maxima of the normalized absorption produced
the last, periphery, generation give the leading contributioby excitons of lengthj=2 at frequencyQ—v3|J| and j
to p(w) (bottom panél Since there are more excitons of =3 at~Q+0.2J|. The dominance of the density of states
shorter lengths in every;, these excitons should dominate for the highest generatiop, over all the other generations,
the absorption spectrum, provided their oscillator strengthexcept for two regions wherg,_; and p,_, are larger
are not too weak. locally, is common to dendrimeric molecules of any length.
Figure 10 also demonstrates that the correlation betweefhis is illustrated in Fig. 12, which shows the same
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T T UL (A5)]. These two factors cancel and contributions from dif-
ferent generations are the same, so that¢,(m)|«=l, and
- . Eq. (30) gives

0.08 1 LexIPs, Dg=2. (3D

For comparison, let us consider a translationally invari-
05 ant lattice inD dimensions. The lowest wavefunction ampli-
2 tude is proportional to 4/N, whereN is the total number of

r 1 sites. Therefore, Eq30) givesL xN. The total number of
sites depends on the characteristic dizd the system adl

«|P. We thus obtairDs=D.

- . Dendrimers can be viewed as a collection of one-
A dimensional linear chains. In that sense they are quasi-one-
0.9F y dimensional. However, the number of chromophores grows
ps exponentially with generation as in infinite-dimensional sys-
tems. Its fractal dimension defined as the logarithmic ratio of
0.45 1 particle number and some scaling lengtigan be defined
d=logN/logl~I/logl—e with | [see Eq. (8)]. This
“mixed” dimensionality results in the unusual superradiant
factor: The scaling exponerdg neither equals unity as
expected for one-dimensional structures nor is infinite. There
is a profound reason whyp,=2. Dendrimers are scale-
FIG. 12. Densities of one-exciton statgs, for the various generations of invariant rather than translationally invariant objects. Conse-
D3. qguently, generations with an exponentially increasing
number of chromophores still contribute equally to the
superradiant factof31).

3
5025 b

1 1 1 )
—300 —200 —100 0 100 200 300
Aw (cm™)

features forD3. The main peaks op, and p, are atAw
~13 andAw~—125cm %, respectively.

V. SCALING AND SUPERRADIANT FRACTAL
DIMENSION VI. SUMMARY

The superradiant factdrs of an aggregate is defined as We have studied the linear optical properties of phe-

the ratlc_) of its radiative decay_rate to that ofamonomer._IF ISnylacetylene dendrimers, which are macromolecules with
proportional to the squared dipole moment of the transition. i cimilar geometry. The molecule can be viewed as a

between theo Iowe; b scgle-mvarlant, excited state af‘d tk\%eakly interacting ensemble of nearest neighbor, two-level
ground staté? In this section we compare the superradlancechromophores_ The Frenkel-exciton model usually applied

_facto_r of a dendrimer With that of an ordinfiry, translationallyfor molecular aggregates may be used to describe their one-

mvanan'F aggregate. W, is th_e wavefunction of the lowest excitons states and optical excitation. The collective elec-

one-exciton state o.f a dendrimer, we can use Ejio ex- tronic oscillator approach has been utilized to establish this

press the superradiance factor as model for dendrimers and to calculate its parameters. Strong

2 symmetry originating from self-similarity was used to find

’ (29) the one-excitons statedoth energies and wavefunctions
with considerably reduced computational effort. IBamol-

where we set the dipole moment magnitufies| =1 for all  ecule with| generations, the number of chromophores in-
m. The maximal Superradlant factor is obtained when all thQ:reaseS exponentia”y a§:3(2| — 1) However, by em-

Ls=<‘1’1IM|0>2=% M1 (M)

dipoles are parallel, so that ploying the irreducible representations, we were able to
2 avoid the tedious diagonalization of Hamiltonian with di-
Ls= ‘ 2 lgu(m)]| (30 mensionNXN. The problem has been reduced to diagonal-
m ization ofl —1 matrices of Xi dimension (=1,...]—1) and

It is shown in Appendix A that the one-exciton wave- 2 matrices ofl X| dimension. The merits of the irreducible
functions can be mapped onto the wavefunctions of a linearepresentation approach should be especially noticeable in
chain. In the limit of very long chaind {~), we obtain an calculations of nonlinear susceptibilities.
energy band, with a discrete stateeat2J. For a negative We find that the strongly localized one-exciton states
hopping parameted <0, the energy of the discrete state is dominate the linear absorption, as in light-harvesting com-
the lowest, and the one-exciton wavefunctions scale expglexes. Such states occupy the molecular periphery and rep-
nentially with the generation number ag#,(i)x27, i resent excitons of the shortest lengths. Periphery states make
el,...]. The total number of wavefunctions is propor- the dominant contribution to the absorption since the number
tional to 2 [see, for example, the normalization @4) and  of such states is the largest. Based on the irreducible repre-
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sentation analysis, we characterize the main absorption peaksheree,, ; is the symmetric exciton energy. Note that system
in terms of exciton lengths and participation ratios. (A2) describes all three branches of symmetric excitons, and
A dendrimer can be viewed as a collection of linearthe energy manifold is the same for different brancHes.
chains. This allows us to express its optical properties in  The linear systemgA1) and(A2) only differ by the first
terms of linear-chain wavefunctions. However, the opticalequation. When=2 andt=3, g,+ g?= — 1, the two systems
properties of dendrimers are very different from those ofbecome identical. By solvingAl) in general andA2) for
linear systems. Scale invariance of self-similar objects suckthe caset=1 (g;=1), one can find the energies and the
as dendrimers can lead to a nontrivial scaling dependence @favefunctions of the symmetric and antisymmetric excitons.
physically measured quantities with molecular size. The The antisymmetric exciton wavefunctions are normalized as
~12 scaling of the superradiant factbg with size is differ-
ent from the expecteld;~| dependence for one-dimensional i

structures. Although the number of atoms grows exponen- >, 2/|¢)(i)[?=1, Va, (A4)
tially with generation, each generation still contributes =1
equally to the superradiant factor by virtue of the scaling of
the oscillator strength. whereas the wavefunctions of symmetric exciton of lerigth
are normalized as
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APPENDIX A: CALCULATION OF ONE-EXCITON can be modeled using a collection of linear chains with vari-
WAVEEUNCTIONS ablg lengths. Thg linear sy_ster()%l) gnd(AZ) for t.he one-
exciton symmetric and antisymmetric wavefunctions can be
The absorption coefficient and other parameters such asonveniently mapped onto the eigenvalue problem of a linear
one-exciton density and the participation ratio needed for thehain.
linear absorption analysis given in Secs. Ill and IV require  We consider a linear chain of lengih We further enu-
the knowledge of one-exciton states. In this Appendix wemerate the wavefunctions for each bond from left to the right
solve the eigenvalue problem for the two classes of excitonas ,(1),4,(2), ... #,(j), where a represents different
introduced in Sec. lll A by mapping it onto an effective ei- energies. The system of equations for the linear chain wave-
genvalue problem for a set of linear chains. functions can be obtained directly fro@2) and (A1),

e . : .
éj. Mapping the eigenvalue problem onto a linear
chain

1. Systems of one-exciton wavefunctions in
dendrimers (Qo= o) Pa(1) +IV24,(2)=0,

Using the structure of antisymmetric one-exciton wave-
functions described in Sec. Il fsee Fig. 5, the Schidinger (2’ = @) (M) +IV2[ ,(M+1)
equation[Eqg. (10)] adopts the form of a system of linear + g (m=-1)]=0, m=2,.j—1 (A6)
equations for the antisymmetric excitons of length “ ’ ’

(Q—eD+3)¢0(1)+2340)(2)=0, (Q = 0,) (i) + IV2ih,(j—1)=0,

Q- =3¢V (m)+ I[P (m+1

( « Vb (M) b ( ) We look for a solution of Egqs(A6) in the form of a
+2¢V(m-1)]=0, m=2,...,j-1, (A1)  standing wave

(Q=e =0 (D +I4(1-1)=0,

P (m)=A e*aM+B e KaM, (A7)
For symmetric excitons, we obtain in a similar way
(Q—e, t—J[Qt+qtz]):ﬁg)(l)ﬂLZJaS)(z)=0, Substitgtion of(A?) int_o the se.cond .equation of systéAB)
‘ results in the dispersion relationship between the energy
(Q—€u—NPV(M)+ ISV (m+1) and the wavevectd,,
+2¢7(m-1)]=0, m=2,...j-1, (A2) 0, =22 cosk,+ Q. (A8)

Q= €, — V() +IPYV(j—1)=0,
(= ea . Vo (D+Ida (1~1) By substituting(A7) into the first and the third equations
q=e?"t" DR =123, (A3)  of (A6), we obtain the quantization of the waveveckor
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sink[j+1])  Qo—Q Qo= w,+IvV2eka

——— = , (A9) B,=—A,e?k — (A10)
sin(kj) V2 Qo— w,+IV2e ke
From the normalization conditioB!_,|¢,(i)|>=1 and
and the relationship between the coefficietsandB,, , Eq. (A10), we obtain
22— (Q'—w,)(Qo+ w,
AlP=—] T e Boted) : (A1)
4233, _{v2IsinKk,(i—2)]+ (Qo— wy)simk,(i—1)]}2
|
These Iinear-chain wavefunctipns can be u_sed to con- g3, A%:L Vime X, (B1)
struct the one-exciton wavefunctions of dendrimers. The
wavefunctions of antisymmetric excitons of lengthsystem
(A1)] are related to the wavefunctions of the linear chain L
[Eq. (A6)] by AaAn——AAﬁﬁ)Aa for m=n,
¢ )=y ()12, (A12)
with substitutionsQo=Q+J, Q'=0-J e(c_j)= w,. The ArAT=AAn i for i<,
symmetric excitons of lengthare similarly given by n
L (H=93(1)V3-277, (A13)
and the substitutio)y=Q—J(q+q?), Q'=Q-1J, €,, A7A=AA;, otherwise, (B2)
=w,. The mapping of the original eigenvalue problem is
established by noting that the substitution of E¢sl2) and
(A13) into Egs.(Al) and(A2), respectively, yields EqAB). BA==AgiB, VmeX, (B3)

APPENDIX B: SYMMETRY GROUP AND
IRREDUCIBLE REPRESENTATIONS OF A FINITE

DENDRIMER wherel is the unit operator. Equatiaoi81) shows that either

three subsequent rotations or two flips of the same branch do

Here we describe the symmetry group properties of anot change the structure of the molecule. Commutation rela-
dendrimeric molecule and use them to decompose the origtionships (B2) show how two flips of branches which are
nal one-exciton spad®, onto irreducible representation sub- either inserted into each other or are independent can be
spaces. Although the number of chromophores and sites iniaterchanged. The equivalence between rotation with further
dendrimer grows exponentially with its sigeumber of gen- flip and a subsequent flip around the rotated brafgera-
erationg | [see Eq.(8)], its strong symmetry allows us to tion Ag:y) with subsequent rotation of the whole molecule
compute optical signals by inverting matrices of a maximalis given by Eq(B3). The groupG, is uniquely defined by its
sizel XI. In this section we introduce the symmetry group generating element,, B, and the relation$B1)—(B3).
G, for a DI dendrimer and describe its relevant representa- It is easy to see that the effective Frenkel-exciton Hamil-
tions which are used in calculations of the linear optical retonian introduced in Sec. Il does not change under the trans-

sponses. formations of the groufs, . This implies thaiG, is the sym-
We start by introducing the necessary definitions. Xet metry group for our problem.
be the set of chromophordsiteg of DI. For me X,, we Irreducible representations & can be classified by se-

define its absolute valuen| € Z as the generation number to quential applications of the construction for irreducible rep-
which m belongs(the generations are labeled from the centeresentations of semidirect products of grotipslowever, we

to the boundary X, has a structure of a partially ordered set: do not need all irreducible representations, and therefore the
we say thaim=n if |m|=|n|, andm belong to the branch complete classification goes beyond the scope of this paper.
which starts ah. The symmetry group 0B, of a dendrimer The basic object in our calculations is the one-exciton
is a subgroup of transformations for the chromophoreXset  spaceW, whose states are the functions ¥p. A natural

i.e., a subgroup of all the permutations #r. The groupG, action of G, onW, induced by the action dg, in X is given

is generated by the set of transformatidgs ne X, andB, by gop(m)=¢(g 'm), geG,, ¢eW,. The one-exciton
defined as followsA; flips the two branches which start at Hamiltonian(1) is obviously both linear operator i, and

n, while all the other elements of; remain unchanged. symmetric with respect t6,. Diagonalization of the one-
TransformationB rotates the dendrimer with respect to the exciton Hamiltoniarh to get the one-exciton states is based
center by 2r/3. The generator8; andB satisfy the follow-  on the Schur’s lemma, which is outlined in Appendix C. To
ing relations: apply the Schur’'s lemma for the above purpoég,should
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be decomposed into a direct sum of irreducible representawhereZ, acts onH,_,xXH,_; as the group of permutations
tions of G;. The remainder of this Appendix is devoted to of two elementsH, can be also considered as a 2-Sylow
this problem. subgroup of the group of the permutations bfefements.
We first construct the irreducible representations
Vi,V ... Vi_1; V1,V,,V;, which participate in the de-
APPENDIX C: MATRIX PROJECTION ONTO

composition ofW, . Vt (t=1,2,3) is a one-dimensional rep- IRREDUCIBLE REPRESENTATION SUBSPACE
resentation generated by the vectgrwith the following

action of G, : In this section we outline the Schur’s lemma and apply it
o - i2m(t-1)i3 to diagonalize the Frenkel exciton Hamiltonian described in
Am0t=1¢, Boi=€ Ut- (B4)  sec. II. Instead of diagonalizing a matrix of 3¢21)
. < . . x 3(2'—1) dimension, onl tx | matri re requir
In particular,V; is the unit representation @,. The repre- for3|(3| ) dimension, only up to atrices are required
S_enta??m/l“’ nd=_1,2,. o _1('1 r;)as Lhe dlmené%?ns_ ﬁm{l As discussed in Appendix B, the one-exciton sp¥ge
=32 g a_nl IS ggﬂerhatef i y the vectos . r\]/wt M can be decomposed onto the direct sum of its subsp@ees
€X; an W.I_ —h with the following action of the group o cible representationg;,V,,....V;). Irreducible repre-
generators: sentationV; (i<l) is invariant with respect to the original
By M=y, BM)  pA_ (M_ _ (m spaceW, does not intersect with another, and doescon-
. noooo men "o tain any subspace¥; which are invariant with respect to
AWU@:UH@ for n>m, (85)  Vi- Suppose that the irreducible representation of dimension
m, Vy,, occursn times, so thaWW=@nV,,. According to the
A nE:UaAﬁ@) otherwise. Schur's lemmd? matrix h,, of dimensionalitymnxmn in

the subspac¥ ,, can be represented by a matrix formedrby

A direct check shows that the action of the generatB#  blocks; each block is occupied by the<n matrix Aj;
and (B5) is consistent with the relationd31)—(B3) which A A A

. . 114312+« =43 1m
completes the construction. It is also easy to show that the ho— 1)
representation¥,, andV, are irreducible. These irreducible mn- AA o Al
representations participate in the decompositiolVpin the _ nitnz: oo
following way. The vectow ™ is represented by the func- The matrices\;; are diagonal

tions ¢ with ¢(k) #0 for k>m only, which satisfy the con- \i;,0,0...0
ditions Aqd=—¢, Asp=¢ for s>m; their space is 0X;;,0...0
n-dimensional according to the number of generations from  Ajj= o : (C2
|m|+1 tol. This implies thatV,, occursn times in the de- 0,00.. .\,

composition. Each representati&n( occurs| times in the ) o
decomposition: vectors, are represented by the wavefunc- 't 1S €asy to see from Eq¢C1) and (C2) that the original
tions with A== and Bé=exp(2n(t—1)/3)é. We then matrix h,,,, of dimensiormnXx mnis equivalent to the matrix

have hj; of dimensionnxn,
N11,N12, - - A
-1 = Y Y 11,N 12y in
W =@ ,_1nV,®IV18IV,81V;, (B6) hy = _ (3
where )\nla)\nZ: - -7\nn
nV=vVoVae --oV. The Frenkel exciton Hamiltoniafl) has dimensionality
— aX'a, wherea represents all one-exciton states. However,

. in the subspace of each representaliQn the matrix dimen-
The formal proof of Eq(B6) can be completed by a direct sion is lowered considerably tox k. Due to decomposition

check that the functiong representing the vectoré]m) and (B6), the eigenvalue problem for the Hamiltoniaf) is

v; in W, are orthogonal to each other and by comparing theequivalent to the eigenvalue problem for 1 matricesh of

d|men3|ons of both sides of E(B6). dimensioni Xi for each representatiod; (i=1,...)|—1)
Finally we note that thé&| symmetry groupG, can be . . . Y
expressed using the construction of iterated wreath producﬁnd threg matrices of .dlmen3|dn<| (representatlonyl,
IntroducingH, as the symmetry group of one of the three V2, @ndV3). Thus, using group symmetry properties the
branches of th®| group of one of the three branches of the didgonalization of systerfil1) eventually reduces to diago-
DI dendrimer, we can expres as a semidirect product ~ nalization ofl —1 matrices(A1) and 2 matrice¢A2) of di-
mensionl X| (see the details in Appendix)A
G =Z3& (H; XHXH)), (B7)

with respect to the action a3 on H;XH;XH, given by  APPENDIX D: ONE-EXCITON CONTRIBUTIONS TO
cyclic permutationsH, can be defined inductivel,=Z,  THE ABSORPTION COEFFICIENT

and
In Eq. (27), we have separated the absorption coefficient

H=Z,&(H,_1XH,_q), (B8)  o(w) onto symmetricos(w) and antisymmetrier,(w) con-
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tributions. In this Appendix we express these contributions inwavefunctions are equal, and the vector sum of the transition

terms of one-exciton states.
Using the notation of Sec. Il A for Eq25), the transi-
tion dipole for antisymmetric excitons is

= ‘ ; Mm(af)(ﬁ)‘- (DY)

Equation (26) only depends on the absolute value of the

transition dipole for each exciton statpl) and is indepen-
dent on its relative orientation. There arg=3-2'"17% an-
tisymmetric excitons of lengttse[1,]—1]. The absolute
magnitudes of the transition dipole momehis®| are iden-
tical for all ng states of the same and « in Eq. (26). This
gives
o s w1

O'a(a)) 3 2' 11“2 2 SE w

a=1 (W

(D2)

dipoles of such an exciton is exactly zero. It follows from
Egs. (A2) and (A3) that the energies and wavefunctions of
excitons with indext=2 andt=3 are identical. We thus
obtain from Eq.(D6)
222
w) ZFE W (D7)
Using the wavefunction properties for the2 exciton

and the relative orientation of the dipolgs, along the seg-
ments, we can prove by induction that

.|
3o ~2), .
=5 2, ¢S(0)eFie), (D8)
wheree, is the unit vector, parallel to the symmetry aRis;,
which goes through exciton origifparallel to ordinate axis
in the bottom panel of Fig.)5 The direction ofe, is chosen

The dipolesu are directed from the center toward the similarly to € ; it is perpendicular tc, .
vertexes in each equilateral triangle of a given exciton, and Whenq,# 1, system(A2) is equivalent to systemAl)
their mutual directions form 120 degree angles in space agr the antisymmetric excitons of length thus, = ()

shown in Fig. 2(top panel. The absolute values qiy; are

and €, e('), SO that,u,(s)—,u,(l). Finally, by substituting

the same, but the wavefunctions are antisymmetric with regg (A13) in Eq. (D8) and using definition Eq(D5), we

spect to inversion around exciton origh; (or the axis that
divides the exciton space by hglh the top panel of Fig. 5.
As a result, the vector projection q&ﬁf’ onto the Ay

axis vanishes. It can be shown by induction that the transi-

tion dipole for exciton of length s equals u!®
=+2 cos@/6)2°_, 4 (j)el® , whereel® is the unit vector

that is perpendicular té;; and belongs to the exciton plane.

Using Eqg.(A12), the dipole moment for thex-th state is
given in terms of the linear chain wavefunctions

W(J)
7 >

where ¥ corresponds to the case whelf¥ is directed from

the left to right in the exciton plane, or vice versa.
Substitution of Eq(D3) into (D2) gives the contribution

of antisymmetric excitons to the absorption coefficient

(s)_

32

(D3)

-1 s |M(s)|2
r0=T 2 2 T ©4

where the transition dipole moment magnitude of thth
antisymmetric state in the exciton of lengths defined as

S 2

M[P=9-2771 2 2722

a=1,...5S.
(DY)

It follows from Eq. (26) and the exciton properties de-

obtain for the “symmetric” part of the absorption,
4 o IMD)2

ofw)==-T2

3" &1 (w—eD)2+1? 9
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