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Two-exciton states and spectroscopy of phenylacetylene dendrimers
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The two-exciton wave functions of conjugated dendrimers with fractal geometries are calculated
using the Frenkel-exciton model. Self-similarity and the high degree of symmetry make it possible

to express the two-photon spectra of these chromophore aggregates in a compact form using
irreducible representations of optical excitations, single-exciton states, and an effective two-exciton
transition dipole moment. The explicit calculation of the complete manifold of two-exciton states
which involves an expensive®x|® diagonalization,| being number of generations, is totally
avoided. A real space analysis shows that the two-exciton states and resonances are dominated by
periphery chromophores due to their exponentially large numberl19@9 American Institute of
Physics[S0021-960809)00133-§

I. INTRODUCTION
n e
Dendrimers made out of phenylacetylene oligomer seg- " om (1)
ments connected through metasubstitutions of the benzene
ringst~3 constitute an interesting class of conjugated poly-where we label the chromophores by Latin indices with an
mers whose self-similar Cayley tred¢Bethe lattice overbar.Ba(B%) are the annihilatioricreation operators of

geometry~° leads to unusual transport and optical propertiesan excitation localized on the-th chromophore which sat-

H=> QBB+ JmB%Bﬁ—s(t)%: pin( B+ Bm),

(Fig. 1). isfy the commutation relations
Two families of such dendrimers have been synthesized : :
in a search for artificial antenna systems that mimic biologi-  [Br:By]= dam(1—2B;Br), 2
cal energy transfer processe®® compact dendrimers,
which have the same linear urigegmentin all generations, [BF'BE]=[B%,B%]=(B%)2=(Ba)2=0. (3)

and extended dendrimers with varying segment length, _ -

which decreases toward the periphery. This paper focuses dAn represents the electronic transition energy of fhth

the first five members of the compact family depicted in Fig.chromophore.  The Coulomb interaction between chro-

1. The dependence of the absorption spectra on the numbBtoPhores results in the hopping matrix elemehs. Typi--

of generations for these two families suggests that opticafa!V: [9aml<Q7, and the eigenstates of the Frenkel-exciton

excitations are localized on the linear segmérithis con-  Hamiltonian therefore form well-separated manifolds of

jecture has been confirmed by a theoretical stuatich n-exciton statessee Fig. ZWh'Ch. are only_ coupled by _the

showed that optical excitations in dendrimers do not involvedr'v'_ng field s(t)_through_the third te”‘”! in Eq(l). Th's.

charge separation between different segments but merely a'bmp“es that.the linear optical response 1s solely determined

low for coherent energy transféiThese studies lead to the y one—excnon. states \{vhereas mult|ex0|ton states can be
. ) . - . probed by nonlinear optical techniqus.

following picture of electronic excitations: The linear seg-

: : The one-exciton states and the linear response of den-
ments can be considered as effective chromophores whegg, o\ oo caiculated in our earlier warkVe have fur-

th_e elementary excitations reside, whereas the Coulomb coyr.. i died the third-order optical spectra using a method
pling between chromophores causes coherent energy ransiglsea on the exciton scattering matrix which avoids the di-

which can result in the delocalization of excitations over theagonalization of the two-exciton Hamiltoni&hin this paper

entire molecule. Stated differently, the relative motion of a,,¢ study the two-exciton states which dominate the two-
photogenerated electron-hole pair is confined to a singlgnoton absorption and certain four-wave mixing signals of
chromophore(linear segment whereas its center of mass gendrimers. The relevant-level scheme, which includes the
can move across the entire molecule. ground state and two manifolddands of one- and two-
Such excitations, known as Frenkel excitdhs; are  exciton states, is shown in Fig. 2. We use Greek indices with
usually used to describe the optical properties of a variety ofn overbar &) and a tilde &) to label the one-exciton and
systems which can be modeled as collections of couplegvo-exciton states, respectively. The one- and two-exciton
chromophores with nonoverlapping charge distributionsmanifold bandwidths are of the order of the interchro-
e.g., molecular crystafd;** nanostructure¥ J-aggregate$}  mophore coupling) which is much smaller than the transi-
and core light-harvesting antennae complexes such as LHion frequency(). If the detunings of incoming fields, and
and LH2!* The optical response of these systems can b, from the one-exciton band are large compared to its
computed using the Frenkel-exciton Hamiltont8n'2 bandwidth, the signal becomes independent of the detailed
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Linear unit influence of one-exciton resonances. By choosing the polar-
- — L A ization direction of the heterodyne fielé,=&;, and incom-
ing fields,&,=@&,, and averaging over all possible directions
of & and &,, we eliminate the signal's dependence on
v A &\ geometry'®
The two-color four-wave mixing signal is given by
Dl D2 D3 D4 D5 S(w1,0) = IM[ ¥ (~ w01, 0, — w1)]. (4)

zflfﬁelg:rf::ﬁfﬁg ?an:the compact phenylacetylene dendrimers family made | Appendix A, we express the third-order optical sus-
' ceptibility ¥® in terms of the one- and two-exciton eigen-
states¢, andW,. Averaging over orientations &; andé;

properties of one-exciton states. The signal can therefore b@nd evaluating the matrix elements of effective polarization
described by an effective model which only includes theoperatorPY) [see Eq(A5)] by making use of Eq€1)—(3) in
ground state and the two-exciton manifold. Eq. (A3), we obtain

In Sec. Il we express the four-wave mixing signal in
terms of the two-exciton wave functiodis(m,n). These can
be found by diagonalizing the two-exciton Hamiltonian. The
two-exciton states which participate in the four-wave mixing
signal are classified in Appendix C. Fbgenerations, there Here w=w;+w,, () is an average single-exciton energy,
are N®@=|(12+41+1)/6 two-exciton states. To avoid the and
diagonalization of a hughi® x N(®) matrix, we use an indi-
rect method for computing the two-exciton eigenstates baseg. ()= (w—20)>, ¥-(mn)—-2>, ¥-(mmd=  (6)
on comparing the expression for the nonlinear signal in terms mn’ mnk
of the two-exciton states with the one that uses the exciton
scattering matrix. In Sec. Ill we apply this approach to dends an.effe.ctiv.e transition dipole, where the two-exciton wave
drimers. In Sec. IV we present numerical calculations of thdunction is given by
two-exciton wave functions which dominate the two-photon
Zpect\r;)scopy. A brief summary of our results is given in |a>:Z \Ifa(m,ﬁ)B%BHQD_ (7)

ec. V. mn

1
S(o1,02)= o752 B0) oo, ®)

=€)ty

Il. TWO-PHOTON SPECTROSCOPY OF Withgut loss of_generality,\lf_is taken to be. symmetric:
CHROMOPHORE AGGREGATES Wa(m,n) =¥z(n,m), andW¥e(m m)=0. Equationd5)—~(7)
represent the signal as a sum of resonances whose positions
In our previous work? the nonlinear signal which does correspond to the two-exciton state energies, whereas the
not depend on dendrimer geometry has been computed UsiRgfective oscillator strengthd?(wy) are determined by the
the exciton scattering matrix approach. To interpret the Sigyyo-exciton wave function®’-.
nal in terms of the two-exciton states we first express the Equations(5) and (6) express the signal for any aggre-
signal in terms of the two-exciton wave functiods, . _ gate described by the Frenkel-exciton Hamiltonian in terms
To avoid interference between one- and two-excitonpf the two-exciton wave functions. The two-exciton states
resonances and minimize the dependence of the signal Qpnich dominate the signal can be computed by diagonalizing
dendrimer geometry, we follow Ref. 15 and consider ae two-exciton Hamiltonian derived in Appendix C and ap-
frgquency-domam two-color hetero_dyne _detected four—wav%wmg Egs.(5) and(6). However, this numerically expensive
mixing signal generated by three incoming beaks ka,  procedure can be avoided, similar to how the nonlinear op-
andks with ws=w, with polarizationse,,&;,&; in the di-  {jca| response is expressed in terms of the frequency-
rection ks=k;+k,—ks. Tuning o, and w, to be off- yo00nqent exciton scattering matfiXw), avoiding the ex-
resonant with respect to the one-exciton manifold wh|lepIiCit computation of the two-exciton stat&s1 To express

keepingw; + w, on resonance'wnh the two-exciton papd al- the two-exciton states in terms of the exciton scattering ma-
lows us to study the two-exciton states alone, avoiding th?rix we introduce the two-exciton variables

NI;I-I — I&) (¥s) me)Zf drexpiwn)(Bm(7)Br(7)). (8)
_ HereB(7) is the Heisenberg operator in the optically driven
N o) (Dg) system to first order in the field. It can be calculated in two
ways. First, it can be expanded in terms of the two-exciton

|O> wave functions using a standard procedtfralternatively,

Ymn(w) can be computed using the scattering matrix ap-

FIG. 2. Manifolds of one- and two-exciton states in phenylacetylene denProach. C_omparing the two expressions‘f’gf(ﬁ(w) _provides
drimers. a convenient method to compute two-exciton eigenstates.
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In Appendix A we show that two-exciton coherentg,
is proportional to two-exciton wave functiobi_(im,n) pro-
vided the two-exciton dephasing rajeis smaller than the
spacing between the two-exciton levels,

(,L)]__Q)

2
V(M= ”dT Im[Y (w7, ©

whereY;is given by(B2).

We have employed Ed9) to calculate¥(im,n) using
the following steps. We first compute the signal at high reso-
lution, e.g.,y— 0. [For this, we use the frequency-dependent
exciton scattering matriX'; and one-exciton wave func-
tions and energies from Eq&4) and (29) in Ref. 15. We
then calculate Ifi¥;(w)] from Egs. (B3)—(B6) by using
I'yy and the one-exciton states for those frequencies, which
correspond to the strongest resonanceS(af; ,w,), €.g., at
w1+ w,=wy. This yields the wave functions of the two- FIG. 3. Dual Bethe lattice with triangular cycles representing nearest-
exciton states which dominate the signal. As the dephasinggighbor interactions.
rate is increased, the peaks are no longer resolved, and
Ymn(w) at the peak values ab represent the superpositions
of the several two-exciton wave functions which can be conexciton states.The high symmetry made it possible to de-
sidered as the relevant collective variables. termine all one-exciton states, thereby mapping the calcula-

We conclude the section by establishing a relation whichijon of one-exciton states in a dendrimer witlgenerations
allows us to interpret the signal in terms ¥f;(w). It fol-  (DI) onto a much simpler effective linear-chain problem with
lows from Egs(5), (6), and(B1) that the signal can be recast chain length not exceeding The two-photon spectra have
in a doorway—window representation in real space, been calculated as wéllby applying the exciton-scattering

1 picture of the nonlinear optical responi$é® The scattering
—22 IMMmn(@)Yen(w)]. (10 matrixF(w) was represented in terms of components related
(01=Q)"fm to irreducible re i i

presentations of the dendrimer symmetry

HereY serves as a doorway created by the incoming fieldsgroup G,. Computation of the exciton scattering matrix is

S(wlva) =

and the window function is reduced to inverting of x| matrices:
The expression for the two-exciton wave functidis).
Mi(@)=(0—2Q—iy)— > (It Ir). (11 (9] involves the scattering matrix and the one-exciton wave
k functions[Eq. (B2)]. All one-exciton states in dendrimers are

Along with Eq. (9) this implies that the contribution of each partitioned into two classes: antisymmetric and symmaétric.

pair of chromophores to a given resonance is equal to thghe antisymmetric excitons are classified by their length
values of the corresponding wave functioffo(mn) — L2.--1—1 and the quantum ?umberz 1,...5. They are

weighted by the window functioM —( ). qharacterlzed by their energle‘gf and auxme_lry wave func-

tions ¢{¥(m) with m=1,...s. The symmetric excitons are
classified by the quantum numbers-1,...) andt=1,2,3 as

well as characterized by the energigs; and auxiliary wave

functions {"(m), with m=1,...]. Expressions fore!®,

In this section we apply the approach of Sec. Il to com-€a¢. #(m), andy{)(m) are given in Ref. 5.
pute the two-exciton wave functions which dominate the  Following Refs. 5 and 15, we denote the set of chro-
four-wave mixing and the pump—probe signals in compactnophores(linear segmenisfor a compact dendrimeD! by
phenylacetylene dendrimers. X, and the symmetry group b,. We reiterate that the

The dendrimer is modeled as an assembly of coupleghromophoresne X; are denoted with overbarred Latin in-
two-level chromophores, each representing a linear segmerstices. It follows from Eq(6) that the effective dipole opera-
Only nearest-neighbor coupling, i.e., between segment®rd;(w) of a two-exciton stater is obtained by calculating
which are attached to the same phenyl ring, is important. Théhe overlap of its wave function with the window function
nearest-neighbor approximation produces the coupling paMmn [EQ. (11)]. Since the window function is symmetric
tern represented by the dual Bethe lattices shown in Fig. 3vith respect to the dendrimer symmetry gro@, only
The absolute magnitude of the coupling is the same for althose two-exciton states which are symmetric with respect to
nearest neighborkl|=67 cm !; the signs of the coupling G contribute to the signal. This implies th¥f(w) is sym-
constants are given by the following ruld>0(J<0) for ~ metric as well.
two chromophores of the santeifferent generatior. The two-exciton quantitiele.g.,Yir(w)] which are sym-

In our earlier work we have related the linear optical metric with respect td3, can be conveniently described by
response of compact dendrimers to the properties of oneantroducing the intersection pointp(i,j), of the chro-

Ill. THE TWO-EXCITON STATES



J. Chem. Phys., Vol. 111, No. 9, 1 September 1999 Two-exciton states 4161

p=0

p=1

p=2

FIG. 4. Definition of the intersection poirE(Tj) of the chromophore’;

andj. p is the first intersection of the unique paths leading fioand| to
the center. Any symmetric two-exciton quantity, eXj;;, can be labelled

by [il, [i[, and[p(i,j)I.
p=3

mophoresi and j, defined as follows. On a Bethe lattice,
which can be obtained from dual Bethe lattidég. 3) by
eliminating the connections within the same generations,
there is a unique path from each chromophore to the center.

For two chromophores andj we definep(i,j) to be the
first chromophore where the two pathsicdindj intersect as
shown in Fig. 4. If the two paths do not intersect, we [get
=0. Yij can thus be parameterized by a three-index matrix
Yij p. Wherei=|i|, j=|j|, andp=|[p(i,j)|. |m| denotes the
generation number whera resides in the dendrimer. Stated
differently, the matrix elements of the symmetric matrix are
equal, Yij=Yi/j, provided |i|=[i'[, |j|=]j'], and p
=p’. Yjj,p describesn;; , equivalent chromophore pairs
(i,j) where the degeneracy factarg , are given by

p=4

_ P+ _ 2i-1
nij’0—3-2'“, Nij o=3-2777, FIG. 5. Degeneracy factors;; , [Eq. (12)] for equivalent chromophore
L ’ pairs (i,j) of D6.
n p=3-220"V7P n; . =3.2, (12)
N p=3-2"117P71 0<p=min{i,j}.

These quantities are plotted in Fig. 5. We observe that dgl the next section we use this equation to analyze the vari-
generacy increases exponentially toward the periphery. ~ OUS contributions from distinct chromophores to the signal.
Yij p(w) can be obtained starting with EB2), which
can be simplified considerably by utilizing the symmetry.
The firstT () enters Eq(B2) through the combinations

Sil'mn(w); the latter only depends om| and is given by The computed two-photon absorpti®&w; ,w,) is plot-

I' (w) with m=|m|. I',(w) has been computed in Ref. 15. ted in Fig. 6 as a function of the sum-frequency detuning
Using Egs.(12) and (B3)—(B7), we finally recast Eq. from the two-exciton resonancéy = w;+ w,—2() with

(10) in the form one-exciton dephasing rate=3 cm L. The five strongest

two-exciton resonances irD6 appear atAw=~—105,

—35,120,340,420 cit. The absorption signal saturates with

the number of generations, and the low-resolution spectra

(y~15cm}) of D5 andD6 shown in Fig. 7 are virtually

identical. Hereafter we focus dD6.

As seen from Eq(9), the imaginary part of two-exciton co- The entire two-exciton wave functioWr(ij,p) for the

herence ImYj; ) determines two-exciton wave function strongest A w~120 cm ) resonance is displayed in Fig.

W(ij,p) wheny—0. The overlap ofY;; , with the window  8(a). The wave function has both positive and negative val-

function Mj; , [Eg. (13)] determines the two-photon signal. ues. These are displayed separately in the left and the right

IV. NUMERICAL CALCULATIONS

1
S(wy,wp)= m% Mij.p

X |m[Mij’p(w1+ wz)Yij'p(wl-i— wz)]. (13)
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FIG. 6. Calculated two-photon spectra@®-D6 with two-exciton dephas-
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Chernyak et al.

have a common origin at least one generation bekee Fig.
4). Also note the symmetrf _(ij ,p) =V 5(ji,p).

Our calculations reveal that the strongest element
W_(ij,p) appears in general for periphery chromophores
within the same branch, that isj—I| andp+ 0. We further
note thatW,(ii,i—1)=0 for i>1 due to the following se-
lection rule: Im{Y;; ;_1)=0 for i>1. This describes the situa-
tion when two chromophores are the closest nearest neigh-
bors in the same generatigexcept when they belong to
different branches

Figure 8b) displays the wave function for the two-
exciton band edge, i.e., the lowdsdiark state atAw~—260
cm L. This wave function is dominated by a single element
WV(44,3)=—-5.45, and is much more localized than the
bright state at\ w~120 cnmi * displayed in Fig. &).

In order to show which parts of the molecule contribute
to the Aw~120cm* resonance we display the product
nijp IM(Mj; 5 i o) in Fig. 9 using the same format of Fig. 8.
(The statistical weightsy; , of the distinct chromophore
pairs are shown in Fig. bThe sum of these producf&q.
(13)] gives the signal. The dominant contribution comes
from periphery chromophore paifgi,j)=1—1] and the
pairs located between the center and the periphery
(1<(i,j)<l—=1) due to their exponentially large number
[see Egs(12)]. The varying sign of the wave function leads
to a huge cancelation between positiffeft column and
negative(right column contributions to the signal. Its mag-
nitude is only 2%—-5% of the positive or negative parts as
shown in Fig. 10. As seen from E@L2), there are totaN
=127 distinct chromophore pairsvith different n;; ) but
only 67 are differenfdue to the symmetry in interchangiing

resent two chromophores of the same branch which mugndj indices in(ij,p) basid. Each panel in Fig. 10 corre-

60
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FIG. 7. Same as in Fig. 6 except that the dephasing raje-i$5 cm 2.

D2 |
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i D5 |
- o

M

0—400 —300—-200-100 0
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sponds to one of the resonances of Fig. 6. We have ordered
the positive and negative contributions separately in decreas-
ing absolute magnitude. The figure displays the cumulative
positive, negative contributions and their sum. ThAe
~420, 340, and—35 cm ! peaks converge aiN~80
whereas theA w~120—-105cm ! resonances converge at
N~20.

To further characterize the two-exciton wave functions
we have computed three quantities, inverse participation ra-
tio, average generation number, and the average distance be-
tween two distinct chromophores, which are plotted in Fig.
11.

To gauge the degree of localization of two-exciton
states, we introduce the inverse participation rafio;*°

_ Zﬁ>ﬂq’3(maﬁ)|2
Pa) = S

(14)
which using normalizedV'(m,n) and Eq.(9), can be also

recast in the form

2(ZijpNij plIM(Yij )22
Siiphij el MY )|

(Pa)= (15
(Pz)=k indicates that the two-exciton wave function
W (m,n) is delocalized ovek chromophore pairs. The maxi-
mum value(Pz)=P,=N(N—1)/2 whereN=3(2'-1) is
the total number of chromophores 1.5 (P =17 766 in
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Y >0
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FIG. 8. (a) Two-exciton wave function?’(m,n) for D6 plotted in the basigij,p) for the major peak and the lowest energy stateS@bh, ,w,) in Fig. 6
calculated with the shifA w=w;+ w,—2Q =120 cm %, The left(right) column representd >0(¥ <0). Each raw corresponds to differgm=0 (top) and
p="5 (bottom), i andj are the axes in the-y plane.(b) same aga) but for the lowest two-exciton state withw=—260 cn™.

D6.) The minimum valueP,,,=1 corresponds to the local- Figure 11 shows that the average generation number varies
ization of the two-exciton state on a single chromophore paiPetween 3 and 5, which means that both the periphery chro-
(N=2). mophores and the intermediate chromophaj@aced be-

In Fig. 11 (second panel from the tppwe display the tween periphery. and the.dendrim.er cehtemntripute most
inverse participation ratio for the two-photon resonances. Al§trongly to the signal. This behavior can be rationalized us-
the two-exciton states are clearly localized. The maximunind Fig. 9: The number of periphery chromophores grows
localization with (P5)~304 is of the major peak oA exponentially compared to the center chromophores, and
=120cm’L, so that the excitation is distributed on about therefore the former dominate the two-exciton spectrum.

seven distinct chromophore pairs. The maximyiR;) To quantify the relative motion of excitons in two-
~8580 on the band edgkw=480cm ! is still two times ~ €Xciton states, we mtrgduce the average distance between
smaller thanP,,,, . The figure shows that more delocalized two chromophores andj. This can be expressed in terms of
states(with higher P;) appear at the red band edge. Two- their generation numbers and generation number of the
exciton localization is different from the behavior of one- branch origin to which both the chromophores belong,
exciton states, which tend to be delocalized on both band
edges’ i+j—2p i+

To analyze the signal’'s dependence on molecular con- fij,f?, fij,o=7+1. (17
nectivity, we plot the average generation number in Fig. 11.

This number{iz)= > m=n |M||¥4(m,n)|?, is written using  Upon averaging of Eq(17), we obtain
Eq.(9),

_ SiioFii oM ol IM(Yii o)|?
Ry= S W~ (fim)|2=—up_iLp7i.p ij.p
< a> ﬁz>ﬁ nm| a( _)| Eijpnijyp||m(Yij’p)|2

(i=)= Eijpinij’p|lm(Yij’p)|2
S pl MY )]

(16)
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1<0 Im [n
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Im [n, MY, 1>0 Im [N, MY, ip i L iip
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p=0

p:

p=3
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FIG. 9. Contributions to the two-photon resonanced¥6r. Imaginary part of §;; ;M;; ,Yi; ) is plotted forAw=120 cm 1 [Fig. 9a)] andAw=—260 cm!
[Fig. 9(b)]. The plots are organized in the same way as in Fig. 8.

The bottom panel in Fig. 11 shows tha&{R3;)<4 in gen-  dimension withl being number of generations. To avoid the
eral, but I=(R3)<2 for the major absorption peaks in Fig. expensive direct diagonalization of the two-exciton Hamil-
6. This indicates that the main contributions to the signakonian and to obtain information on the relevant two-exciton
come from nearest-neighbor chromophores, and the twostates, we have related the two-exciton wave functions
exciton coherence contributing to the signal is short range. ¥—(m,n) to the two-exciton coherencé(w) at the reso-
nance frequencies. The latter may be expressed in terms of

V. SUMMARY the exciton scattering matrﬁmm, thus, relating the two-

chiton wave functions tfﬁﬁ(w). The two-exciton states

In this paper we have investigated the two-exciton states” ™ . N >
which dominate the frequency-domain two-color four-waveWh'Ch participate in signal by symmetry have been classified
and mapped onto an effective model of a linear-chain sys-

mixing signal in compact dendrimers, computed in our ear- ) ;
lier work X® When both incoming frequencies are tuned off-©€M- The overall number of such statesN&)=1(17+4|
resonant with respect to the one-exciton manifold, keeping*l)/G-

the frequency sum on resonance with the two-exciton band, Focusing on the five strongest resonances in the two-
the signal can be expressed in terms of two-exciton stategolor four-wave mixing signal we have calculated the two-
alone. This applies for a general Frenkel-exciton system. AveXciton coherences that completely describe their two-
eraging over the orientations of mixed waves with specifi-€xciton wave functiorisee Egs.(9) and (B3)—(B6)]. The
cally chosen polarizations leads to a signal which does nogpecial choice of the field polarizations in the four-wave
depend on dipole orientations and reflects the exciton dymixing allows us to obtain this information irrespective of
namics alone. The effective two-exciton dipalg(w) which  the chromophorglinear uniy orientation in space, which is
characterizes the two-exciton state contributions to the signalomplex in dendrimers with large The signal depends en-
was expressed in terms of the two-exciton wave functionstirely on the segment’'s connectivity and internal chro-
The latter does not require the two-exciton states, and itmophore interactions and is dominated by periphery chro-
calculation only involves matrices no larger than thel mophores.
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FIG. 10. Convergence of door—window representatign, Im(M;; ,Yj; ;) to
the nonlinear signafsolid lineg as a function of number of distinct chro- FIG. 11. Signal dependence 6. From top to bottom: The high-resolution
mophore pairs. The dashedotted lines represent the separate positive signal, the inverse participation rati¢B), the average generation number
(negative contributions to the signal. The five panéfeom top to bottom (iz), and the average distance between chromophore {Rifs
are given for the resonances =420, 340, 120,-35, —105 cn' %,
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band (w;+ w,~2Q is resonant with the two-exciton mani-
fold). We can setw;—ez+iy2~w;—Q, w,—ez+iy/2

, . .. ~—(w,—Q) in the denominator of the resulting expression.
Below we express the third-order optical susceptibility Equation(Al) then assumes the form

% in terms of the one- and two-exciton eigenstaesand
¥ using the standard sum-over-states expressidssum- 1

ing that the detunings ob; and w, from the one-exciton Im[ x®]= mz d¥(w)dP(w)
manifold are large compared to the exciton bandwidth but 1 @

APPENDIX A: THIRD-ORDER SUSCEPTIBILITY OF
CHROMOPHORE AGGREGATES

small compared to the transition frequency, we can invoke Y
the rotating-wave approximation. This yields Xm, (A3)
(23

)((3)(—(02;(01,0)2,—(1)1)

_ 2 (g|P- é3|E><E| P- é3|;’><;’| P-&a)(alP-&|g)

wherevy is the two-exciton dephasing rate= w,+ w,, and

= PRYEp———p dY(@)=(@[P(w)|g) (A4)
1 1 is the matrix element of an effective polarization operator
w,—e+iy2 + wy,—e5+iy/2 which directly connects the ground state and the two-exciton
manifold. d%) are real since the one-exciton wave functions
% f 4 } _ } (A1) are reaf The effective polarization operator has the form
w1—eg—iY2 wy—egtiyl2

where polarization operatd? is P(w)=P-&(w—2H)P-&. (A5)
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APPENDIX B: TWO-EXCITON COHERENCE AND THE (w,— —2 p
TWO-EXCITON WAVE FUNCTION i (@)= 2|+ SZ, 25(1—235))

In this Appendix we relate two-exciton states with two- s
exciton variableY 7 for an arbitrary aggregate described by % E (1-9)( —g) ]~ (i-s)
the Frenkel-exciton model. To that end we evalugig(w) alfe1 Va Vs
for the system driven by two monochromatic fields in two . .
ways. ksl @) Tk s)yp ke s

The first procedure is based on the sum-over-states simi- w—el -l Iy
lar to that of the signal presented in Sec[dée Eqs(5) and °#
(6)], and yields forY+ averaged over the polarization direc- p<min{i,j}, (B4)
tions, and

1 (01— 72 S
- S4(e— v (0)= =2 2° 2 Wy -9
Yim(©)= o= g7 2 Ga(0) (o= oy, Va(m), v R
By XUy =)
where ¥(m,n) is given by Eq.(7), w=w;+w,, and a Ek o1 k(w)l/f(l S (k— 5)¢<' S(k—s)
numerical factor given by the product of the amplitudes of (| SHE | B ,
. . w— +iy

the waves is omitted.

Ymn may be alternatively obtained by solving the equa- (B5)

tion of motion for one- and two-exciton variables and ex-

and from symmetric excitons
pressing the solution in terms of the one- and two-exciton

Green functions, followed by representing the latter in terms s 2(w,— Q)72 2 i 10
of I' using the Bethe—Salpeter equatf@rihis yields Yiple)= — 32777 W1 S Qp) o (1)
~ 0, ke @) PR P (k)
(t),; k=1% k a B
Yin(w)= (w1 2;, T Xihg'(]) PP (B6)
() () where Q,=1 for p#0 (Qp=—1/2 for p=0) implies that
XE a—ﬁl(ﬁ%m)(ﬁg(ﬁ)’ (B2) two chromophores belong to the saffdéferent branch.
ap W€ €pTly Using the results of Sec. Il, the two-exciton wave func-
tions are given by IfYy(wg)], where oy denote the peak
where ¢(m) are the one-exciton wave functions. positions of the nonlinear signal. Equatiofi3)—(B6) con-

By comparing the two expressions fdi(w), one can stitute then closed-form expressions for the two-exciton

express the two-exciton wave function in termslofEqua-  Wave functions. _ o

tion (B1) gives Y(w) in a form of a sum over resonances.  Alternatively, the window wave functioMij can be

When the dephasing ratgis smaller than the spacing be- réPresented by a matrid;; , which has the form

tween the two-exciton levels, the resonances are well sepay, (@)= (0—2Q—43)+23(5 1+ 81+ 8 1+ 8;1). (BY)
ij,p i1 j,1 il j,l

rated. Provided the two-exciton states are nondegenerate, and

combining Eq.(B1) with Egs. (5) and (6), we obtain EQ. - AppENDIX C: SYMMETRIC TWO-EXCITON STATES

(B2). It implies that ImY;(w)] gives the two-exciton wave of DENDRIMERS

function ¥(m,n) up to a numerical factor.

Below we apply the general expression for two-exciton  In this Appendix we derive a Hamiltonian for the two-
coherence using the one-exciton stdteg. (B2)] to the den-  exciton states which are symmetric with respectGjoand
drimers. It follows from the symmetry of one-exciton statesare the only states that contribute in the four-wave mixing
that the nonzero contributions to the sum owemnd g in  signal. We denote the basis 96'?) for all two-exciton states
Eqg. (B2) come from pairs of excitons which are either both as the set of pairsi si(j) with i #, i =]j. The pairs (,j) and
symmetr_lc or both ant|s_ymmetr|c and have_the same _Iengtm i) for |i|=]j| should be identical. This results from the
Expressing the one-exciton wave functiapigin Eq.(B2) in - fact that the two-exciton wave functloﬂs(l j) are symmet-
terms qf linear-chain wave functiong, (by using transfpr- rlc with respect to permutations ofandj and vanish for
mation in Ref. 3, we could separate symmetric and antisym- We furth irod t of subset X of th
metric terms following the steps of Ref. 15, _]' € further |.n roduce a set of subs fpC X o the

two-exciton basis set witd, j=1,...J; p=0,1,..1-1; p

A <j=i, and fori=j, p<j. A;; , is defined as a set of pairs
Yij p(@) =Y p(@) + Y p(w), B3 [T ex® with [i]=i, [j]=j, and [p(i,j)|=p, which
means thatA;; , is represented by pairs of chromophores
where the contributions from pairs of antisymmetric excitonswhich belong to the generationsndj with the intersection
are given by point lying in the generatiom. By definition, the subsets
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&9 p=i1 intrachain terms which describe the two-particle dynamics
® o o 12 within the chains and interchain terms which allow hopping
of both the excitations onto the nearest-neighbor chains,

I-1

2 HO + Z H™ (C3)
Q) o o o * p=3 eﬁ
*r——e9 - O—0—9 1= A straightforward calculation yields fad (%
.—.—.—. e o o .—.—. p=1 |
g *+ ¢+ ¢+ G———@——@ p=0 (0) — -nel B.. T
P Hp .:E” (Q ‘])BPYJBD,J+Q(Bp,p+pr,p+1
1 2 3 4 L2 Mg I=r
-1

FIG. 12. The effective lattice model for double excitations in dendrimer: + +
Collection of linear chains of variable lengfh=0,1,...| — 1. + Bp,po,p) +j=%1 ‘J‘/?(Bp,j +1pri

+B;.JBDJH)+‘](B;p+1Bp,p+B;.po,pH)’

,J p do not intersect, i.e.Ajj, pﬁAI 1jrpr D only fog i (C4)
—i", j=j', andp=p’ and overx(?, i.e., UA; ;=X -
This implies that the space of two-exciton stemiﬁ ) can be WhereasHy” has the form
decomposed onto a direct sum of the vector sp | -
spanned into the sefs; ,:W(?=a;,W{),. Using this no- o _ +
tation, we can describe the symmetfigith respect toG,) Hp ,Z (Q-J)B} BOJ+;1 IV2(Bo+1Bo;
two-exciton states as those states whose wave functions are
constants within each; ,. A symmetric two-exciton state +Bg;Boj+1), (CH
is described by a set of numbets; , representing the val-

_ where B, (B! ) is the annihilation(creation operator on
ues of the wave functions on the elementspgf,, pi(Bp.) ( D op

the sitej in chain of lengthp. They satisfy the following
commutation relations;
Tt
¥)=3 ¥y ,Cip S BIBll0), € T o
(IJ)EA”p [Bp,iqu,j]:épqéijv for |7&p,]7&q,
where the summation ovérj, andp satisfies the restrictions ; ;
introduced in the definition of;; ,, and the normalization [Bp.p Bg.gl= pg(1—Bp pBp.p)- (C6)

factorsC;j p are such that the states Equations(C6) imply that for any chainp the sites;

=p+1,...] are represented by harmonic oscillators whereas
li] P)=Cij » 2 B%Hg% (C2) the sitej=p is represented by a two-level system. Tjne
(i) eAijp ! =0 chain represents a system of bosons with the nearest-

form an orthonormal basis set in the space of symmetric Wltﬁ‘elghbor hopping, whereas f@#0 we have a system of
oscillators coupled to a two-level system. The evaluation of

respect toG, two-exciton states. The normalization factors int

a : terms H,', ., which represent the coupling between the
have the formC;; ,=1/\/n;; ,, wheren;; , was defined by : p.p

I.p I 1.p chains yields
Eq. (12).
The effective HamiltonianHy; for symmetric two- |
exciton states can be obtained by projecting the Frenkel ex- H(.m) _ J E (B! Bt Bp.oBp.
citon Hamiltonian[Eq. (1)] onto the subspace of relevant P.pH1 prLlp+l=p+ij
states determined by E¢AL). To visualize the structure of ;
the effective Hamiltonian we decompose the space of sym- +B,, po iBp+1p+1Bp+1j)
metric two-exciton statesV?) into the direct sumw?
— =1\ /(2) (2) ”
=@, oWop, WhereWs is generated by the statgs§,p) —J Bt BI . B B
with the givenp andi, j=p,...|, i<j (f i=j, theni i 2 (Bp+1p+1Bp+1iBpp+1By,
#p). The space\Ngz) for p#0 can be considered as the
iclo i , +B! . .BI B Bpi1i) (C7)

space of two-particle states on a linear chain of lergtip p.p+1Pp jPp+1p+1Pp+1j)s
—1 with the sitesi=p,p+1,...]. Two excitations are al-
lowed to reside on the same site exceptiferj=p. Forp i ;
=0 the effective chain of lengthcovers the sites=1,...) Ho1 = JE (B]1B];Bo,1Bo,;+ B} 1By;B11B1j). (C8
with no restrictions with respect to the double occupancy.
The effective lattice model is presented schematically in Fig.  EquationgC7) and(C8) clearly show that the interchain
12, and is represented by a collection of linear chains parantiopping processes are allowed for the symmetric two-
eterized byp=0,1,...| — 1. Both excitations can reside on the exciton states of the dendrimer. A double excitatignp),
same chain only. The Hamiltonian can be partitioned intowhich occupies the sitésandj on chainp with i >j, can hop
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