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Two-exciton states and spectroscopy of phenylacetylene dendrimers
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The two-exciton wave functions of conjugated dendrimers with fractal geometries are calculated
using the Frenkel-exciton model. Self-similarity and the high degree of symmetry make it possible
to express the two-photon spectra of these chromophore aggregates in a compact form using
irreducible representations of optical excitations, single-exciton states, and an effective two-exciton
transition dipole moment. The explicit calculation of the complete manifold of two-exciton states
which involves an expensivel 33 l 3 diagonalization,l being number of generations, is totally
avoided. A real space analysis shows that the two-exciton states and resonances are dominated by
periphery chromophores due to their exponentially large number. ©1999 American Institute of
Physics.@S0021-9606~99!00133-6#
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I. INTRODUCTION

Dendrimers made out of phenylacetylene oligomer s
ments connected through metasubstitutions of the ben
rings1–3 constitute an interesting class of conjugated po
mers whose self-similar Cayley tree~Bethe lattice!
geometry2–5 leads to unusual transport and optical propert
~Fig. 1!.

Two families of such dendrimers have been synthesi
in a search for artificial antenna systems that mimic biolo
cal energy transfer processes:1,6–8 compact dendrimers
which have the same linear unit~segment! in all generations,
and extended dendrimers with varying segment leng
which decreases toward the periphery. This paper focuse
the first five members of the compact family depicted in F
1. The dependence of the absorption spectra on the num
of generations for these two families suggests that opt
excitations are localized on the linear segments.2 This con-
jecture has been confirmed by a theoretical study9 which
showed that optical excitations in dendrimers do not invo
charge separation between different segments but merel
low for coherent energy transfer.9 These studies lead to th
following picture of electronic excitations: The linear se
ments can be considered as effective chromophores w
the elementary excitations reside, whereas the Coulomb
pling between chromophores causes coherent energy tra
which can result in the delocalization of excitations over
entire molecule. Stated differently, the relative motion o
photogenerated electron-hole pair is confined to a sin
chromophore~linear segment!, whereas its center of mas
can move across the entire molecule.

Such excitations, known as Frenkel excitons,10,11 are
usually used to describe the optical properties of a variet
systems which can be modeled as collections of coup
chromophores with nonoverlapping charge distributio
e.g., molecular crystals,10,11 nanostructures,12 J-aggregates,13

and core light-harvesting antennae complexes such as
and LH2.14 The optical response of these systems can
computed using the Frenkel-exciton Hamiltonian,10–12
4150021-9606/99/111(9)/4158/11/$15.00
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H5(
n̄

V n̄Bn̄
†Bn̄1 (

n̄Þm̄
Jn̄m̄Bm̄

† Bn̄2«~ t !(
m̄

mm̄~Bm̄
† 1Bm̄!,

~1!

where we label the chromophores by Latin indices with
overbar.Bm̄(Bm̄

† ) are the annihilation~creation! operators of
an excitation localized on them̄-th chromophore which sat
isfy the commutation relations

@Bn̄ ,Bm̄
† #5d n̄m̄~122Bm̄

† Bm̄!, ~2!

@Bn̄ ,Bm̄#5@Bn̄
† ,Bm̄

† #5~Bm̄
† !25~Bm̄!250. ~3!

V n̄ represents the electronic transition energy of then̄-th
chromophore. The Coulomb interaction between ch
mophores results in the hopping matrix elementsJn̄m̄ . Typi-
cally, uJn̄m̄u!V n̄ , and the eigenstates of the Frenkel-excit
Hamiltonian therefore form well-separated manifolds
n-exciton states~see Fig. 2! which are only coupled by the
driving field «(t) through the third term in Eq.~1!. This
implies that the linear optical response is solely determin
by one-exciton states whereas multiexciton states can
probed by nonlinear optical techniques.12

The one-exciton states and the linear response of d
drimers were calculated in our earlier work.5 We have fur-
ther studied the third-order optical spectra using a met
based on the exciton scattering matrix which avoids the
agonalization of the two-exciton Hamiltonian.15 In this paper
we study the two-exciton states which dominate the tw
photon absorption and certain four-wave mixing signals
dendrimers. The relevant-level scheme, which includes
ground state and two manifolds~bands! of one- and two-
exciton states, is shown in Fig. 2. We use Greek indices w
an overbar (ā) and a tilde (ã) to label the one-exciton and
two-exciton states, respectively. The one- and two-exci
manifold bandwidths are of the order of the interchr
mophore couplingJ which is much smaller than the trans
tion frequencyV. If the detunings of incoming fieldsv1 and
v2 from the one-exciton band are large compared to
bandwidth, the signal becomes independent of the deta
8 © 1999 American Institute of Physics



e
he

in

he
ng

e

s
rm
ito
n

th
on
in

s
s
ig
th

to
l
a

av

ile
l-
th

lar-

s
on

s-
n-

ion

y,

ve

:

itions
the

-
ms
es
ing
p-
e
op-
cy-

a-

n
o

ton

p-

.

a

en

4159J. Chem. Phys., Vol. 111, No. 9, 1 September 1999 Two-exciton states
properties of one-exciton states. The signal can therefor
described by an effective model which only includes t
ground state and the two-exciton manifold.

In Sec. II we express the four-wave mixing signal
terms of the two-exciton wave functionsC(m̄,n̄). These can
be found by diagonalizing the two-exciton Hamiltonian. T
two-exciton states which participate in the four-wave mixi
signal are classified in Appendix C. Forl generations, there
are N(2)5 l ( l 214l 11)/6 two-exciton states. To avoid th
diagonalization of a hugeN(2)3N(2) matrix, we use an indi-
rect method for computing the two-exciton eigenstates ba
on comparing the expression for the nonlinear signal in te
of the two-exciton states with the one that uses the exc
scattering matrix. In Sec. III we apply this approach to de
drimers. In Sec. IV we present numerical calculations of
two-exciton wave functions which dominate the two-phot
spectroscopy. A brief summary of our results is given
Sec. V.

II. TWO-PHOTON SPECTROSCOPY OF
CHROMOPHORE AGGREGATES

In our previous work,15 the nonlinear signal which doe
not depend on dendrimer geometry has been computed u
the exciton scattering matrix approach. To interpret the s
nal in terms of the two-exciton states we first express
signal in terms of the two-exciton wave functionsCā .

To avoid interference between one- and two-exci
resonances and minimize the dependence of the signa
dendrimer geometry, we follow Ref. 15 and consider
frequency-domain two-color heterodyne detected four-w
mixing signal generated by three incoming beamsk1 , k2 ,
and k3 with v35v1 with polarizationsê1 ,ê2 ,ê3 in the di-
rection ks5k11k22k3 . Tuning v1 and v2 to be off-
resonant with respect to the one-exciton manifold wh
keepingv11v2 on resonance with the two-exciton band a
lows us to study the two-exciton states alone, avoiding

FIG. 1. Structures of the compact phenylacetylene dendrimers family m
of the same linear unit.

FIG. 2. Manifolds of one- and two-exciton states in phenylacetylene d
drimers.
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influence of one-exciton resonances. By choosing the po
ization direction of the heterodyne field,ês5ê3 , and incom-
ing fields,ê15ê2 , and averaging over all possible direction
of ê3 and ê2 , we eliminate the signal’s dependence
geometry.15

The two-color four-wave mixing signal is given by15

S~v1 ,v2!}Im@ x̂~3!~2v2 ;v1 ,v2 ,2v1!#. ~4!

In Appendix A, we express the third-order optical su
ceptibility x̂ (3) in terms of the one- and two-exciton eige
states,fā andCā . Averaging over orientations ofê1 andê3

and evaluating the matrix elements of effective polarizat
operatorPeff

(j) @see Eq.~A5!# by making use of Eqs.~1!–~3! in
Eq. ~A3!, we obtain

S~v1 ,v2!5
1

~v12V!4 (
ã

dã
2~v!

g

~v2eã!21g2 . ~5!

Here v5v11v2 , V is an average single-exciton energ
and

dã~v!5~v22V!(
m̄n̄

Cã~m̄,n̄!22(
m̄n̄k̄

Cã~m̄,n̄!Jn̄k̄ ~6!

is an effective transition dipole, where the two-exciton wa
function is given by

uã&5(
m̄n̄

Cã~m̄,n̄!Bm̄
† Bn̄

†ug&. ~7!

Without loss of generality,C is taken to be symmetric
Cā(m̄,n̄)5Cā(n̄,m̄), andCā(m̄,m̄)50. Equations~5!–~7!
represent the signal as a sum of resonances whose pos
correspond to the two-exciton state energies, whereas
effective oscillator strengthsdā

2(vā) are determined by the
two-exciton wave functionsCā .

Equations~5! and ~6! express the signal for any aggre
gate described by the Frenkel-exciton Hamiltonian in ter
of the two-exciton wave functions. The two-exciton stat
which dominate the signal can be computed by diagonaliz
the two-exciton Hamiltonian derived in Appendix C and a
plying Eqs.~5! and~6!. However, this numerically expensiv
procedure can be avoided, similar to how the nonlinear
tical response is expressed in terms of the frequen
dependent exciton scattering matrixḠ(v), avoiding the ex-
plicit computation of the two-exciton states.12,16 To express
the two-exciton states in terms of the exciton scattering m
trix we introduce the two-exciton variables

Ym̄n̄~v!5E dt exp~ ivt!^Bm̄~t!Bn̄~t!&. ~8!

HereB(t) is the Heisenberg operator in the optically drive
system to first order in the field. It can be calculated in tw
ways. First, it can be expanded in terms of the two-exci
wave functions using a standard procedure.12 Alternatively,
Ym̄n̄(v) can be computed using the scattering matrix a
proach. Comparing the two expressions forYm̄n̄(v) provides
a convenient method to compute two-exciton eigenstates

de
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In Appendix A we show that two-exciton coherenceYm̄n̄

is proportional to two-exciton wave functionCā(m̄,n̄) pro-
vided the two-exciton dephasing rateg is smaller than the
spacing between the two-exciton levels,

Cã~m̄,n̄!5
g~v12V!2

dã~v!
Im@Ym̄n̄~vã!#, ~9!

whereYm̄n̄ is given by~B2!.
We have employed Eq.~9! to calculateCā(m̄,n̄) using

the following steps. We first compute the signal at high re
lution, e.g.,g˜0. @For this, we use the frequency-depende
exciton scattering matrixḠm̄n̄ and one-exciton wave func
tions and energies from Eqs.~24! and ~29! in Ref. 15#. We
then calculate Im@Ym̄n̄(v)# from Eqs. ~B3!–~B6! by using
Ḡm̄n̄ and the one-exciton states for those frequencies, wh
correspond to the strongest resonances ofS(v1 ,v2), e.g., at
v11v25vā . This yields the wave functions of the two
exciton states which dominate the signal. As the depha
rate is increased, the peaks are no longer resolved,
Ym̄n̄(v) at the peak values ofv represent the superposition
of the several two-exciton wave functions which can be c
sidered as the relevant collective variables.

We conclude the section by establishing a relation wh
allows us to interpret the signal in terms ofYm̄n̄(v). It fol-
lows from Eqs.~5!, ~6!, and~B1! that the signal can be reca
in a doorway–window representation in real space,

S~v1 ,v2!5
1

~v12V!2 (
m̄n̄

Im@Mm̄n̄~v!Ym̄n̄~v!#. ~10!

HereY serves as a doorway created by the incoming fie
and the window function is

Mm̄n̄~v!5~v22V2 ig!2(
k̄

~Jm̄k̄1Jn̄k̄!. ~11!

Along with Eq. ~9! this implies that the contribution of eac
pair of chromophores to a given resonance is equal to
values of the corresponding wave functionCā(m̄,n̄)
weighted by the window functionMm̄n̄(v).

III. THE TWO-EXCITON STATES

In this section we apply the approach of Sec. II to co
pute the two-exciton wave functions which dominate t
four-wave mixing and the pump–probe signals in comp
phenylacetylene dendrimers.

The dendrimer is modeled as an assembly of coup
two-level chromophores, each representing a linear segm
Only nearest-neighbor coupling, i.e., between segme
which are attached to the same phenyl ring, is important.
nearest-neighbor approximation produces the coupling
tern represented by the dual Bethe lattices shown in Fig
The absolute magnitude of the coupling is the same for
nearest neighborsuJu567 cm21; the signs of the coupling
constants are given by the following rule:J.0(J,0) for
two chromophores of the same~different! generation.5

In our earlier work we have related the linear optic
response of compact dendrimers to the properties of o
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exciton states.5 The high symmetry made it possible to d
termine all one-exciton states, thereby mapping the calc
tion of one-exciton states in a dendrimer withl generations
~Dl! onto a much simpler effective linear-chain problem w
chain length not exceedingl. The two-photon spectra hav
been calculated as well15 by applying the exciton-scatterin
picture of the nonlinear optical response.12,16 The scattering
matrix Ḡ(v) was represented in terms of components rela
to irreducible representations of the dendrimer symme
group Gl . Computation of the exciton scattering matrix
reduced to inverting ofl 3 l matrices.15

The expression for the two-exciton wave functions@Eq.
~9!# involves the scattering matrix and the one-exciton wa
functions@Eq. ~B2!#. All one-exciton states in dendrimers a
partitioned into two classes: antisymmetric and symmetr5

The antisymmetric excitons are classified by their lengths
51,2,...,l 21 and the quantum numbera51,...,s. They are
characterized by their energiesea

(s) and auxiliary wave func-
tions ca

(s)(m) with m51,...,s. The symmetric excitons are
classified by the quantum numbersa51,...,l andt51,2,3 as
well as characterized by the energiesea,t and auxiliary wave
functions c̃a

(t)(m), with m51,...,l . Expressions forea
(s) ,

ea,t , ca
(s)(m), andc̃a

(t)(m) are given in Ref. 5.
Following Refs. 5 and 15, we denote the set of ch

mophores~linear segments! for a compact dendrimerDl by
Xl and the symmetry group byGl . We reiterate that the
chromophoresm̄PXl are denoted with overbarred Latin in
dices. It follows from Eq.~6! that the effective dipole opera
tor dā(v) of a two-exciton stateā is obtained by calculating
the overlap of its wave function with the window functio
Mm̄n̄ @Eq. ~11!#. Since the window function is symmetri
with respect to the dendrimer symmetry groupGl , only
those two-exciton states which are symmetric with respec
Gl contribute to the signal. This implies thatYi j (v) is sym-
metric as well.

The two-exciton quantities@e.g.,Yi j (v)] which are sym-
metric with respect toGl can be conveniently described b
introducing the intersection point,p̄( ī , j̄ ), of the chro-

FIG. 3. Dual Bethe lattice with triangular cycles representing near
neighbor interactions.
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mophoresī and j̄ , defined as follows. On a Bethe lattic
which can be obtained from dual Bethe lattice~Fig. 3! by
eliminating the connections within the same generatio
there is a unique path from each chromophore to the cen
For two chromophoresī and j̄ we definep̄( ī , j̄ ) to be the
first chromophore where the two paths ofī and j̄ intersect as
shown in Fig. 4. If the two paths do not intersect, we sep̄
50. Yī j̄ can thus be parameterized by a three-index ma
Yi j ,p , wherei 5u ī u, j 5u j̄ u, andp5u p̄( ī , j̄ )u. um̄u denotes the
generation number wherem̄ resides in the dendrimer. State
differently, the matrix elements of the symmetric matrix a
equal, Yī j̄ 5Yī 8 j̄ 8 , provided u ī u5u ī 8u, u j̄ u5u j̄ 8u, and p
5p8. Yi j ,p describesni j ,p equivalent chromophore pair
( ī , j̄ ) where the degeneracy factorsni j ,p are given by

ni j ,053•2i 1 j , nii ,053•22i 21,

nii ,p53•22~ i 21!2p, ni j , j53•2i , ~12!

ni j ,p53•2i 1 j 2p21, 0,p<min$ i , j %.

These quantities are plotted in Fig. 5. We observe that
generacy increases exponentially toward the periphery.

Yi j ,p(v) can be obtained starting with Eq.~B2!, which
can be simplified considerably by utilizing the symmet
The first Ḡm̄n̄(v) enters Eq.~B2! through the combinations
( n̄Ḡm̄n̄(v); the latter only depends onum̄u and is given by
Ḡm(v) with m5um̄u. Ḡm(v) has been computed in Ref. 1

Using Eqs.~12! and ~B3!–~B7!, we finally recast Eq.
~10! in the form

S~v1 ,v2!5
1

~v12V!2 (
i jp

ni j ,p

3Im@Mi j ,p~v11v2!Yi j ,p~v11v2!#. ~13!

As seen from Eq.~9!, the imaginary part of two-exciton co
herence Im(Yij ,p) determines two-exciton wave functio
Cā( i j ,p) wheng˜0. The overlap ofYi j ,p with the window
function Mi j ,p @Eq. ~13!# determines the two-photon signa

FIG. 4. Definition of the intersection pointp̄( ī , j̄ ) of the chromophoresī

and j̄ . p̄ is the first intersection of the unique paths leading fromī and j̄ to
the center. Any symmetric two-exciton quantity, e.g.,Yī j̄ , can be labelled

by u ī u, u j̄ u, andu p̄( ī , j̄ )u.
s,
er.

ix

e-

.

In the next section we use this equation to analyze the v
ous contributions from distinct chromophores to the sign

IV. NUMERICAL CALCULATIONS

The computed two-photon absorptionS(v1 ,v2) is plot-
ted in Fig. 6 as a function of the sum-frequency detun
from the two-exciton resonance,Dv5v11v222V with
one-exciton dephasing rateg53 cm21. The five strongest
two-exciton resonances inD6 appear at Dv'2105,
235,120,340,420 cm21. The absorption signal saturates wi
the number of generations, and the low-resolution spe
(g;15 cm21) of D5 andD6 shown in Fig. 7 are virtually
identical. Hereafter we focus onD6.

The entire two-exciton wave functionCā( i j ,p) for the
strongest (Dv'120 cm21) resonance is displayed in Fig
8~a!. The wave function has both positive and negative v
ues. These are displayed separately in the left and the r

FIG. 5. Degeneracy factorsni j ,p @Eq. ~12!# for equivalent chromophore
pairs ~i,j! of D6.
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columns, respectively. Each panel showsCā( i j ,p) versusi
and j for a givenp. p varies between 0 to 5:p50 represents
chromophores of different branches whereasp51,...,5 rep-
resent two chromophores of the same branch which m

FIG. 6. Calculated two-photon spectra ofD2-D6 with two-exciton dephas-
ing rateg;3 cm21.

FIG. 7. Same as in Fig. 6 except that the dephasing rate isg;15 cm21.
st

have a common origin at least one generation below~see Fig.
4!. Also note the symmetryCā( i j ,p)5Cā( j i ,p).

Our calculations reveal that the strongest elem
Cā( i j ,p) appears in general for periphery chromopho
within the same branch, that is,i , j˜ l andpÞ0. We further
note thatCā( i i ,i 21)50 for i .1 due to the following se-
lection rule: Im(Yii ,i21)50 for i .1. This describes the situa
tion when two chromophores are the closest nearest ne
bors in the same generation~except when they belong to
different branches!.

Figure 8~b! displays the wave function for the two
exciton band edge, i.e., the lowest~dark! state atDv'2260
cm21. This wave function is dominated by a single eleme
Cā(44,3)525.45, and is much more localized than th
bright state atDv'120 cm21 displayed in Fig. 8~a!.

In order to show which parts of the molecule contribu
to the Dv'120 cm21 resonance we display the produ
ni j ,p Im(Mij ,p Yij ,p) in Fig. 9 using the same format of Fig. 8
~The statistical weightsni j ,p of the distinct chromophore
pairs are shown in Fig. 5.! The sum of these products@Eq.
~13!# gives the signal. The dominant contribution com
from periphery chromophore pairs@( i , j )5 l 21,l # and the
pairs located between the center and the periph
(1,( i , j ), l 21) due to their exponentially large numbe
@see Eqs.~12!#. The varying sign of the wave function lead
to a huge cancelation between positive~left column! and
negative~right column! contributions to the signal. Its mag
nitude is only 2%–5% of the positive or negative parts
shown in Fig. 10. As seen from Eq.~12!, there are totalN
5127 distinct chromophore pairs~with different ni j ,p) but
only 67 are different@due to the symmetry in interchangingi
and j indices in ~ij,p! basis#. Each panel in Fig. 10 corre
sponds to one of the resonances of Fig. 6. We have ord
the positive and negative contributions separately in decr
ing absolute magnitude. The figure displays the cumula
positive, negative contributions and their sum. TheDv
'420, 340, and235 cm21 peaks converge atN;80
whereas theDv'120,2105 cm21 resonances converge a
N;20.

To further characterize the two-exciton wave functio
we have computed three quantities, inverse participation
tio, average generation number, and the average distanc
tween two distinct chromophores, which are plotted in F
11.

To gauge the degree of localization of two-excito
states, we introduce the inverse participation ratio,5,17–19

^Pã&5
(m̄.n̄uCā~m̄,n̄!u2

(m̄,n̄uCã~m̄,n̄!u4
, ~14!

which using normalizedCā(m̄,n̄) and Eq.~9!, can be also
recast in the form

^Pã&5
2~( i jpni j ,puIm~Yi j ,p!u2!2

( i jpni j ,puIm~Yi j ,p!u4
. ~15!

^Pā&5k indicates that the two-exciton wave functio
C(m̄,n̄) is delocalized overk chromophore pairs. The maxi
mum value^Pā&[Pmax5N(N21)/2 whereN53(2l21) is
the total number of chromophores inDl.5 (Pmax517 766 in
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FIG. 8. ~a! Two-exciton wave functionC(m̄,n̄) for D6 plotted in the basis(ij,p) for the major peak and the lowest energy state ofS(v1 ,v2) in Fig. 6
calculated with the shiftDv5v11v222V5120 cm21. The left ~right! column representsC.0(C,0). Each raw corresponds to differentp50 ~top! and
p55 ~bottom!, i and j are the axes in thex-y plane.~b! same as~a! but for the lowest two-exciton state withDv52260 cm21.
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of
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D6.) The minimum valuePmin51 corresponds to the loca
ization of the two-exciton state on a single chromophore p
(N52).

In Fig. 11 ~second panel from the top!, we display the
inverse participation ratio for the two-photon resonances.
the two-exciton states are clearly localized. The maxim
localization with ^Pā&'304 is of the major peak ofDv
5120 cm21, so that the excitation is distributed on abo
seven distinct chromophore pairs. The maximum^Pā&
'8580 on the band edgeDv5480 cm21 is still two times
smaller thanPmax . The figure shows that more delocalize
states~with higher Pā) appear at the red band edge. Tw
exciton localization is different from the behavior of on
exciton states, which tend to be delocalized on both b
edges.5

To analyze the signal’s dependence on molecular c
nectivity, we plot the average generation number in Fig.

This number,̂ i ā&5( m̄.n̄ um̄uuCā(m̄,n̄)u2, is written using

Eq. ~9!,

^ i ã&5
( i jp ini j ,puIm~Yi j ,p!u2

( i jpni j ,puIm~Yi j ,p!u2 . ~16!
ir

ll

t

d

n-
.

Figure 11 shows that the average generation number va
between 3 and 5, which means that both the periphery c
mophores and the intermediate chromophores~placed be-
tween periphery and the dendrimer center! contribute most
strongly to the signal. This behavior can be rationalized
ing Fig. 9: The number of periphery chromophores gro
exponentially compared to the center chromophores,
therefore the former dominate the two-exciton spectrum.

To quantify the relative motion of excitons in two
exciton states, we introduce the average distance betw
two chromophoresī and j̄ . This can be expressed in terms
their generation numbers and generation number of
branch origin to which both the chromophores belong,

r i j ,p5
i 1 j 22p

2
, r i j ,05

i 1 j

2
11. ~17!

Upon averaging of Eq.~17!, we obtain

^Rã&5 (
m̄.n̄

r n̄m̄uCã~m̄,n̄!u25
( i jp r i j ,pni j ,puIm~Yi j ,p!u2

( i jpni j ,puIm~Yi j ,p!u2 .

~18!
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FIG. 9. Contributions to the two-photon resonances forD6: Imaginary part of (ni j ,pM i j ,pYi j ,p) is plotted forDv5120 cm21 @Fig. 9~a!# andDv52260 cm21

@Fig. 9~b!#. The plots are organized in the same way as in Fig. 8.
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The bottom panel in Fig. 11 shows that 1<^Rā&<4 in gen-
eral, but 1<^Rā&<2 for the major absorption peaks in Fig
6. This indicates that the main contributions to the sig
come from nearest-neighbor chromophores, and the t
exciton coherence contributing to the signal is short rang

V. SUMMARY

In this paper we have investigated the two-exciton sta
which dominate the frequency-domain two-color four-wa
mixing signal in compact dendrimers, computed in our e
lier work.15 When both incoming frequencies are tuned o
resonant with respect to the one-exciton manifold, keep
the frequency sum on resonance with the two-exciton ba
the signal can be expressed in terms of two-exciton st
alone. This applies for a general Frenkel-exciton system.
eraging over the orientations of mixed waves with spec
cally chosen polarizations leads to a signal which does
depend on dipole orientations and reflects the exciton
namics alone. The effective two-exciton dipoledā(v) which
characterizes the two-exciton state contributions to the sig
was expressed in terms of the two-exciton wave functio
The latter does not require the two-exciton states, and
calculation only involves matrices no larger than thel 3 l
l
o-
.

s

r-

g
d,
es
-

-
ot
y-

al
s.
ts

dimension withl being number of generations. To avoid th
expensive direct diagonalization of the two-exciton Ham
tonian and to obtain information on the relevant two-excit
states, we have related the two-exciton wave functio
Cā(m̄,n̄) to the two-exciton coherenceYm̄n̄(v) at the reso-
nance frequencies. The latter may be expressed in term

the exciton scattering matrixḠm̄n̄(v), thus, relating the two-

exciton wave functions toḠm̄,n̄(v). The two-exciton states
which participate in signal by symmetry have been classifi
and mapped onto an effective model of a linear-chain s
tem. The overall number of such states isN(2)5 l ( l 214l
11)/6.

Focusing on the five strongest resonances in the t
color four-wave mixing signal we have calculated the tw
exciton coherences that completely describe their tw
exciton wave function@see Eqs.~9! and ~B3!–~B6!#. The
special choice of the field polarizations in the four-wa
mixing allows us to obtain this information irrespective
the chromophore~linear unit! orientation in space, which is
complex in dendrimers with largel. The signal depends en
tirely on the segment’s connectivity and internal chr
mophore interactions and is dominated by periphery ch
mophores.
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APPENDIX A: THIRD-ORDER SUSCEPTIBILITY OF
CHROMOPHORE AGGREGATES

Below we express the third-order optical susceptibil
x̂ (3) in terms of the one- and two-exciton eigenstatesfā and
Cā using the standard sum-over-states expression.12 Assum-
ing that the detunings ofv1 and v2 from the one-exciton
manifold are large compared to the exciton bandwidth
small compared to the transition frequency, we can invo
the rotating-wave approximation. This yields

x̂~3!~2v2 ;v1 ,v2 ,2v1!

5 (
āb̄g̃

^guP•ê3ub̄&^b̄uP•ê3ug̃&^g̃uP•ê1uā&^āuP•ê1ug&
v11v22«g̃1 ig

3F 1

v12«ā1 ig/2
1

1

v22«ā1 ig/2G
3F 1

v12«b̄2 ig/2
1

1

v22«b̄1 ig/2G , ~A1!

where polarization operatorP is

FIG. 10. Convergence of door–window representationni j ,p Im(Mij ,pYij ,p) to
the nonlinear signal~solid lines! as a function of number of distinct chro
mophore pairs. The dashed~dotted! lines represent the separate positi
~negative! contributions to the signal. The five panels~from top to bottom!
are given for the resonances atDv5420, 340, 120,235, 2105 cm21.
e

t
e

P5(
m̄

mm̄~Bm̄
† 1Bm̄!. ~A2!

Here eā and e ;gḡ stand for the energies of one- and tw
exciton eigenstates, respectively, andg/2 denotes the exciton
dephasing rate. The one-exciton states can be elimin
from Eq. ~A1! by detuningv1 and v2 off the one-exciton
band (v11v2'2V is resonant with the two-exciton man
fold!. We can setv12eā1 ig/2'v12V, v22eā1 ig/2
'2(v12V) in the denominator of the resulting expressio
Equation~A1! then assumes the form

Im@ x̂~3!#5
1

~v12V!4 (
ã

dã
~3!~v!dã

~1!~v!

3
g

~v2eã!21g2 , ~A3!

whereg is the two-exciton dephasing rate,v5v11v2 , and

dã
~ j !~v![^ãuPeff

~ j !~v!ug& ~A4!

is the matrix element of an effective polarization opera
which directly connects the ground state and the two-exc
manifold. dā

( j ) are real since the one-exciton wave functio
are real.5 The effective polarization operator has the form

Peff
~ j !~v![P•êj~v22H !P•êj . ~A5!

FIG. 11. Signal dependence inD6. From top to bottom: The high-resolutio
signal, the inverse participation ratios^Pā&, the average generation numbe
^ i ā&, and the average distance between chromophore pairs^Rā&.
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APPENDIX B: TWO-EXCITON COHERENCE AND THE
TWO-EXCITON WAVE FUNCTION

In this Appendix we relate two-exciton states with tw
exciton variableYm̄n̄ for an arbitrary aggregate described
the Frenkel-exciton model. To that end we evaluateYm̄n̄(v)
for the system driven by two monochromatic fields in tw
ways.

The first procedure is based on the sum-over-states s
lar to that of the signal presented in Sec. II@see Eqs.~5! and
~6!#, and yields forYm̄n̄ averaged over the polarization dire
tions,

Ym̄n̄~v!5
1

~v12V!2 (
ã

dã~v!
g

~v2eã!1 ig
Cã~m̄,n̄!,

~B1!

where Cā(m̄,n̄) is given by Eq.~7!, v5v11v2 , and a
numerical factor given by the product of the amplitudes
the waves is omitted.

Ym̄n̄ may be alternatively obtained by solving the equ
tion of motion for one- and two-exciton variables and e
pressing the solution in terms of the one- and two-exci
Green functions, followed by representing the latter in ter
of Ḡ using the Bethe–Salpeter equation.20 This yields

Ym̄n̄~v!5
1

~v12V!2 (
n̄8n̄9

Ḡ n̄8n̄9~v!

3(
āb̄

fā~ n̄8!fb̄~ n̄8!

v2eā2eb̄1 ig
fā~m̄!fb̄~ n̄!, ~B2!

wherefā(m̄) are the one-exciton wave functions.
By comparing the two expressions forY(v), one can

express the two-exciton wave function in terms ofḠ. Equa-
tion ~B1! gives Y(v) in a form of a sum over resonance
When the dephasing rateg is smaller than the spacing be
tween the two-exciton levels, the resonances are well s
rated. Provided the two-exciton states are nondegenerate
combining Eq.~B1! with Eqs. ~5! and ~6!, we obtain Eq.
~B2!. It implies that Im@Ym̄n̄(v)# gives the two-exciton wave
function Cā(m̄,n̄) up to a numerical factor.

Below we apply the general expression for two-excit
coherence using the one-exciton states@Eq. ~B2!# to the den-
drimers. It follows from the symmetry of one-exciton stat
that the nonzero contributions to the sum overā and b̄ in
Eq. ~B2! come from pairs of excitons which are either bo
symmetric or both antisymmetric and have the same len
Expressing the one-exciton wave functionsfā in Eq. ~B2! in
terms of linear-chain wave functionscā ~by using transfor-
mation in Ref. 5!, we could separate symmetric and antisy
metric terms following the steps of Ref. 15,

Yi j ,p~v!5Yi j ,p
S ~v!1Yi j ,p

A ~v!, ~B3!

where the contributions from pairs of antisymmetric excito
are given by
i-

f

-
-
n
s

a-
nd

h.

-

s

Yi j ,p
A ~v!5

~v12V!22

A2i 1 j (
s51

p

2s~122dsp!

3 (
a,b51

l 2s

ca
~ l 2s!~ i 2s!cb

~ l 2s!~ j 2s!

3
(k5s11

l Ḡk~v!ca
~ l 2s!~k2s!cb

~ l 2s!~k2s!

v2ea
~ l 2s!2eb

~ l 2s!1 ig
,

p,min$ i , j %, ~B4!

and

Yi j , j
A ~v!5

~v12V!22

A2i 1 j (
s51

j 21

2s (
a,b51

l 2s

ca
~ l 2s!~ i 2s!

3cb
~ l 2s!~ j 2s!

3
(k5s11

l Ḡk~v!ca
~ l 2s!~k2s!cb

~ l 2s!~k2s!

v2ea
~ l 2s!2eb

~ l 2s!1 ig
,

~B5!

and from symmetric excitons

Yi j ,p
S ~v!5

2~v12V!22

3A2i 1 j (
a,b51

l

(
t51

2

t~Qp! t21c̃a
~ t !~ i !

3c̃b
~ t !~ j !

(k51
l Ḡk~v!c̃a

~ t !~k!c̃b
~ t !~k!

v2ea,t2eb,t1 ig
, ~B6!

whereQp51 for pÞ0 (Qp521/2 for p50) implies that
two chromophores belong to the same~different! branch.

Using the results of Sec. II, the two-exciton wave fun
tions are given by Im@Ym̄n̄(vā)#, wherevā denote the peak
positions of the nonlinear signal. Equations~B3!–~B6! con-
stitute then closed-form expressions for the two-exci
wave functions.

Alternatively, the window wave functionM ī j̄ can be
represented by a matrixMi j ,p which has the form

Mi j ,p~v!5~v22V24J!12J~d i ,11d j ,11d i ,l1d j ,l !. ~B7!

APPENDIX C: SYMMETRIC TWO-EXCITON STATES
OF DENDRIMERS

In this Appendix we derive a Hamiltonian for the two
exciton states which are symmetric with respect toGl and
are the only states that contribute in the four-wave mix
signal. We denote the basis setXl

(2) for all two-exciton states
as the set of pairs (ī , j̄ ) with ī Þ j̄ , ī > j̄ . The pairs (ī , j̄ ) and
( j̄ , ī ) for u ī u5u j̄ u should be identical. This results from th
fact that the two-exciton wave functionsC( ī , j̄ ) are symmet-
ric with respect to permutations ofī and j̄ and vanish forī
5 j̄ . We further introduce a set of subsetsAi j ,p,Xl

(2) of the
two-exciton basis set with1, j 51,...,l ; p50,1,...,l 21; p
< j < i , and for i 5 j , p, j . Ai j ,p is defined as a set of pair
( ī , j̄ )PXl

(2) with u ī u5 i , u j̄ u5 j , and u p̄( ī , j̄ )u5p, which
means thatAi j ,p is represented by pairs of chromophor
which belong to the generationsi and j with the intersection
point lying in the generationp. By definition, the subsets



s

-

s

it
rs

e
nt
f
ym

e

cy
ig

am
e

nt

ics
ng

eas

rest-
f
of

he

o-

er

4167J. Chem. Phys., Vol. 111, No. 9, 1 September 1999 Two-exciton states
Ai j ,p do not intersect, i.e.,Ai j ,pùAi 8 j 8,p8ÞB only for i
5 i 8, j 5 j 8, and p5p8 and overXl

(2) , i.e., øAi j ,p5Xl
(2) .

This implies that the space of two-exciton statesWl
(2) can be

decomposed onto a direct sum of the vector spacesWi j ,p
(2)

spanned into the setsAi j ,p :Wl
(2)5 % i jpWi j ,p

(2) . Using this no-
tation, we can describe the symmetric~with respect toGl)
two-exciton states as those states whose wave function
constants within eachAi j ,p . A symmetric two-exciton state
is described by a set of numbersC i j ,p representing the val
ues of the wave functions on the elements ofAi j ,p ,

uC&5(
i jp

C i j ,pCi j ,p (
~ ī , j̄ !PAi j ,p

B
ī

†
B

j̄

†ug&, ~C1!

where the summation overi, j , andp satisfies the restriction
introduced in the definition ofAi j ,p , and the normalization
factorsCi j ,p are such that the states

u i j ,p&[Ci j ,p (
~ ī , j̄ !PAi j ,p

B
ī

†
B

j̄

†ug&, ~C2!

form an orthonormal basis set in the space of symmetric w
respect toGl two-exciton states. The normalization facto
have the formCi j ,p51/Ani j ,p, whereni j ,p was defined by
Eq. ~12!.

The effective HamiltonianHeff for symmetric two-
exciton states can be obtained by projecting the Frenkel
citon Hamiltonian@Eq. ~1!# onto the subspace of releva
states determined by Eq.~A1!. To visualize the structure o
the effective Hamiltonian we decompose the space of s
metric two-exciton statesW0

(2) into the direct sumW0
(2)

5 % p50
l 21 W0,p

(2) , whereW0,p
(2) is generated by the statesu i j ,p&

with the given p and i, j 5p,...,l , i< j ~if i 5 j , then i
Þp). The spaceW0,p

(2) for pÞ0 can be considered as th
space of two-particle states on a linear chain of lengthl 2p
21 with the sitesi 5p,p11,...,l . Two excitations are al-
lowed to reside on the same site except fori 5 j 5p. For p
50 the effective chain of lengthl covers the sitesi 51,...,l
with no restrictions with respect to the double occupan
The effective lattice model is presented schematically in F
12, and is represented by a collection of linear chains par
eterized byp50,1,...,l 21. Both excitations can reside on th
same chain only. The Hamiltonian can be partitioned i

FIG. 12. The effective lattice model for double excitations in dendrim
Collection of linear chains of variable lengthp50,1,...,l 21.
are

h

x-

-

.

.
-

o

intrachain terms which describe the two-particle dynam
within the chains and interchain terms which allow hoppi
of both the excitations onto the nearest-neighbor chains,

Heff5 (
p50

l 21

Hp
~0!1 (

p50

l 22

Hp,p11
~int! . ~C3!

A straightforward calculation yields forHp
(0) ,

Hp
~0!5 (

j 5p12

l

~V2J!Bp, j
† Bp, j1V~Bp,p11

† Bp,p11

1Bp,p
† Bp,p!1 (

j 5p11

l 21

J&~Bp, j 11
† Bp, j

1Bp, j
† Bp, j 11!1J~Bp,p11

† Bp,p1Bp,p
† Bp,p11!,

~C4!

whereasH0
(0) has the form

Hp
~0!5(

j 51

l

~V2J!B0,j
† B0,j1(

j 51

l 21

J&~B0,j 11
† B0,j

1B0,j
† B0,j 11!, ~C5!

where Bp, j (Bp, j
† ) is the annihilation~creation! operator on

the site j in chain of lengthp. They satisfy the following
commutation relations;

@Bp,i ,Bq, j
† #5dpqd i j , for iÞp, j Þq,

@Bp,p ,Bq,q
† #5dpq~12Bp,p

† Bp,p!. ~C6!

Equations~C6! imply that for any chainp the sitesj
5p11,...,l are represented by harmonic oscillators wher
the site j 5p is represented by a two-level system. Thep
50 chain represents a system of bosons with the nea
neighbor hopping, whereas forpÞ0 we have a system o
oscillators coupled to a two-level system. The evaluation
terms Hp,p11

int which represent the coupling between t
chains yields

Hp,p11
~int! 5J (

j 5p12

l

~Bp11,p11
† Bp11,j

† Bp,pBp, j

1Bp,p
† Bp, j

† Bp11,p11Bp11,j !

2J (
j 5p12

l

~Bp11,p11
† Bp11,j

† Bp,p11Bp, j

1Bp,p11
† Bp, j

† Bp11,p11Bp11,j !, ~C7!

H0,1
~int!52J(

j 52

l

~B1,1
† B1,j

† B0,1B0,j1B0,1
† B0,j

† B1,1B1,j !. ~C8!

Equations~C7! and~C8! clearly show that the interchain
hopping processes are allowed for the symmetric tw
exciton states of the dendrimer. A double excitationu i j ,p&,
which occupies the sitesi andj on chainp with i . j , can hop

:
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onto the nearest-neighbor chainsp21 and p11 only if j
5p or j 5p11. The excitationi hops onto the same site o
the neighboring chain, whereas the excitationj hops either
onto the edge site of the neighbor chain or onto the same
~i.e., j!, provided thatj is the edge, or next to the edge, s
on the new chain.

Finally, we compute the total number of symmetric tw
exciton states. The chainp with pÞ0 has@( l 2p11)(l 2p
12)/221#] double excitations which is given by the num
ber of two-particle boson states on the chain of lengthl 2p
11 minus one, since a double excitation on the edge sit
not allowed. Thep50 chain givesl ( l 11)/2 double excita-
tions since all sites are represented by bosons. Summatio
the numbers of double excitations over the chainsp
50,1,...,l 21 yields the overall numberN(2)5 l ( l 214l
11)/6.
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