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Exciton-scaling and optical excitations of self-similar
phenylacetylene dendrimers

Evgeni Y. Poliakov, Vladimir Chernyak, Sergei Tretiak, and Shaul Mukamel
Department of Chemistry and Rochester Theory Center for Optical Science and Engineering,
University of Rochester, P.O. RC Box 270216, Rochester, New York 14627-0216
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The collective electronic oscillators method is used to construct an effective Frenkel exciton
Hamiltonian for conjugated dendrimers with fractal geometry. Self-similarity and the high degree of
symmetry utilized by decomposing the space of optical excitations into irreducible representations
make it possible to compute the one-exciton states and the linear optical response with reduced
numerical effort that scales linearly rather than exponentially with the number of generations. The
linear optical response is dominated by localized excitons belonging to the periphery. ©1999
American Institute of Physics.@S0021-9606~99!51916-8#
it
o

su

re

o

se
th
ro

re

te
io
le
te

s
io
el

o

n
to
ta
re

o
e-
es
el
e

ab

m-
t of

on

ta-
d-

o-
ta-

ents
ci-

an
ue.
. III.
en-
the
of
of
ec.
on
yze
ns
ine
s of

ing
A.
ual
hat
pen-
a-

e-
el
ty-
te
I. INTRODUCTION

Advances in organic synthesis yield supermolecules w
precisely defined structures. These include molecular r
and wires,1–3 dendrimeric nanostructures,4–8 higher
fullerenes and metallofullerenes,9,10 giant cagelike
receptors,11,12 and organic superlattices.13 In addition, mo-
lecular aggregates are common in biological processes
as light-harvesting complexes in photosynthesis.14 X-ray and
NMR techniques provide the geometry of these structu
which contain thousands of atoms.15–18

Optical spectroscopy is an important tool in the study
photophysics and photochemistry,19 charge and energy
transfer,20 intermolecular interactions, and bonding in the
systems. The theoretical investigation is complicated by
delocalized nature of electronic excitations, strong elect
correlations, and vibronic coupling.21,22Application of quan-
tum chemistry methods to calculate the electronic structu
is limited by computational power to small systems.21,22 The
problem is simplified considerably for molecular aggrega
made of well separated chromophores, whose interact
are purely Coulombic. Electron exchange is then negligib
each chromophore retains its own electrons, and the sys
may be described using the Frenkel exciton Hamiltonian.23,24

The electronic states and spectra of aggregates are
ply related to those of their chromophore units. The situat
is much more complex when the electronic states are d
calized across the entire molecule such as in the family
dendrimeric molecules shown in Fig. 1~top panel!. The lin-
ear absorption spectra of these dendrimers have rece
been calculated using the collective electronic oscilla
~CEO! approach, which only requires a moderate compu
tional effort.25,26 The resulting electronic normal modes a
directly related to excited state charge distributions and m
tions of electrons and holes.27,28Real-space analysis then d
termines the underlying coherence sizes such as the siz
electron-hole pairs created upon optical excitation, and h
identify the ‘‘pieces’’ of the whole molecule where thes
pairs ~excitons! are confined.

Our previous calculations had shown that the linear
8160021-9606/99/110(16)/8161/15/$15.00
h
ds

ch

s

f

e
n

s

s
ns
,
m

im-
n
o-
f

tly
r
-

-

of
ps

-

sorption spectrum of each member of this dendrimeric fa
ily is dominated by a single peak at frequency close to tha
a linear segment, in agreement with experiment.29,30This has
been attributed to the localization of optical excitations
the linear segment, i.e., electron~and hole! exchange among
segments is blocked.28 Since charge transfer across me
substitutions is negligible, the optical excitation can be mo
eled as a collection of weakly interacting two-level chr
mophores. The weak exciton transfer across me
substitutions and the charge localization on the segm
justifies the modeling of optical excitations as Frenkel ex
tons, which are tightly bounded electron-hole pairs~see bot-
tom panel in Fig. 1!.

In Sec. II, we construct the Frenkel exciton Hamiltoni
and calculate its parameters by using the CEO techniq
The properties of one-exciton states are discussed in Sec
In Appendix C we demonstrate how the one-exciton eig
value problem is simplified considerably by decomposing
Frenkel exciton Hamiltonian onto a set of Hamiltonians
much lower dimensionality. The symmetry properties
dendrimeric molecules described in Appendix B and in S
III A make this decomposition possible. The absorpti
spectra are calculated in Sec. IV, where we further anal
the nature of optical localization and the types of excito
contributing to the absorption spectra. The absorption l
shape and other physical quantities are expressed in term
wavefunctions of an effective linear chain using a mapp
of the one-exciton wavefunctions described in Appendix
The self-similar properties of dendrimers lead to unus
physical properties. As an example, in Sec. V, we show t
the superradiant coherence size has a unique scaling de
dence with molecular size. Finally, our results are summ
rized in Sec. VI.

II. FRENKEL EXCITON MODEL FOR DENDRIMERS

The first five members of the family of compact ph
nylacetylene dendrimers29,31,32are presented in the top pan
of Fig. 1. The treelike molecules are formed by phenylace
lene segments33 connected at the meta-position. We deno
1 © 1999 American Institute of Physics
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the dendrimer withl generations asDl . Strictly speaking,
the dendrimeric geometry is three-dimensional and pack
considerations require it to become nonplanar, i.e., sphe
dal, as the number of its generations increases.34 However,
since rotational symmetry along the acetylene unit is ma
tained, we shall model the optical properties assuming a t
dimensional planar geometry.

As shown in Ref. 28, optical excitations in these de
drimers are localized and involve no charge transfer betw
different segments. The Frenkel exciton model should the
fore be applicable, i.e., each segment~bond! can be consid-
ered as a two-level chromophore~the ground and excited
states of a single phenylacetylene chain!. However, despite
the localization of electron-hole pairs on single segments,
optically induced charge redistributions on different se
ments do interact. This Coulomb interaction gives rise
coherent energy transfer between chromophores, as i
trated in the bottom panel of Fig. 1. The relative motion
the electron and hole in each pair is localized on the vari
chromophores whereas their center of mass is delocali
Such excitations are known as Frenkel excitons.23,24,35

The Frenkel exciton Hamiltonian for an assembly
two-level chromophores coupled by Coulomb interactio
has a form,23,24,35

H5(
n̄

V n̄Bn̄
†Bn̄1 (

n̄Þm̄
Jn̄m̄Bm̄

† Bn̄ , ~1!

whereBm̄ (Bm̄
† ) is the annihilation~creation! operator of an

excitation localized on them̄-th chromophore. These opera
tors satisfy the commutation relations

@Bn̄ ,Bm̄
† #5d n̄m̄~122Bm̄

† Bm̄!, ~2!

@Bn̄ ,Bm̄#5@Bn̄
† ,Bm̄

† #5~Bm̄
† !25~Bm̄!250. ~3!

We label the chromophores using Latin indices with an ov
bar. V n̄ represents the transition energy from the grou

FIG. 1. Upper trace: Structures of the compact phenylacetylene dendri
family made of the same linear building unit. Lower trace: Schematic r
resentation of the Frenkel exciton model in molecular aggregates.
weakly coupled two-level chromophores have frequenciesV i , andJi j de-
notes their coupling strength.
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state to the excited state of then̄-th chromophore. The Cou
lomb interaction between chromophores determines the h
ping parametersJn̄m̄ .

The exciton model is depicted in Fig. 2, where the ch
mophores are denoted by shaded circles. All chromopho
have the same transition frequenciesV n̄5V since the acety-
lene units are identical. The interactionJn̄m̄ decreases rapidly
with distance~scaling as;1/r m̄n̄

3 , when the distancer m̄n̄

between them̄-th and n̄-th chromophores is much large
than the chromophore size!; we can therefore neglect a
Coloumb interactions between chromophores other than
nearest neighbors~NN! ~i.e., chromophores whose linea
units are connected through a phenyl ring!. Connecting the
nearest neighbors with lines leads to the dual Bethe lat
shown in the bottom panel of Fig. 2, which differs from th
original Bethe lattice since it has triangle cycles. We th
describe optical excitations of a dendrimer by a Frenkel
citon aggregate with the dual Bethe lattice geometry.

By symmetry, the absolute magnitude ofJm̄n̄ between
NN chromophores is the same. Determination of their sig
is a more delicate matter. We first note that the excited s
of any chromophorem̄, and therefore the creation~annihila-
tion! operatorsBm̄

† (Bm̄) and the transition dipolemm̄ , are
defined up to a phase. The phase can be fixed up to a sig
requiring the transition dipoles to be real@see Eq.~23!#. The
transition dipoles of the chromophores are directed alo
their corresponding linear units~Fig. 2!. A sign change of the
excited state wavefunction will reverse the direction of t
transition dipole. Any choice of signs for the excited sta
generates a pattern of arrows of the same magnitude, w
form 120 degrees angles. We have chosen to align

rs
-
e

FIG. 2. Upper trace: The nearest-neighbor interaction model~NN! for the
chromophores and the spatial orientation of the transition dipoles.
shaded dots denote the two-level chromophores, arrows represent the d
orientation. Lower trace: Dual Bethe lattice with triangular cycles
nearest-neighbor interactions.
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m̄-th dipole to point from the center of the dendrimer to
periphery as shown Fig. 2.

Since a sign change of a single arrow reverses the
of the Bm̄ and Bm̄

† operators of the corresponding chr
mophore, the sign of any NN interaction is determined by
relative orientation of the corresponding arrows. In partic
lar, chromophore A in Fig. 2 interacts with four chro
mophores, B, C, D, and E. The signs of the AC, AD, and A
interactions are the same since they have the same rel
configurations of the arrows with respect to the vertex r
resenting the common phenyl ring: ‘‘one in, one out.’’ F
the AB interaction, both arrows point out. This configurati
can be transformed into ‘‘one in, one out’’ by changing t
direction of the A-arrow. Since this procedure reverses
sign of the interactions we haveJAC5JAD5JAE[J and
JAB[2J. In summary: The hopping parameter is given
J (2J) for chromophores belonging to different~the same!
generations.

In molecular aggregates the chromophores are well s
rated in space and their interactionsJ can, therefore, be cal
culated using electrostatic, e.g., dipole-dipole coupling. T
is not the case for dendrimers where the chromophores o
lap ~they share a common phenyl ring! and are tightly
bonded chemically. To computeJ we examined the mono
mer (M ), dimer (D), and trimer (T) dendrimeric units
shown in Fig. 3 using the CEO procedure. The dimer a
trimer have degenerate~or near degenerate! localized low-
frequency electronic excitations whose weak interactions
sult in splitting of the spectrum. The remaining hig
frequency electronic states are well separated and do
interfere with the lower transitions.

We start with the solution of the Frenkel exciton Ham
tonian for the dimer and trimer~see Fig. 3!. This leads to the
eigenvalue problem for 232 and 333 Hamiltonian matrices
with all diagonal elements equal toV and all off-diagonal
elements equal toJ.

The dimerD has the symmetric and antisymmetric sta

VD15V1J fD15
1

&
~f11f2!, ~4a!

VD25V2J fD25
1

&
~2f11f2!. ~4b!

The trimerT has three states; one is symmetric,

VT15V12J fT15
1

)
~f11f21f3!, ~5a!

and the other two are degenerate,

VT25V2J fT25
1

&
~2f11f2!, ~5b!

VT35V2J fT35A2

3
~f1/21f2/22f3!. ~5c!

Here f1 , f2 , and f3 are the orthogonal excited sta
wavefunctions of the monomeric units.
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We have used the same average geometric param
obtained at the AM1 level for all molecules~see Fig. 3!.
Note that even though the optical excitations are well loc
ized within the linear segments, in the computations we
tained the acetylene group at themeta-positions of the edge
phenyls to model the chemical environments ofmeta-carbon
atoms. The numerical procedure has been described in d
elsewhere.25–28 The ZINDO code was first used to genera
the INDO/S Hamiltonian.36–39 We next calculated the
Hartree-Fock ground-state density matrices40,41which are the
input to the CEO/DSMA procedure25,26 which computes the
linear absorption spectra and the relevantelectronic normal
modesjn . Each mode is a matrix representing the electro
transition between the ground stateu0& and an electronically
excited stateufn&. Its matrix elements are given by

~jn!mn5^fnucm
1cnu0&, ~6!

where cm
1(cm) are creation~annihilation! operators of an

electron at them-th atomic orbital, andu0& (ufn&) is the

FIG. 3. Structures and atom labeling of phenyl acetylene monomerM ,
dimerD, and trimerT. Optimized AM1 level geometry yields the acetylen
group parameters ofr 6,75r 8,951.407 Å, r 7,851.200 Å and phenyl group
r 1,25r 9,1051.403 Å. Each monomeric unit is labeled starting from the o
side phenyl. Note that the labels of the common phenyl are different
different linear units.
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ground ~excited! state many-electron wavefunction. Th
eigenfrequenciesVn of these equations provide the optic
transition frequencies.25,26

The calculated low-frequency spectra summarized
Table I show an excellent agreement with predictions of
Frenkel model@Eqs.~4! and~5!#. The band-edge transition i
the dimer spectrum splits into two peaks. This Davyd
splitting (2uJu) gives uJu569 cm21. The central frequency
shift (3.77 cm21) is much smaller thanJ and reflects the
weak coherence between linear units. The trimer calculat
provide the sign ofJ ~which is not available from the dimer!
and further confirm our model. The sign is negative since
higher transition frequency corresponds to the doubly deg
erate excited state. This molecule has three low-freque
transitions; two are completely degenerate as predicted
the Frenkel model. The calculated negative couplingJ
5267.3 cm21 agrees with that calculated for the dimer a
is very close to the experimental estimateJ;50 cm21 for
M .42 The central frequency shift (7.37 cm21) is also much
smaller thanJ. The one-exciton band-edge energy for t
dimers and the trimers isV'3.60 eV. In all subsequent ca
culations, we have setJ5268 cm21.

We next turn to the electronic modesjn @Eq. ~6!#. If the
Frenkel model holds, then each electronic mode of the
gregate should be a linear superposition of monom
modes, for example,

~jT1!mn5^fT1ucm
1cnu0&

5
1

)
^~f11f21f3!ucm

1cnu0&

5
1

)
~j11j21j3!. ~7!

To test this relation we display the diagonal elements of
electronic modes in Fig. 4 using the carbon atom labeling
Fig. 3. The numbering for each linear unit starts at the ex
nal phenyl and ends on the common phenyl. Note that
same carbon atom on the common phenyl has different la
for different monomers. Panel D1 shows the diagonal e
ments of the electronic modes ofD1 in the dimer andM in
the monomer. The latter is multiplied by factor 1/& @see Eq.
~4a!#. The solid and dashed lines show units 1 and 2
moleculeD, respectively. The dotted line displays the mo
eculeM . This plot shows that modeD1 corresponds to the

TABLE I. Calculated low-frequency spectra of molecules displayed in F
3. The dimerD and trimerT have two and three near-degenerate transit
with central frequencyV close to the monomerM band-edge transition. The
splitting allows us to compute the coupling parameterJ in the Frenkel
exciton model@Eq. ~1!#.

M D T

V1 ~eV! 3.603 723 3.594 700 3.586 112
V2 ~eV! 3.611 811 3.611 160
V3 ~eV! 3.611 160
V ~eV! 3.603 723 3.603 255 3.602 811
D5VM2V (cm21) 0 3.77 7.35
J (cm21) 269.0 267.3
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symmetric state@see Eq.~4a!# and the couplingJ is therefore
negative. The monomerM mode virtually coincides with the
dimer mode in units I and II outside the common phen
The difference on this phenyl is the result of superposit
and interference. The mode ofD2 is antisymmetric@com-
pare with Eq.~4b!# and similar to the monomerM mode.
The lowest frequency modeT1 is symmetric@compare with
Eq. ~5a!#. The next modeT2 is antisymmetric on the I and I
units of the trimer and vanish on the unit III outside th
common phenyl@see Eq.~5b!#. Mode T3 is symmetric and
equal on I and II units, and antisymmetric with respect
unit III @compare with Eq.~5c!#. The electronic modes of the
dimer and the trimer are thus given by linear superpositi
of the monomeric modes, in agreement with Eqs.~4! and~5!.
These results confirm the applicability of the Frenkel excit
model.

III. PROPERTIES OF ONE-EXCITON STATES

A. Symmetry and classification of excitons

The one-exciton states can be found by diagonalizing
one-exciton subspace of the Hamiltonian@Eq. ~1!#. The
strong symmetry allows us to reduce the diagonalizat
of a huge 3•(2l21)33•(2l21) matrix, wherel is the num-
ber of generations, to the diagonalization of matrices

FIG. 4. Variation of the diagonal elements of low-frequency electro
modes listed in Table I. Thex axis represents the carbon atoms~1–14! as
labeled in Fig. 3. Each panel displays a single mode of dimer or trim
shown solid@j(I) #, dashed@j(II) #, or dot-dashed line@j(III) # for each
monomer unit. The dotted line represents the diagonal elements of
monomerM mode multiplied by correspondent factor@see Eqs.~4! and~5!#.
Linear units I, II, and I–III of the dimer and trimer, respectively, are sho
in Fig. 3.

.
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larger thanl 3 l . Each generation is formed by a collection
phenylacetylene units separated by a fixed number of m
conjugations. A walker which starts at the center should t
60 degrees on the meta-conjugated linear units to reac
the next generation. The number of phenyls on the surfac
a given generation~and linear chromophore segments! scales
with generation numberj as

Nj53•2 j 21. ~8!

The total number of chromophores inDl is N5( j 51
l Nj

53(2l21).
Interaction among chromophores results in delocali

tion of the optical excitations over the entire molecule, a
the formation of excitons. We label the one-exciton eige
states by Greek indices with an overbar, e.g.,ā. The one-
exciton wavefunctions are

ufā&5(
ī

fā~ ī !B
ī

†u0&. ~9!

We denote the set of chromophores of theDl dendrimer
by Xl . The space of one-exciton states denoted in Appen
B by Wl is, according to Eq.~9!, a vector space with basis s
Xl . The one-exciton spaceWl naturally forms a representa
tion of the dendrimeric symmetry groupGl described in Ap-
pendix B. A standard procedure for making use of symme
to diagonalize the Hamiltonian H starts with decompos
Wl into a direct sum of irreducible representations ofGl and
applying the Schur’s lemma.43 The decomposition ofWl is
carried out in Appendix B@Eq. ~B6!#, and the application of
Schur’s lemma is explained in Appendix C. Combining t
results of these appendices yields the following structure
one-exciton states. The excitons can be partitioned into a
symmetric and symmetric classes which belong to the re
sentationsVj and Ṽk , respectively, in the decomposition o
Eq. ~B6!. The antisymmetric excitons can be labeled by pa
of indicesm̄a, wherem̄ is the chromophore where an exc
ton starts, whilea is energy quantization number. For ea
m̄PXl , um̄u denotes the generation number to whichm̄ be-
longs ~see Appendix B for an exact definition! and a
51,2,. . . ,l 2um̄u. The wavefunction of an exciton whic
originates atm̄ is shown in Fig. 5 wherej 5 l 2um̄u. All
wavefunctionsfm̄a(n̄) which originate inm̄ are nonzero for
n̄.m̄ only ~see Appendix B for the formal definition ofn̄
.m̄), i.e., for n̄ which belong to the branches which start
m̄. As shown in the top panel in Fig. 5, a wavefunctionfm̄a

is determined byj 5 l 2um̄u numbersfa
( j )(1), . . . ,fa

( j )( j ).
The Schro¨dinger equation forfā given by Eq.~9!,

Hufā&5eāufā&, ~10!

results in the system of equations@Eq. ~A1!# for the coeffi-
cientsfa

( j )(1), . . . ,fa
( j )( j ). In Appendix A we map the aux

iliary eigenvalue problem~A1! onto the one-exciton states o
an effective linear chain of lengthj with nearest-neighbo
hopping@Eq. ~A6!#. We, therefore, refer to the excitonsfm̄a

with um̄u5 l 2 j as excitons of the lengthj . Since an exciton
of length j with a given quantum numbera (a51,2, . . .j )
can originate at any chromophorem̄ with um̄u5 l 2 j , we
have 3•2l 2 j 21 excitons with energyea

( j ) . This corresponds
to the number of chromophores in thel 2 j generation@see
ta-
n
to
of

-
d
-

ix

y
g

of
ti-
e-

s

t

Eq. ~8!#. The total number of excitons of lengthj is therefore
3•2l 2 j 21 j , where the last (j ) factor is related to the quan
tum numbera. According to the classification of Appendi
B, excitons of lengthn form the spacenVn in the decompo-
sition of Eq.~B6!. The degeneracy of any system of lengthn
according to Appendix C is given by dimVn53•2l 2n21,
whereas the factorn gives the number of different energ
values. Stated differently, there aren distinct excitons of
length n whose wavefunctions are expressed in terms on
linear chain wavefunctionsca

( j ) ~or fa
( j )) as illustrated in the

top scheme in Fig. 5. Each of the distinct states has
•2l 2n21-fold degeneracy.

The structure of the symmetric excitons is presented
the bottom scheme of Fig. 5. These excitons belong to
spacelṼ1% lṼ2% lṼ3 in the decomposition of Eq.~B6!. They
are labeled by the quantum numbersqt5ei2p(t21)/3, with t
51,2,3 in Eq.~A3! which correspond to the excitons belon
ing to lṼ1 , lṼ2 , andlṼ3 with energiesea,t ,t51,2,3, respec-
tively, and a51,2,. . . ,l . The auxiliary wavefunctionsf̃a

(t)

which determine the exciton wavefunctions in the dendrim
satisfy Eqs.~A2!. Equations~A2! are obtained by substitut
ing the exciton wavefunction represented in terms of
auxiliary functionsf̃a

(t) in Fig. 5 into the Schro¨dinger equa-
tion. The eigenvalue problem@Eq. ~A2!# is mapped in Ap-
pendix A onto an effective linear chain@Eq. ~A6!#. Symmet-
ric excitons are nondegenerate except of a trivial dou

FIG. 5. Upper panel: The antisymmetric exciton of lengthj . The exciton
wavefunction fam̄ is represented by j 5 l 2um̄u nonzero numbers
f ( j )(1),...,f ( j )( j ) ~energy quantum numbera’s are dropped!. Lower panel:
Symmetric exciton and the representation of its wavefunction for theD3
molecule.~The subscripts forqt and indexa are dropped.!
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degeneracy with respect to the quantum numbert52,3 ~i.e.,
ea,25ea,3).

In summary, we have classified all one-exciton states
Dl by their symmetry and expressed their wavefunctions
terms of auxiliary wavefunctions of excitons in effective li
ear chains with nearest-neighbor hopping. We next disc
the density of states and the distribution of exciton sizes

B. Density of one-exciton states

The density of states~DOS! provides the simplest char
acteristic of excitons. We consider three types of DOS. T
local density of states at them̄-th chromophore is given by

rm̄~v!5
1

p
Im@Gm̄m̄~v!#. ~11!

Herev is the energy~we setv50 for the ground state!, and
the one-exciton Green’s function is given by

Gm̄n̄~v!5(
ā

fā~m̄!fā
* ~ n̄!

v2eā1 iG
. ~12!

ā runs over all one-exciton states, andG is a dephasing rate
The density of states for thei -th generation,r i(v), i

51, . . . ,l is given by the sum over the density of states of
the chromophores belonging to that generation,

r i~v!5 (
ī

u ī u5 i

r ī ~v!5Ni(
ā

Gufā~ ī !u2

~v2eā!21G2 , ~13!

whereNi ~number of chromophores in thei -th generation! is
given by Eq.~8!.

Finally, the total density of statesr~v! for the entire
aggregate is given by

r~v!5
1

N (
m̄51

N

rm̄~v!5
1

N (
i 51

l

r i~v!, ~14!

with the normalization

E
2`

`

r~v!dv51. ~15!

Using the exciton classification introduced in Sec. III
we can separate Eq.~13! into the contributions of antisym
metric and symmetric exciton states

r i~v!5GNiS (
s51

l 21

(
a51

j ufa
~ j !~ i !u2

~v2ea
~ j !!21G2

1(
t51

3

(
a51

l uf̃a
~ t !~ i !u2

~v2ea,t!
21G2D . ~16!

Only the antisymmetric excitons that start earlier th
the (i 21)-th generation~of lengths51, . . . ,i 21) contrib-
ute to the first summation in Eq.~16!. The exciton of length
s corresponds to the effective linear chain lengthl 2s. Using
the transformations~A12! and ~A13! and the equivalence o
the symmetric exciton states fort52 andt53, we obtain
f
n

ss

e

l

r i~v!5GNiS (
s51

i 21

(
a51

l 2s

2s2 i
uca

~ l 2s!~ i 2s!u2

~v2ea
~ l 2s!!21G2

1
1

3 (
t51

2

(
a51

l

212 i
tuc̃a

~ t !~ i !u2

~v2ea,t!
21G2D . ~17!

Combining Eqs.~8! and~14! in ~17!, the density of states
for the individual generations is given by

r i~v!5
G

2l21 S (
s51

i 21

2s21 (
a51

l 2s uca
~ l 2s!~ i 2s!u2

~v2ea
~ l 2s!!21G2

1
1

3 (
t51

2

(
a51

l tuc̃a
~ t !~ i !u2

~v2ea,t!
21G2D . ~18!

The density of states for the entire molecule@Eq. ~14!# as a
function of the frequency detuning,Dv[v2V, is dis-
played using Fig. 6. We have calculatedr i(v) using Eq.~18!
with G;8 cm21 and then found the density of statesr~v! by
applying Eq.~14!. To that end, we first diagonalizedl ma-
trices of type~A6!: l 21 matrices withV05V1J and J
52uJu of sizei 3 i ( i 51, . . . ,l 21) and thel 3 l matrix with
V05V22J andJ52uJu to find the energies and wavefunc
tions of linear chains. The one-exciton wavefunctions w
then computed using Eqs.~A12! and ~A13!.

The DOS ofD2 –D6 are displayed in Fig. 6. It follows
from the self-similarity of dendrimers that the spectrum
higher generation molecules contains all the features
lower generations. The DOS of a given generation conta
therefore all the peaks of earlier generations, and the num
of peaks increases withl . However, the DOS saturates atl
55, andD5 andD6 are very similar.

FIG. 6. The density of states as a function of frequency detuning from
resonanceDv[v2V for dendrimers with different number of generation
D2 –D6. The dephasing rate of all one-exciton states isG50.1uJu
;8 cm21.
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C. The participation ratio

The participation ratio provides a convenient measure
exciton size.44–46 The participation ratioPā of an excitonā
is expressed in terms of its wavefunctionfā ,

Pā5
(m̄ufā~m̄!u4

(m̄ufā~m̄!u2 . ~19!

If a wavefunction is uniformly distributed onk chro-
mophores, Eq.~19! yields P215k, which implies that the
inverse participation ratioP21 constitutes a measure fo
the number of chromophores on which an exciton is delo
ized. The maximal valueP215N is achieved for a
wavefunction delocalized over the entire aggregate. In a d
drimer it can be reached by symmetric excitons only. For
antisymmetric exciton of lengths the wavefunction can oc
cupy no more than 2(2s21) chromophores~see Fig. 5!,
which gives the upper bound forP21 of antisymmetric ex-
citons of lengths. The minimal value ofP2151 corre-
sponds to an exciton which is fully localized on a sing
chromophore. Expressing the exciton wavefunctions in te
of the auxiliary linear chain wavefunctions by using Eq
~A12! and ~A13! and substituting them into Eq.~19!, yields

Pa5(
i 51

s uca
~s!~ i !u4

2i , a51, . . . ,s, ~20!

for antisymmetric excitons and

Pa5
2

3 (
i 51

l uc̃a
~ t !~ i !u4

2i , t51,2, a51, . . . ,l , ~21!

for symmetric excitons. The participation ratio@Eq. ~21!# is
the same for thea-th state oft52 andt53 symmetric ex-
citons, but differs fort51 type due to the differences in th
wavefunctions@Eq. ~A2!#.

In Fig. 7, we display the inverse participation ratios f
D2 –D6, calculated from Eqs.~20! and ~21!, versus their
frequency detuningDv. They vary between the localize
(P2152) and the delocalized (P215N) values. The figure
shows that one-exciton states with higherP21 tend to oc-
cupy the band edges of the frequency interval. The freque
range ofP21 increases withl , reflecting the appearance o
one-exciton states close to the band edges.

IV. LINEAR ABSORPTION

Since the dendrimer size is typically much smaller th
the optical wavelength, its interaction with incident fieldE is
described in the dipole approximation,

H int52P•E, ~22!

with the polarization operator

P5(
m̄

mm̄~Bm̄
† 1Bm̄!, ~23!

and mm̄5^m̄umu0& denotes the transition dipole matrix el
ment of them̄-th chromophore.

The linear susceptibility of an aggregatex̂ (1)(v) can be
expressed in terms of one-exciton states,35
f

l-

n-
n

s
.

cy

n

x̂~1!~v!5(
ā

māmā
*

v2eā1 iG
, ~24!

where the transition dipole moment of thea-th exciton is

ma5(
m̄

mm̄fa~m̄!, ~25!

and the direct product of the two vector dipoles in the rig
hand side~r.h.s.! of Eq. ~24! forms the tensor structure o
x̂ (1). Restricting our calculations to unpolarized light~or to
an ensemble of randomly oriented molecules!, the absorption
coefficients(v)5Im Tr@ x̂ (1)(v)# is given by

s~v!5(
ā

Gumāu2

~v2eā!21G2 . ~26!

We partition the absorption into the sums of contributio
from antisymmetric and symmetric excitons denotedss(v)
andsa(v), respectively,

s~v!5sa~v!1ss~v!. ~27!

Details of the calculations ofsa(v) andss(v) are given in
Appendix D. Using Eqs.~D4! and ~D9!, we finally have

s~v!5(
s51

l 21

(
a51

s uMa
~s!u2G

~v2ea
~s!!21G2 1

4

3 (
a51

l uMa
~ l !u2G

~v2ea
~ l !!21G2 .

~28!

In Fig. 8 we display absorption lineshapes ofD1 to D6
~divided by the total number of chromophores!. Calculations
were made using the one-exciton wavefunctions and e

FIG. 7. The inverse participation ratiosP21 for D2 –D6. The diamonds in
the two bottom panels represent two-fold degeneracy of the stateDv
'270 cm21 in D5 andD6: one state withP2152 is ‘‘blocked’’ by the
other state withP21'31 in D5 and byP21'20 in D6. The highest peak
for D6 is off-scale (P215180).
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gies given in Sec. III B and the dephasing rateG58 cm21.
The spectra converge atD5, and the spectra ofD5 or D6 as
well as higherDl ~not shown! look virtually identical. The
high resolution~G50! stick spectra shown as well have som
small differences in their weak peaks.

The Dl spectrum hasl ( l 11)/2 peaks representing th
various distinct one-exciton states. As a direct conseque
of self-similarity, the absorption spectrum of a given gene
tion shows all the features of lower-generation molecu
plus l additional peaks.

We also note that the spectra are nonsymmetric aro
Dv50. The highest peaks are located in the red (Dv,0).
This is a consequence of the negative value ofJ, as in J
aggregates.47 The magnitude of the normalized absorpti
does not vary with generation, except forD2, where the
absorption maxima are slightly stronger. This makes se
since the total number of excitons which contribute to
absorption increases as fast as the total number of c
mophores~both double for successive generations!.

The oscillator strength per one-exciton state, given
the ratio of normalized absorption and the one-exciton d
sity, s/(Nr), is displayed in Fig. 9 forD2 –D6. Its variation
over the entire frequency range is weak and does not ex
;7.

Similar to Fig. 8,Dl contains the peaks ofD( l 21) plus
additional peaks. We further note thats/(Nr) approaches 3
from below for large positive detunings (Dv,0). The same
limiting value is reached from above for large negative d
tunings. We have calculateds/(Nr) averaged overDv for
D2 –D6. The average ratios turn out to be close to 3 as w
s/(Nr)'2.8460.60 for D5 and s/(Nr)'2.9160.40 for
D6.

FIG. 8. Linear absorption~per chromophore! calculated from Eq.~28! for
molecules with different number of generations. Peaks represent dis
one-exciton states.
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The number of peaks ofs/(Nr) increases withl . This is
because there are more one-exciton states in molecules
higher l . As a result, the local maxima occur atDv
'100 cm21 in D4 in comparison with the absolute minim
in D2 and D3. However, once a certain local maximu
occurs atD(n21), it is repeated for dendrimersDl with l
>n. This again follows from self-similarity.

Figure 10 displays the normalized absorption,s/N, one-
exciton density of states,r~v!, the oscillator strength pe
one-exciton state,s/(Nr), and the inverse participation rati
P21(v) for D5. Using the figure, we can identify the exc
tons that dominate the absorption and show where they
side. The bottom panel shows that the exciton resonan
span a 5.4uJu bandwidth ~Dv varies between22uJu and
3.4uJu). For an infinite dendrimer (l→`), as a comparison
the exciton band spans the region@2(112&)J,(2&
21)J#, which gives a;5.8uJu bandwidth.

The upper bound for the inverse participation ratio
obtained for a state uniformly delocalized over the ent
molecule and is equal to the total number of chromopho
N. For D5, this is the state atv'V13.4uJu with P21

593. This state has a very weak contribution to the abso
tion ~peakj ). The strongest peaksa andb correspond to the
other extremes withP2153 and 2, respectively.P2152
corresponds to a localized state where the exciton is equ
distributed on the two chromophores. These antisymme
excitons of unit length occupy the periphery of the molecu
Peaksc andh are produced by excitons of lengthj 53 with
P2156 and 13, respectively. Our analysis shows that loc
ized excitons which belong to the molecular periphery
responsible for the strong absorption peaks. The delocal

ct
FIG. 9. The average oscillator strength per states/(Nr) is displayed versus
frequency detuning for dendrimers of different generations (D2 –D6).
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states in contrast lead to a much weaker absorption. A s
lar behavior has been previously found in biological ligh
harvesting complexes.48,49

It is instructive to note that for all four excitons whic
dominate the absorption spectrum the values of the inv
participation ratioP21 are close to the maximal values a
lowed by the exciton symmetry determined by its leng
The j 51 exciton ~peak b) reaches its maximal possibl
value P2152, the j 52 exciton~peaka) hasP2153 with
the maximal possible valueP2156, finally the two j 53
excitons~peaksc and h) haveP2156,13 versus the maxi
mal valueP21514 for j 53 excitons. This implies that the
four excitons dominating the absorption spectrum are lo
ized over the entire regions allowed by their symmet
Stated differently, the dominant excitons are localized
cause of the dendrimer symmetry rather than dynamical
fects.

Comparison of the top two panels in Fig. 10 shows t
the high density of one-exciton states usually correlates w
strong absorption. The one-exciton densities for individ
generationsr i in D5 are displayed in Fig. 11. The figur
shows that the states which belong to the chromophore
the last, periphery, generation give the leading contribut
to r~v! ~bottom panel!. Since there are more excitons
shorter lengths in everyr i , these excitons should domina
the absorption spectrum, provided their oscillator streng
are not too weak.

Figure 10 also demonstrates that the correlation betw

FIG. 10. Characteristics of the absorption spectrum ofD5. The panels~from
top to bottom! are the absorption coefficient normalized to the total num
of chromophores,s/N, density of the one-exciton states,r~v!, the average
dipole strength,s/(Nr), and inverse participation ratio,P21(v). The fre-
quencies and their participation ratios (Dv,P21) of the absorption peaks ar
~a! (2120,3),~b! (270,2), ~c! ~13, 6!, ~d! ~34, 19!, ~e! ~97, 11!, ~f! ~120, 6!,
~g! ~145, 25!, ~h! ~187, 13!, ~i! ~217, 29!, ~j! ~235, 93!. P21 of the 235 cm21

peak is off-scale (P21593).
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the absorption and density of states does not always h
For example, the high densityr does not result in strong
absorption in thef region ~top panel! since the oscillator
strength is very low. As seen,s/(Nr)<0.5 at frequencyv
'V1)uJu (Dv'120 cm21), so that even the relatively
large number of states~12! for exciton of lengthj 52 does
not lead to a peak in the absorption coefficient~compare the
second and third panels from the top in Fig. 10!. In contrast,
the oscillator strengths of the shortest excitons are su
ciently high, and combined with the high density of stat
these excitons give the leading contribution to the absorp
s in Figs. 8 and 10.

Figures 11 and 12 display the individual generation d
sity of statesr i(v). These quantities play a key role in th
real space picture of energy transfer in the excited state~i.e.,
the redistribution of excitons among generations!. Generally
the density of states should be dominated by the contribu
of the highest generationr l(v) because of the exponentia
growth of the number of chromophores in a generationNj

toward the periphery. Figure 11 demonstrates, however,
in certain frequency regions the density of one-exciton sta
for the chromophores that belong toi 54 and eveni 53 can
locally dominate the one-exciton density, as shown in
second and the third panels from the bottom in Fig. 11. Th
lead to local maxima of the normalized absorption produc
by excitons of lengthj 52 at frequencyV2)uJu and j
53 at ;V10.2uJu. The dominance of the density of state
for the highest generationr l over all the other generations
except for two regions wherer l 21 and r l 22 are larger
locally, is common to dendrimeric molecules of any leng
This is illustrated in Fig. 12, which shows the sam

r
FIG. 11. Density of states,r i(v), of the various generations ofD5.
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features forD3. The main peaks ofr1 and r2 are atDv
'13 andDv'2125 cm21, respectively.

V. SCALING AND SUPERRADIANT FRACTAL
DIMENSION

The superradiant factorLs of an aggregate is defined a
the ratio of its radiative decay rate to that of a monomer. I
proportional to the squared dipole moment of the transit
between the lowest, scale-invariant, excited state and
ground state.50 In this section we compare the superradian
factor of a dendrimer with that of an ordinary, translationa
invariant aggregate. IfC1 is the wavefunction of the lowes
one-exciton state of a dendrimer, we can use Eq.~9! to ex-
press the superradiance factor as

Ls5^C1umu0&25U(
m̄

mm̄f1~m̄!U2

, ~29!

where we set the dipole moment magnitudesumm̄u51 for all
m̄. The maximal superradiant factor is obtained when all
dipoles are parallel, so that

Ls5U(
m̄

uf1~m̄!uU2

. ~30!

It is shown in Appendix A that the one-exciton wav
functions can be mapped onto the wavefunctions of a lin
chain. In the limit of very long chains (l→`), we obtain an
energy band, with a discrete state ate52J. For a negative
hopping parameterJ,0, the energy of the discrete state
the lowest, and the one-exciton wavefunctions scale ex
nentially with the generation number asf1( i )}22 i , i
P1, . . . ,l . The total number of wavefunctions is propo
tional to 2i @see, for example, the normalization of~A4! and

FIG. 12. Densities of one-exciton states,r i , for the various generations o
D3.
s
n
he
e

e
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~A5!#. These two factors cancel and contributions from d
ferent generations are the same, so that(m̄uf1(m̄)u} l , and
Eq. ~30! gives

Ls} l Ds, Ds52. ~31!

For comparison, let us consider a translationally inva
ant lattice inD dimensions. The lowest wavefunction amp
tude is proportional to 1/AN, whereN is the total number of
sites. Therefore, Eq.~30! givesLs}N. The total number of
sites depends on the characteristic sizel of the system asN
} l D. We thus obtainDs5D.

Dendrimers can be viewed as a collection of on
dimensional linear chains. In that sense they are quasi-o
dimensional. However, the number of chromophores gro
exponentially with generation as in infinite-dimensional sy
tems. Its fractal dimension defined as the logarithmic ratio
particle number and some scaling length,51 can be defined
d[ logN/log l;l/log l→` with l @see Eq. ~8!#. This
‘‘mixed’’ dimensionality results in the unusual superradia
factor: The scaling exponentDs neither equals unity as
expected for one-dimensional structures nor is infinite. Th
is a profound reason whyDs52. Dendrimers are scale
invariant rather than translationally invariant objects. Con
quently, generations with an exponentially increasi
number of chromophores still contribute equally to t
superradiant factor~31!.

VI. SUMMARY

We have studied the linear optical properties of ph
nylacetylene dendrimers, which are macromolecules w
self-similar geometry. The molecule can be viewed as
weakly interacting ensemble of nearest neighbor, two-le
chromophores. The Frenkel-exciton model usually appl
for molecular aggregates may be used to describe their
excitons states and optical excitation. The collective el
tronic oscillator approach has been utilized to establish
model for dendrimers and to calculate its parameters. Str
symmetry originating from self-similarity was used to fin
the one-excitons states~both energies and wavefunction!
with considerably reduced computational effort. In aDl mol-
ecule with l generations, the number of chromophores
creases exponentially asN53(2l21). However, by em-
ploying the irreducible representations, we were able
avoid the tedious diagonalization of Hamiltonian with d
mensionN3N. The problem has been reduced to diagon
ization of l 21 matrices ofi 3 i dimension (i 51,...,l 21) and
2 matrices ofl 3 l dimension. The merits of the irreducibl
representation approach should be especially noticeabl
calculations of nonlinear susceptibilities.

We find that the strongly localized one-exciton sta
dominate the linear absorption, as in light-harvesting co
plexes. Such states occupy the molecular periphery and
resent excitons of the shortest lengths. Periphery states m
the dominant contribution to the absorption since the num
of such states is the largest. Based on the irreducible re
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sentation analysis, we characterize the main absorption p
in terms of exciton lengths and participation ratios.

A dendrimer can be viewed as a collection of line
chains. This allows us to express its optical properties
terms of linear-chain wavefunctions. However, the opti
properties of dendrimers are very different from those
linear systems. Scale invariance of self-similar objects s
as dendrimers can lead to a nontrivial scaling dependenc
physically measured quantities with molecular size. TheLs

; l 2 scaling of the superradiant factorLs with size is differ-
ent from the expectedLs; l dependence for one-dimension
structures. Although the number of atoms grows expon
tially with generation, each generation still contribut
equally to the superradiant factor by virtue of the scaling
the oscillator strength.
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APPENDIX A: CALCULATION OF ONE-EXCITON
WAVEFUNCTIONS

The absorption coefficient and other parameters suc
one-exciton density and the participation ratio needed for
linear absorption analysis given in Secs. III and IV requ
the knowledge of one-exciton states. In this Appendix
solve the eigenvalue problem for the two classes of excit
introduced in Sec. III A by mapping it onto an effective e
genvalue problem for a set of linear chains.

1. Systems of one-exciton wavefunctions in
dendrimers

Using the structure of antisymmetric one-exciton wav
functions described in Sec. III A~see Fig. 5!, the Schro¨dinger
equation@Eq. ~10!# adopts the form of a system of linea
equations for the antisymmetric excitons of lengthj ,

~V2ea
~ j !1J!fa

~ j !~1!12Jfa
~ j !~2!50,

~V2ea
~ j !2J!fa

~ j !~m!1J@fa
~ j !~m11!

12fa
~ j !~m21!#50, m52, . . . ,j 21, ~A1!

~V2ea
~ j !2J!fa

~ j !~ j !1Jfa
~ j !~ j 21!50.

For symmetric excitons, we obtain in a similar way

~V2ea,t2J@qt1qt
2# !f̃a

~ t !~1!12Jf̃a
~ t !~2!50,

~V2ea,t2J!f̃a
~ t !~m!1J@f̃a

~ t !~m11!

12f̃a
~ t !~m21!#50, m52, . . . ,j 21, ~A2!

~V2ea,t2J!f̃a
~ t !~ j !1Jf̃a

~ t !~ j 21!50,

qt5ei2p~ t21!/3, t51,2,3, ~A3!
ks
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whereea,t is the symmetric exciton energy. Note that syste
~A2! describes all three branches of symmetric excitons,
the energy manifold is the same for different branches.52

The linear systems~A1! and~A2! only differ by the first
equation. Whent52 andt53, qt1qt

2[21, the two systems
become identical. By solving~A1! in general and~A2! for
the caset51 (qt51), one can find the energies and th
wavefunctions of the symmetric and antisymmetric excito
The antisymmetric exciton wavefunctions are normalized

(
i 51

j

2i ufa
~ j !~ i !u251, ;a, ~A4!

whereas the wavefunctions of symmetric exciton of lengtl
are normalized as

(
i 51

j

3•2 j 21uf̃a
~ t !~ i !u251, ;a,t51,2,3. ~A5!

2. Mapping the eigenvalue problem onto a linear
chain

The dendrimer geometry is not linear. However, due
the zigzag structure of its segments, the one-exciton st
can be modeled using a collection of linear chains with va
able lengths. The linear systems~A1! and ~A2! for the one-
exciton symmetric and antisymmetric wavefunctions can
conveniently mapped onto the eigenvalue problem of a lin
chain.

We consider a linear chain of lengthj . We further enu-
merate the wavefunctions for each bond from left to the ri
as ca(1),ca(2), . . . ,ca( j ), where a represents differen
energies. The system of equations for the linear chain wa
functions can be obtained directly from~A2! and ~A1!,

~V02va!ca~1!1J&ca~2!50,

~V82va!ca~m!1J&@ca~m11!

1ca~m21!#50, m52,...,j 21, ~A6!

~V82va!ca~ j !1J&ca~ j 21!50,

We look for a solution of Eqs.~A6! in the form of a
standing wave

ca~m!5Aaeikam1Bae2 ikam. ~A7!

Substitution of~A7! into the second equation of system~A6!
results in the dispersion relationship between the energyva

and the wavevectorka ,

va52&J coska1V. ~A8!

By substituting~A7! into the first and the third equation
of ~A6!, we obtain the quantization of the wavevectork,
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sin~k@ j 11# !

sin~k j !
5

V02V

J&
, ~A9!

and the relationship between the coefficientsAa andBa ,
o
h

ai

is

f
rig
b-
in

o
a
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re

o
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t
.
he
Ba52Aae2ika
V02va1J&eika

V02va1J&e2 ika
. ~A10!

From the normalization condition( i 51
j uca( i )u251 and

Eq. ~A10!, we obtain
uAau25
2J22~V82va!~V01va!

4&J ( i 51
l $&J sin@ka~ i 22!#1~V02va!sin@ka~ i 21!#%2

. ~A11!
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These linear-chain wavefunctions can be used to c
struct the one-exciton wavefunctions of dendrimers. T
wavefunctions of antisymmetric excitons of lengthj @system
~A1!# are related to the wavefunctions of the linear ch
@Eq. ~A6!# by

fa
~ j !~ i !5ca

~ j !~ i !/A2i , ~A12!

with substitutionsV05V1J, V85V2J ea
( j )5va . The

symmetric excitons of lengthl are similarly given by

f̃a
~ t !~ i !5c̃a

~ t !~ i !/A3•2i 21, ~A13!

and the substitutionV05V2J(qt1qt
2), V85V2J, ea,t

5va . The mapping of the original eigenvalue problem
established by noting that the substitution of Eqs.~A12! and
~A13! into Eqs.~A1! and~A2!, respectively, yields Eq.~A6!.

APPENDIX B: SYMMETRY GROUP AND
IRREDUCIBLE REPRESENTATIONS OF A FINITE
DENDRIMER

Here we describe the symmetry group properties o
dendrimeric molecule and use them to decompose the o
nal one-exciton spaceWl onto irreducible representation su
spaces. Although the number of chromophores and sites
dendrimer grows exponentially with its size~number of gen-
erations! l @see Eq.~8!#, its strong symmetry allows us t
compute optical signals by inverting matrices of a maxim
size l 3 l . In this section we introduce the symmetry gro
Gl for a Dl dendrimer and describe its relevant represen
tions which are used in calculations of the linear optical
sponses.

We start by introducing the necessary definitions. LetXl

be the set of chromophores~sites! of Dl . For m̄PXl , we
define its absolute valueum̄uPZ as the generation number t
which m̄ belongs~the generations are labeled from the cen
to the boundary!. Xl has a structure of a partially ordered s
we say thatm̄>n̄ if um̄u>un̄u, and m̄ belong to the branch
which starts atn̄. The symmetry group ofGl of a dendrimer
is a subgroup of transformations for the chromophore setXl ,
i.e., a subgroup of all the permutations forXl . The groupGl

is generated by the set of transformationsAn̄ , n̄PXl andB,
defined as follows:An̄ flips the two branches which start a
n̄, while all the other elements ofXl remain unchanged
TransformationB rotates the dendrimer with respect to t
center by 2p/3. The generatorsAn̄ andB satisfy the follow-
ing relations:
n-
e

n

a
i-

a

l

-
-

r
:

B35I , Am̄
2 5I , ;m̄PXl , ~B1!

Am̄An̄5AAm̄~ n̄!Am̄ for m̄<n̄,

Am̄An̄5An̄AAn̄~m̄! for n̄<m̄,

Am̄An̄5An̄Am̄ otherwise, ~B2!

BAm̄5AB~m̄!B, ;m̄PXl , ~B3!

whereI is the unit operator. Equation~B1! shows that either
three subsequent rotations or two flips of the same branc
not change the structure of the molecule. Commutation r
tionships ~B2! show how two flips of branches which ar
either inserted into each other or are independent can
interchanged. The equivalence between rotation with furt
flip and a subsequent flip around the rotated branch~opera-
tion AB(m̄)) with subsequent rotation of the whole molecu
is given by Eq.~B3!. The groupGl is uniquely defined by its
generating elementsAm̄ , B, and the relations~B1!–~B3!.

It is easy to see that the effective Frenkel-exciton Ham
tonian introduced in Sec. II does not change under the tra
formations of the groupGl . This implies thatGl is the sym-
metry group for our problem.

Irreducible representations ofGl can be classified by se
quential applications of the construction for irreducible re
resentations of semidirect products of groups.53 However, we
do not need all irreducible representations, and therefore
complete classification goes beyond the scope of this pa

The basic object in our calculations is the one-excit
spaceWl whose states are the functions onXl . A natural
action ofGl on Wl induced by the action ofGl in Xl is given
by gf(m̄)5f(g21m̄), gPGl , fPWl . The one-exciton
Hamiltonian~1! is obviously both linear operator inWl and
symmetric with respect toGl . Diagonalization of the one-
exciton Hamiltonianh to get the one-exciton states is bas
on the Schur’s lemma, which is outlined in Appendix C. T
apply the Schur’s lemma for the above purpose,Wl should
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be decomposed into a direct sum of irreducible represe
tions of Gl . The remainder of this Appendix is devoted
this problem.

We first construct the irreducible representatio
V1 ,V2 , . . . ,Vl 21 ; Ṽ1 ,Ṽ2 ,Ṽ3 , which participate in the de
composition ofWl . Ṽt (t51,2,3) is a one-dimensional rep
resentation generated by the vectorv̂ t with the following
action ofGl :

Am̄ṽ t5 ṽ t , Bṽ t5ei2p~ t21!/3ṽ t . ~B4!

In particular,Ṽ1 is the unit representation ofGl . The repre-
sentationVn , n51,2,. . . ,l 21, has the dimensions dimVn

53•2l 2n21 and is generated by the vectorsvn
(m̄) with m̄

PXl and um̄u5 l 2n with the following action of the group
generators:

Bvn
~m̄!5vn

~B~m̄!! , Am̄vn
~m̄!52vn

~m̄! ,

An̄vn
~m̄!5v n̄

~m̄! for n̄.m̄, ~B5!

An̄vn
m̄5vn

~An̄~m̄!! otherwise.

A direct check shows that the action of the generators~B4!
and ~B5! is consistent with the relations~B1!–~B3! which
completes the construction. It is also easy to show that
representationsVn and Ṽk are irreducible. These irreducibl
representations participate in the decomposition ofWl in the
following way. The vectorvn

(m̄) is represented by the func
tions f with f( k̄)Þ0 for k̄.m̄ only, which satisfy the con-
ditions Am̄f52f, As̄f5f for s̄.m̄; their space is
n-dimensional according to the number of generations fr
um̄u11 to l . This implies thatVn occursn times in the de-
composition. Each representationṼk occurs l times in the
decomposition; vectorsṽ t are represented by the wavefun
tions with An̄f5f and Bf5exp(i2p(t21)/3)f. We then
have

Wl5 % n51
l 21 nVn% lṼ1% lṼ2% lṼ3 , ~B6!

where

The formal proof of Eq.~B6! can be completed by a direc
check that the functionsf representing the vectorsvn

(m̄) and
ṽ j in Wl are orthogonal to each other and by comparing
dimensions of both sides of Eq.~B6!.

Finally we note that theDl symmetry groupGl can be
expressed using the construction of iterated wreath prod
IntroducingHl as the symmetry group of one of the thr
branches of theDl group of one of the three branches of t
Dl dendrimer, we can expressGl as a semidirect product

Gl5Z3+~Hl3Hl3Hl !, ~B7!

with respect to the action ofZ3 on Hl3Hl3Hl given by
cyclic permutations.Hl can be defined inductively:H25Z2

and

Hl5Z2+~Hl 213Hl 21!, ~B8!
a-

s

e

e

ct.

whereZ2 acts onHl 213Hl 21 as the group of permutation
of two elements.Hl can be also considered as a 2-Sylo
subgroup of the group of the permutations of 2l elements.

APPENDIX C: MATRIX PROJECTION ONTO
IRREDUCIBLE REPRESENTATION SUBSPACE

In this section we outline the Schur’s lemma and apply
to diagonalize the Frenkel exciton Hamiltonian described
Sec. II. Instead of diagonalizing a matrix of 3(2l21)
33(2l21) dimension, only up tol 3 l matrices are required
for Dl .

As discussed in Appendix B, the one-exciton spaceWl

can be decomposed onto the direct sum of its subspace~ir-
reducible representationsV1 ,V2 ,...,Vi). Irreducible repre-
sentationVi ( i , l ) is invariant with respect to the origina
spaceW, does not intersect with another, and doesnot con-
tain any subspacesVi j

which are invariant with respect to
Vi . Suppose that the irreducible representation of dimens
m, Vm , occursn times, so thatW5 % nVm . According to the
Schur’s lemma,43 matrix hmn of dimensionalitymn3mn in
the subspaceVm can be represented by a matrix formed bym
blocks; each block is occupied by then3n matrix L i j

hmn5S L11L12. . . L1m

. . .
Ln1Ln2 . . . Lnm

D . ~C1!

The matricesL i j are diagonal

L i j 5S l i j ,0,0 . . . 0
0,l i j ,0 . . . 0

. . .
0,0,0 . . .l i j

D . ~C2!

It is easy to see from Eqs.~C1! and ~C2! that the original
matrix hmn of dimensionmn3mn is equivalent to the matrix
hi j of dimensionn3n,

hi j 5S l11,l12, . . .l1n

. . .
ln1 ,ln2 , . . .lnn

D . ~C3!

The Frenkel exciton Hamiltonian~1! has dimensionality
ā3ā, whereā represents all one-exciton states. Howev
in the subspace of each representationVk , the matrix dimen-
sion is lowered considerably tok3k. Due to decomposition
~B6!, the eigenvalue problem for the Hamiltonian~1! is
equivalent to the eigenvalue problem forl 21 matricesh of
dimensioni 3 i for each representationVi ( i 51, . . . ,l 21)
and three matrices of dimensionl 3 l ~representationsṼ1 ,
Ṽ2 , and Ṽ3). Thus, using group symmetry properties t
diagonalization of system~11! eventually reduces to diago
nalization of l 21 matrices~A1! and 2 matrices~A2! of di-
mensionl 3 l ~see the details in Appendix A!.

APPENDIX D: ONE-EXCITON CONTRIBUTIONS TO
THE ABSORPTION COEFFICIENT

In Eq. ~27!, we have separated the absorption coeffici
s~v! onto symmetricss(v) and antisymmetricsa(v) con-
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tributions. In this Appendix we express these contributions
terms of one-exciton states.

Using the notation of Sec. III A for Eq.~25!, the transi-
tion dipole for antisymmetric excitons is

uma
~s!u5U(

m̄
mm̄fa

~s!~m̄!U. ~D1!

Equation ~26! only depends on the absolute value of t
transition dipole for each exciton state~D1! and is indepen-
dent on its relative orientation. There arens53•2l 212s an-
tisymmetric excitons of lengthsP@1,l 21#. The absolute
magnitudes of the transition dipole momentsuma

(s)u are iden-
tical for all ns states of the sames and a in Eq. ~26!. This
gives

sa~v!53•2l 21G(
s51

l 21

22s(
a51

s uma
~s!u2

~v2ea
~s!!21G2 . ~D2!

The dipolesmm̄ are directed from the center toward th
vertexes in each equilateral triangle of a given exciton, a
their mutual directions form 120 degree angles in space
shown in Fig. 2~top panel!. The absolute values ofmm̄ are
the same, but the wavefunctions are antisymmetric with
spect to inversion around exciton originAm̄ ~or the axis that
divides the exciton space by half! in the top panel of Fig. 5.
As a result, the vector projection ofma

(s) onto the Am̄

axis vanishes. It can be shown by induction that the tra
tion dipole for exciton of length s equals ma

(s)

562 cos(p/6)( j 51
s fa

(s)( j )ex
(s) , whereex

(s) is the unit vector
that is perpendicular toAm̄ and belongs to the exciton plan
Using Eq. ~A12!, the dipole moment for thea-th state is
given in terms of the linear chain wavefunctions

ma
~s!57)(

j 51

s ca
~s!~ j !

A2 j
ex

~s! , ~D3!

where7 corresponds to the case whenex
(s) is directed from

the left to right in the exciton plane, or vice versa.
Substitution of Eq.~D3! into ~D2! gives the contribution

of antisymmetric excitons to the absorption coefficient

sa~v!5G(
s51

l 21

(
b51

s uMa
~s!u2

~v2ea
~s!!21G2 , ~D4!

where the transition dipole moment magnitude of thea-th
antisymmetric state in the exciton of lengths is defined as

uMa
~s!u259•2l 2s21U(

j 51

s

22 j /2ca
~s!~ j !U2

, a51, . . . ,s.

~D5!

It follows from Eq. ~26! and the exciton properties de
scribed in Sec. III A that the symmetric part of absorpti
can be written as

ss~v!5G(
t51

3

(
a51

l tum̃a
~ t !u2

~v2ea,t!
21G2 , ~D6!

where the dipole transition moment for symmetric exciton
m̃a

(t)5(m̄mm̄f̃a
(t)(m̄). Clearly, fully symmetric excitons with

t51 do not contribute to Eq.~D6!. For each generation, th
n

d
as

-

i-

s

wavefunctions are equal, and the vector sum of the transi
dipoles of such an exciton is exactly zero. It follows fro
Eqs. ~A2! and ~A3! that the energies and wavefunctions
excitons with indext52 and t53 are identical. We thus
obtain from Eq.~D6!,

ss~v!52G (
a51

l um̃a
~2!u2

~v2ea,2!
21G2 . ~D7!

Using the wavefunction properties for thet52 exciton
and the relative orientation of the dipolesmm along the seg-
ments, we can prove by induction that

m̃a
~2!5

3i

2 (
j 51

l

f̃a
~2!~ j !~ex7 iey!, ~D8!

whereey is the unit vector, parallel to the symmetry axisAm̄ ,
which goes through exciton origin~parallel to ordinate axis
in the bottom panel of Fig. 5!. The direction ofex is chosen
similarly to ex

(s) ; it is perpendicular toey .
When qtÞ1, system~A2! is equivalent to system~A1!

for the antisymmetric excitons of lengthl , thus,f̃a
(2)[fa

( l )

and ea,2[ea
( l ) , so thatm̃a

(s)5ma
( l ) . Finally, by substituting

Eq. ~A13! in Eq. ~D8! and using definition Eq.~D5!, we
obtain for the ‘‘symmetric’’ part of the absorption,

ss~v!5
4

3
G (

a51

l uMa
~ l !u2

~v2ea
~ l !!21G2 . ~D9!
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