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The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box
and developed for efficient calculations of excited-state electronic structure and optical spectra in low-
dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular
structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside
on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively.
Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton
scattering at the branching centers is determined by the energy-dependent scattering matrices. Using
these ES energetic parameters, the excitation energies are then found by solving a set of generalized ‘‘par-
ticle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent
ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing
optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-
chemical computations in small molecular fragments and tabulated in the ES library for further
applications. Subsequently, spectroscopic modeling for any macrostructure within a considered
molecular family could be performed with negligible numerical effort. We demonstrate the ES method
application to molecular families of branched conjugated phenylacetylenes and ladder poly-
para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-
dependent density functional theory (TD-DFT) is used as a reference model for electronic structure.
The ES calculations accurately reproduce the optical spectra compared to the reference quantum
chemistry results, and make possible to predict spectra of complex macromolecules, where conventional
electronic structure calculations are unfeasible.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction: the ES concept

Organic conjugated materials have attracted considerable
attention for their technological advantages, interesting photo-
physical and photochemical properties, low cost, light weight, flex-
ibility, and convenience of solution-based processing techniques
[1–8]. The remarkable electronic and optical properties of conju-
gated molecules are attributed to delocalized p�electron systems
that reside on the quasi-one-dimensional molecular backbones,
which can be constructed and tuned synthetically [9–13]. There-
fore, synthetic design of conjugated molecular structures targeting
specific optoelectronic properties, requires theoretical understand-
ing and numerical modeling of their electronic excitations. How-
ever, the excited state electronic structure of conjugated
molecules is complex due to their low dimensionality, strong elec-
tronic correlations and significant electron–phonon coupling [14–
17]. Only a few quantum-chemical methodologies that are capable
of adequate accounting for electron exchange and correlations, can
be applied to serve the above purpose [18–20]. Alas, even numer-
ically efficient methods that satisfy the above requirements (such
as time-dependent density functional theory, TD-DFT [21]), are
prohibitively expensive for the excited states computations of
large systems, due to the unfavorable scaling of the numerical cost
[OðN2Þ � OðN5Þ;N with being the number of electron orbitals] [22–
24]. On the other hand, even large conjugated structures consist of
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a limited number of elementary molecular blocks [2,11]. This
opens an opportunity to apply a multiscale concept for efficient
description of electronic excitations in a macromolecule by first
characterizing the excited states of each building block followed
by expressing the electronic properties of the entire structure in
terms of the building block data. The exciton scattering (ES)
approach [16,25] accomplishes this goal by introducing a rigorous
algorithm based on quasi-particle description of electronic
excitations.

Indeed, previous studies in the 1990s interpreted excited elec-
tronic states in quasi-one-dimensional organic semiconductors as
bound electron–hole pairs (excitons) with an emphasis on the rel-
ative motion of electrons and holes [26,27]. Consequently, a simple
and intuitive picture of optical responses emerged from a real-
space analysis of the single-electron transition density matrices
defined as

ðnmÞnm ¼ hmjcyncmjgi: ð1Þ
Here, jgi (jmi) denotes the ground (excited) state many-electron

wavefunction, cyn (cm) is the Fermi creation (annihilation) operator
of the nth (mth) atomic orbital. Subsequent investigations on elec-
tron energy loss spectroscopy (EELS) in linear conjugated oligo-
mers [28,29] revealed an importance of the ‘‘center-of-mass”
exciton motion related to the diagonal direction in the transition
density matrix (Eq. (1)), in contrast to the off-diagonal pattern
characterizing the exciton type.
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Fig. 1. Illustration of the ES approach. (a) structure of a conjugated molecule; (b) excito
phenylacetylene (PA) molecules; (d) linear PA molecule consists of 10 repeat units; (e) e
from ground state to excited state in the molecule shown in (d).
The concept of the ES method first formulated in Ref. [16] attri-
butes a branched conjugated macromolecule (e.g., Fig. 1a) to a
graph (Fig. 1b), whose edges and nodes represent the linear seg-
ments (composed of the repeat units) and molecular vertices
(Fig. 1c), respectively. Exciton motions on such graph form plane
waves that scatter at branching centers, joints, and molecular ter-
mini. Here both electron and hole move together, and a typical dis-
tance between these particles (exciton size) le can be quantified as
the off-diagonal extent of the transition density matrices (see con-
tour plots in Fig. 1e). In the simplest case of a perfect infinite linear
chain, the exciton quasimomentum k is a well-defined quantum
number that reflects translational symmetry. Therefore, all elec-
tronic excitations can be characterized by the dispersion relation
xðkÞ, which connects the exciton frequency (energy) x to its
momentum. In finite oligomers, electronic states become discrete,
and each state features a characteristic standing wave structure in
the diagonal direction of the transition density matrix. For exam-
ple, the contour plots of the latter in Fig. 1e correspond to the low-
est five excitations in a linear molecule P10 (Fig. 1d). This standing
wave pattern is observed in all conjugated macrostructures (e.g.,
Fig. 1a), where the exciton size le is small compared to the typical
linear segment length L. Therefore, the proposed quasiparticle rep-
resentation, which is asymptotically exact in the long segment
L � le limit, is expected to be adequate. Exciton scattering at
branching centers and molecular termini are further described
using frequency-dependent n� n scattering matrices CðnÞðxÞ; n
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denoting the vertex degree. These quantities can be viewed as gen-
eralized boundary conditions that represent the relevant micro-
scopic properties of the building blocks, rather than introduced
purely phenomenologically [30,31]. Matrices CðnÞðxÞ and the
exciton dispersion xðkÞ fully determine the exciton motion.
Consequently, finding the excited states in a molecule is equivalent
to solving a generalized spectral problem for a particle in a
quasi-one-dimensional box, which is a 2N � 2N linear system
for the plane wave amplitudes (two per segment), N being the
number of linear segments in the molecule under consideration
[30,31,25].

All ES parameters described above can be obtained using tradi-
tional ‘‘reference” quantum-chemical excited states calculations in
relatively simple molecular fragments associated with the building
blocks of the original superstructure [30–32,25,33]. Previously,
applications of the ES approach has been made to a variety of
molecular systems. For example, the exciton spectra kðxÞ have
been extracted for phenylacetylene (PA) oligomers and donor–
acceptor molecules [25,31,32,34]. Furthermore, the scattering
matrices of symmetric double, triple, and quadruple joints have
been retrieved by utilizing their geometrical symmetries [33]. To
model molecular optical spectra, a technique for the transition
dipole calculations within the ES framework has been developed
[35,36,34]. It requires the dipolar (optical) ES parameters, transi-
tion charge qðxÞ and transition dipole dðxÞ, which can also be
retrieved from quantum-chemical computations in molecules
(fragments) of moderate size. As reference quantum-chemical
methodologies, we have been using both semiempirical and
ab initio techniques. The former applications [32,33,35,34] were
based on the Collective Electronic Oscillator (CEO) method, which
uses the Time-Dependent Hartree–Fock (TDHF) approach
combined with the semiempirical Hamiltonians [27,17]. The latter
applications [25,36] relied on TD-DFT electronic structure
approach [21,37]. Overall, all these studies have shown excellent
agreement for the excitation energies and optical spectra by
comparing the results obtained using the ES method with the full
reference quantum-chemical computations. Thus, the ES approach
can be readily applied for a broad variety of macromolecular sys-
tems as an extension of the currently available quantum-chemical
methods for excited state calculations.

In this article we summarize development of the ES theoretical
framework and demonstrate applications of this technique to
several molecular systems, using modern TD-DFT as a reference
electronic structure method for excited state calculations in small
molecular fragments. The manuscript is organized as follows:
Section 2 introduces the main ES equations for electronic transition
energies and dipole moments. Section 3 describes the ES parame-
ters extraction techniques illustrated by calculations in representa-
tive molecular systems. After tabulating the scattering matrices of
molecular building blocks, we demonstrate application of the ES
method to computation of vertical absorption spectra in large con-
jugated macromolecules.
2. The ES formalism

Commonly used quantum-chemical calculations of molecular
excited states [37] provide electronic transition energies xm and
the corresponding transition density matrices nm (Eq. (1)). The
transition dipole moments lm between the ground and excited
states are further evaluated using the matrix elements of the dipole
operator l̂ðrÞ in the basis set of atomic orbitals (l̂nm ¼ hnjl̂ðrÞjmi).
For example, in the orthogonal basis set lm is given by

lm ¼ Tr l̂nmð Þ: ð2Þ
Both xm (defining positions of resonances) and lm (defining
intensities of optical transitions) are necessary to calculate molec-
ular optical spectra. Here we formulate a closed set of the ES equa-
tions relating xm and lm to the scattering parameters: dispersion

xðkÞ, matrices CðnÞðxÞ, transition charges qðxÞ and transition
dipoles dðxÞ.

A branched conjugated molecule (e.g., Fig. 1a) can be viewed as
a graph (Fig. 1b) composed of linear segments consisting of identi-
cal repeat units [38–40]. The repeat unit and molecular vertices,
including branching centers and termini, are referred to as the
molecular building blocks that form the molecular backbones.
Fig. 1c shows typical building blocks of the PA molecules. Since
the number of building block types for a given molecular family
is usually limited, it is possible to characterize each building block
by a tabulated ES parameter library with a limited effort. In an infi-
nite, perfectly straight segment, exciton dispersionxðkÞ fully char-
acterizes the exciton band, being a property of a repeat unit. In a
finite linear chain, exciton motion can be represented by two plane
waves that propagate in opposite directions. Their quasimomenta
have the same absolute value xðkÞ ¼ xð�kÞ due to the time rever-
sal symmetry (in the absence of magnetic fields). Hence, the distri-
bution of an electronic excitation is described by the exciton wave
function consisting of standing waves on each linear segment a

waðxaÞ ¼ aa expðikxaÞ þ ba expð�ikxaÞ; ð3Þ
where xa denotes integer coordinates of repeat units on a segment a
with length la. The exciton quasimomentum k resides in a 1D Bril-
louin zone 0 6 k 6 2p, with the points k and kþ 2p naturally iden-
tified. The standing-wave nature of electronic excitations can be
directly observed from quantum-chemical computations [16,27].
For instance, Fig. 1e displays low-energy electronic excitations from
the ground state for an example of linear molecule. Here, the con-
tour plots of the absolute values of the transition density matrices
are prepared according to the index of atoms along the molecular
chain. Apparent standing-wave profile can be readily recognized
from the diagonal amplitudes, composed from different contribu-
tions of molecular repeat units, with respect to the entire length
of the oligomer. The deviation of the exciton wave function from
the standing-wave profile is considered as a localized effect at the
vertex. We adopt the following normalization condition for the

exciton wave functions
P

a
Pla

xa¼1waðxaÞw�
aðxaÞ ¼ 1.

We further introduce a vector wave function

waðxÞ ¼ raðxÞwaðx;raðxÞÞ; ð4Þ
where raðxÞ is a unit vector in the repeat unit x axis direction, and
the scalar function waðx;raðxÞÞ is the projection of the exciton wave
function on that axis. In a perfectly straight segment, raðxÞ can be
defined as a sign factor due to raðxÞ ¼ ra. Therefore, the sign of
the scalar function is altered if the segment orientation is reversed,
waðx;�raÞ ¼ �waðx;raÞ. The representation of Eq. (4) is especially
useful for complex structures with slightly bent segments (e.g.,
loops), where raðxÞ varies slowly as a function of x [30–32,35].

The excitation amplitudes can then be found by solving linear
equations, which describe exciton propagation along the linear
segments and exciton scattering at the molecular vertices. We
denote the outgoing ðþÞ and incoming ð�Þ plane waves on segment

a at vertex b by w
ðþÞ
ab and w

ð�Þ
ab , respectively. Exciton propagation

along segment a between vertices b and c is described by

w
ð�Þ
ab ¼ nbaðnca � wðþÞ

ac Þ exp iklað Þ; ð5Þ

where la is the segment a length, nua stands for the unit vector of
the repeat unit in segment a attached to the vertex u. There are
two such equations for each segment that correspond to its two
ends. At molecular vertex b that connects n linear segments, the
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exciton scattering is described by a frequency-dependent n� n
scattering matrix CbðxÞ, which transforms the incoming to the out-
going waves:

w
ðþÞ
ab ¼ nba

X
b3b

Cb;abðx;nbÞðnbb � wð�Þ
bb Þ; ð6Þ

nb denoting a set of unit vectors, associated with the branches
attached to vertex b. The off-diagonal elements of Cb that deter-
mine the transmission effects at a joint, are orientation-dependent
due to the vector nature of the incoming and outgoing waves. In
contrast, the diagonal elements of Cb related to reflections, are
invariant with respect to the orientation choice.

The ES Eqs. (5) and (6) constitute a frequency-dependent homo-
geneous system of linear equations for the plane wave amplitudes

w
ð�Þ
ab , with the number of equations matching the number of

unknown variables [16,30] that can be referred to as a generalized
spectral problem. Therefore, given the exciton dispersion xðkÞ and
the scattering matrices CðxÞ for all vertices, excitation energies
and exciton wave functions (up to a normalization factor) can be
identified by solving the generalized spectral problem [Eqs. (5)
and (6)] [30–32].

To perform the transition dipole calculations we further intro-
duce the transition charge and transition dipole parameters of
the building blocks. An exciton wavefunction
wðxÞ ¼ a expðikxÞ þ b expð�ikxÞ is associated with the transition
dipole distribution and its dual ~wðxÞ ¼ a expðikxÞ � b expð�ikxÞ rep-
resents the transition charge distribution. w and ~w are related by

~wðxÞ ¼ 1
k
divwðxÞ � 1

k
d rðxÞ � w½x;rðxÞ	ð Þ

dx
ð7Þ

i.e., the ‘‘charge” wavefunction can be viewed as the divergence of
the ‘‘dipole” counterpart [35].

Far from the scattering centers, the total transition dipole has
contributions from the transition dipoles and charges of the repeat
units, proportional to the amplitudes of the exciton wave function
and its dual counterpart, respectively. This allows to introduce the
frequency-dependent dipole and charge parameters of the repeat
unit, that, being weighted with the proper exciton wave function,
yield the repeat unit contributions to the total transition dipole.
The deviations of transition charges and dipoles from the stand-
ing-wave form in the repeat units, located in the close proximity
of the scattering centers, can be further ‘‘absorbed” into the vertex
contributions. For any scattering center we can choose the ampli-
tudes of either incoming or outgoing waves in the wave function
and its dual to characterize the weights, associated with the vertex,
since the outgoing and incoming amplitudes are related to each
other via Eqs. (6) and (7). In the case of incoming waves, the total
transition dipole can be expressed as the sum of contributions of
all repeat units (the first term) and all vertices (the second term):

l ¼
X
a

Xla
xa¼1

qðxÞrðaÞxa
~waðxaÞ þ dðxÞwaðxaÞ

� �

þ
X
b

X
a3b

qbaðxÞrb~wð�Þ
ab þ dbaðxÞwð�Þ

ab

� �
; ð8Þ

where qðxÞ and dðxÞ (qbaðxÞ and dbaðxÞ) are the frequency-depen-
dent transition charge and dipole parameters of the molecular
repeat unit (vertices), respectively. The dipole parameters are rank
2 tensors since they provide linear transformations between the
two vectors, the exciton wave function and the transition dipole.

rðaÞxa and rb denote the positions of the repeat unit xa in segment a
and vertex b, respectively. Thus, Eq. (8) provides an expression for
the transition dipole between the ground and excited electronic
state, the latter described by its exciton wavefunction and its dual
counterpart.
3. Application examples

The first step in applying the ES approach to an arbitrary molec-
ular structure is to separate the latter into building blocks such as
linear segments and scattering centers (e.g., branching units, joints,
termini, kinks, etc.). The definition of building blocks in not unique
and can be further fine-tuned depending on the accuracy of the ES
results compared to the reference quantum-chemical simulations.
The next step is selection of the reference quantum-chemical
approach (see our discussion in the next sub-section) and perform-
ing electronic structure simulations of the subset of the building
blocks aiming to tabulate the ES parameters as illustrated on the
numerous examples in this section. Formally, this is the most
numerically costly step, yet it is enormously easier compared to
the complete quantum-chemical supramolecular calculation in
the entire structure. The ES approach itself boils down to solving
Eqs. (5) and (6) that results in obtaining transition frequencies
and exciton wavefunctions [25,32,34]. The latter, being substituted
into Eq. (8) allows the transition dipoles do be computed [35,36].
The above procedure is extremely efficient, provided the building
blocks are already characterized by previously tabulated ES param-
eters. The aforementioned step can be repeated as many times as
necessary, for example, to explore excited states in different
molecular structures composed from the same building blocks.
Here we illustrate how these parameters can be extracted from
quantum-chemical computations in molecular fragments of mod-
erate size. Absorption spectra of several molecules are further cal-
culated using the ES approach and compared to their counterparts
obtained through direct reference quantum-chemical
computations.
3.1. Reference electronic structure theory

Any size-consistent quantum-chemical method, capable of
describing the bound nature of excitonic states, can be used as a
reference electronic structure theory for the ES approach [18–
20]. Previously, we relied on both semiempirical CEO and ab initio
TD-DFT approaches as reference quantum-chemical techniques.
Notably, only hybrid DFT kernels or modern long-range corrected
functionals can adequately describe exciton binding energies
[19]. Here, a hybrid functional subjected to Coulomb-attenuating
method (CAM-B3LYP) [41,42] and 6-31G basis set were chosen
for all TD-DFT computations, adopted as a reference quantum
chemistry approach for excited-state description. The molecular
ground state geometries have been optimized at the same CAM-
B3LYP/6-31G level. All simulations have been performed with the
Gaussian 09 package [43].

To exemplify the ES modeling, we use molecules based on
phenylacetylene (PA) and ladder poly�para�phenylenes (PPP)
backbones (see Fig. 2 inset). Excited states in the selected molecu-
lar fragments (as detailed below) have been computed with the
reference TD-DFT approach, resulting in the vertical excitation
energies, oscillator strengths and transition density matrices. In
this Account we focus on the lowest energy optically active p-exci-
ton band (similar analysis can be applied to any other excitonic
band of interest) [30–32]. Calculated electronic states belonging
to this band have been singled out by inspecting the corresponding
transition density matrices. Their excitations energies are suffi-
cient to compute xðkÞ and CðxÞ scattering sets [25,31,32]. To cal-
culate the ES dipole parameters, we recall that, to efficiently
separate the dipolar contributions of individual building blocks, it
is highly desirable to have the basis functions to be both
orthogonal and spatially localized. In contrast, ab initio methods
typically rely on non-orthogonal and frequently over-complete
atomic orbital (AO) basis set, and the commonly used Löwdin



Fig. 2. (a) Dispersions of the lowest energy exciton band in phenylacetylene (PA)
and ladder poly-para-phenylene (PPP) oligomers (whose linear segments are shown
in the insets) derived from the TD-DFT calculations. (b) The reflection phases /T and
/X of the unmodified (hydrogen-terminated) and substituted molecular termini.
Inset: linear PA molecules substituted by X(X = NH2 and NO2) on one end used to
derive the reflection phases.
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orthogonalization [44] is not adequate due to the loss of the angu-
lar momentum symmetries in the original AOs [36]. The Natural
Atomic Orbitals (NAO) constructed from the occupancy-weighted
symmetric orthogonalization procedure preserve atom-like char-
acter of angular-symmetry within the molecule [45]. Not surpris-
ingly, the NAO transformation is found to be well suited for
calculating the ES dipolar parameters [36] and is readily available
from the NBO program [46] built in the major electronic structure
codes such as Gaussian 09 [43]. Here, the transition density matrix
nm and dipole matrix l̂ are obtained using the transformation
matrix T from AO to NAO space as

nðNAOÞm ¼ TnðAOÞm Ty; l̂ðNAOÞ ¼ Tl̂ðAOÞTy: ð9Þ
Consequently, all dipolar parameters are calculated using the

NAO representation. For example, the transition charge of a build-
ing block N is given by qN

m ¼ TrðnNm Þ instead of the ambiguous Mul-
liken charge in the AO space.

3.2. ES modeling of simple linear chains

Symmetries possessed by quantum systems simplify the extrac-
tion of the ES parameters. Time-reversal symmetry leads to sym-
metric exciton dispersion xðkÞ ¼ xð�kÞ and certain symmetry in
matrices CðxÞ. Unitarity, associated with the probability conserva-
tion in evolution of quantum systems, is another universal symme-
try of the scattering matrices. Finite size linear PA and PPP chains
terminated by neutral (hydrogen atom), donor (–NH2) or acceptor
(–NO2) group (see insets in Fig. 2) provide simple illustrative
examples for the ES theory. Due to the unitarity, a single reflection
phase /TðxÞ parameterizes the scattering matrix CðxÞ ¼ ei/T ðxÞ of a
molecular terminus (Fig. 1c(ii)). Therefore, the dispersion xðkÞ and
reflection phases /TðxÞ of different termini represent a closed set
of the ES parameters for these systems. In linear molecules
terminated by A and B end groups, the wave amplitudes in the
exciton wave function (Eq. (3)) are related by Eq. (6) imposed on
the two molecular termini [25,31]. These two ES equations have
non-trivial solutions only if the following quantization condition
is satisfied:

2kðxÞLþ /AðxÞ þ /BðxÞ ¼ 2pq; ð10Þ

where L is molecular length (the number of repeat units) and q is an
integer that labels the excitation, which is related to the number of
nodes in the exciton wave function (Fig. 1e). /A and /B are the
reflection phases of the two termini A and B, respectively. It is worth
mentioning that the ES approach does not depend on the choice of
repeat unit because the choice affects the segment length L thence
the quasimomentum k in Eq. (10) in a consistent way so that the
solutions of the ES equations remain the same.

In the simplest case of linear molecules without chemical sub-
stituents, both termini are identical /A ¼ /B ¼ /T ;/T being the
reflection phase of the neutral -H terminus. Therefore, Eq. (10) is
simplified as kLþ /T ¼ pq, where two functions kðxÞ and /TðxÞ
should be evaluated simultaneously. The range of reflection phases
/TðxÞ is determined by the definition of q, since /TðxÞ is a periodic
function of 2p. Therefore, to have p < /T < 2p (considering the
hard wall reflection phase /T ¼ p), the integer q is related to the
number of nodes in the exciton wave function, given by q� 2
[30,31]. Accordingly, q can be determined from the transition den-
sity matrix (see Fig. 1e). The oligomers suitable for the ES parame-
ter extraction should be longer than the exciton size being 2–3
repeat units for phenylacetylene excitons (Fig. 1e). Indeed, quan-
tum chemistry calculations of 10 linear PA and PPP molecules
(Fig. 2a) of different lengths (10–25 repeat units) proved to be suf-
ficient to accurately extract kðxÞ and /TðxÞ simultaneously.
Namely, using excitation energies and respective transition density
matrices, the initial values of kðxÞ and /TðxÞ have been derived
from two- and four- point numerical extrapolations [31] followed
by a piecewise polynomial least-square fit. This procedure pro-
duces smooth functions kðxÞ and /TðxÞ tabulated for their future
use (see Fig. 2).

Substitutions of conjugated oligomers with polar moieties per-
turb the p-electron system and possibly break the electron–hole
symmetry, thus representing a useful synthetic approach to tune
molecular electronic and optical properties. Here the effect of
chemical modifications on the optical properties appears via cor-
rection of the corresponding ES parameters. Linear oligomers sub-
stituted with donor (–NH2) or acceptor (–NO2) group on one side
(see Fig. 2b inset) are the simplest cases allowing to extract the
reflection phases /XðxÞ for the termini with substituents (i.e.,
/A ¼ /T and /B ¼ /X in Eq. (10)). Using previously retrieved kðxÞ
and /TðxÞ;/XðxÞ can be readily tabulated from the excitation
energies in such molecules. Different reflection phases of –H,
–NH2 and –NO2 termini shown in Fig. 2b signify changes in the
corresponding electronic spectra due to substituents [34].

To extract the ES dipole parameters in linear molecules, we first
calculate the exciton wave functions and their duals from Eqs. (5)–
(7) using the tabulated ES energy parameters. The transition
charges QðxÞ and dipoles lðxÞ of all repeat units can be calculated
from the transition density matrices in the NAO basis (see Sec-
tion 3.1). The charge parameter qðxÞ of a repeat unit can be found
by comparing the transition charge to the amplitude of the dual
wave function QðxÞ=~wðxÞ. Since the transition dipoles of the lowest
band excitons are directed along the chain, the dipole tensor of a
repeat unit is a scalar dðxÞ determined by the ratio lðxÞ=wðxÞ.
The ratios QðxÞ=~wðxÞ and lðxÞ=wðxÞ deviate from the constants
within several repeat units from the termini, hence the latter
should be excluded from calculations [35]. Obtained using the
above approach functions qðxÞ and dðxÞ (see Fig. 3a) fully charac-
terize the transition dipoles of the PA backbone.



Fig. 3. (a) The transition charge qðxÞ and dipole dðxÞ parameters of PA repeat unit.
(b) The transition charge parameters qðXÞðxÞ of donor(–NH2)/acceptor(–NO2)
substituted and neutral (-H) termini. (c) Same as (b) but the transition dipole
parameters dðXÞðxÞ.
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Fig. 4. Comparison of the optical spectra obtained from quantum-chemical (TDDFT)
calculation (top panel) and the ES approach (bottom panel) for molecules shown in
the inset.
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The transition charge and dipole parameters of molecular ver-
tices have internal contributions from all atoms that belong to
the vertex (which can be evaluated from the respective transition
density matrices). In addition, mentioned above deviations from
the standing-wave form in the nearby repeat units (referred to as
the external contributions) should be taken into account as well.
Namely, the deviations of transition charge and dipole on the
repeat unit x can be described as

DQðxÞ ¼ QðxÞ � qðxÞ~waðxÞ; ð11Þ

DlðxÞ ¼ lðxÞ � dðxÞwaðxÞ: ð12Þ
To accurately evaluate these external contributions, it is suffi-

cient to sum within three repeat units of a given scattering center
in the PA systems [35]. For molecular terminus, a single parameter
is sufficient to represent the dipole tensor. Therefore, we can intro-

duce the real-valued parameters qðTÞðxÞ and dðTÞðxÞ, by comparing
the effective transition dipole and charge of the end group to the
exciton wave function and its dual, respectively. Following this
idea, the ES dipole parameters of –H, –NH2 and –NO2 termini have
been extracted, fitted by piecewise polynomials and plotted in
Fig. 3b and c. As in the case of reflection phase /ðxÞ, modification
of dipole parameters for substituents indicates different optical
transition intensities in the functionalized oligomers [34].

To this point, the optical properties of the lowest band p-exci-
tons for PA backbone and three different end groups have been
characterized by the tabulated ES energy and dipole parameters,
which allows to calculate the absorption spectrum of an arbitrary
linear PA molecule terminated by any considered substituent.
These calculations are practically instantaneous [25,32,35,36]. For
example, Fig. 4 shows comparison of the optical spectra calculated
with the ES approach (completely bypassing the electronic struc-
ture numerics) and direct quantum-chemical modeling for two dif-
ferent oligomers substituted at the both ends. The transition
energy discrepancies between the two methods are less than
2 meV, whereas the relative differences of transition dipoles of
optically-allowed states are within 3%. This exemplifies efficiency
and accuracy of the ES modeling.

3.3. Applications of the ES approach to complex branched molecules

To apply the ES approach to complex molecular structures and
networks, scattering centers of higher degree should be consid-
ered. We further characterize symmetric V (meta- and ortho-)
and triple Y joints, which structures are shown in Fig. 1c. In this
case, the joint’s scattering matrix CðxÞ can be diagonalized using
irreducible representations of the vertex symmetry group
G : C ¼ UDUy, where D is the diagonal matrix with elements in a
form ei/ [30,31,33]. Therefore, C is parameterized by the scattering
phases /ðxÞ.

CV ðxÞ of the symmetric V joint is a 2� 2 matrix with the ele-
ments rðxÞ and tðxÞ, being the complex reflection and transmis-
sion amplitudes [25]. The symmetry group of a V joint is C2 with
two irreducible representations. Therefore, CV can be parameter-
ized by two real phases /0 and /1 corresponding to the symmetric
and antisymmetric configurations, denoted by subscripts 0 and 1,
respectively. The scattering matrix can be diagonalized by

CV ¼ UDUy ¼ r t

t r

� �
;

U ¼ 1ffiffi
2

p
1 1
1 �1

� �
; D ¼ ei/0 0

0 ei/1

 !
:

ð13Þ

Consequently, rðxÞ and tðxÞ are related to two real energy-
dependent phases /0ðxÞ and /1ðxÞ by

r ¼ 1
2

ei/0 þ ei/1
� �

; t ¼ 1
2

ei/0 � ei/1
� �

: ð14Þ



Fig. 5. (a)meta-conjugated (M) and ortho-conjugated (O) V-type vertices. The atoms
in the region marked with ‘‘ðþÞ” should be considered as part of the vertex, whereas
those in the region marked with ‘‘ð�Þ” should be ‘‘deducted” from the vertex due to
the overlap of the attached repeat units. The coordinate system for the transition
dipole in the V-joints is shown on the right. (b) Scattering phases of M and O joints,
subscripts 0 and 1 represent the two symmetries (symmetric and antisymmetric
modes) of the scattering. (c) The transition charge and dipole parameters of the M
joint. (d) Same as (c) but of the O joint.
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The symmetry group of a Y joint is D3 with six elements includ-
ing the rotations by �2p=3 and three reflections. Similarly, accord-
ing to its two irreducible representations: the identity operation
has zero angular momentum m ¼ 0, and rotations result in sym-
metric and antisymmetric reflections with m ¼ �1 [33]. Diagonal-
ization of CY can be performed as

CY ¼ UDUy;

U ¼ 1ffiffi
3

p
1 1 1
1 expð2pi=3Þ expð�2pi=3Þ
1 expð�2pi=3Þ expð2pi=3Þ

0
B@

1
CA;

D ¼
expði/SÞ 0 0

0 expði/PÞ 0
0 0 expði/PÞ

0
B@

1
CA:

ð15Þ

Following the above scheme, CY are parameterized by two real
energy-dependent phases /SðxÞ and /PðxÞ, associated with the
irreducible representations.

The above derivation shows that each scattering phase in sym-
metric joints is equivalent to the reflection phase of a terminus that
represents the joint for transition density matrix of the corre-
sponding symmetry. These phases can be extracted from the quan-
tum-chemical results that possess the required symmetries using
Eq. (10). Namely, we calculated symmetric PA fragments of V and
Y types that have identical arm length L (6 repeat units) in each
molecule, to preserve the joint symmetry. Using these electronic
structure results for the lowest excitonic band and Eq. (10), the
scattering phases of meta- (/M

0 ðxÞ and /M
1 ðxÞ), ortho- (/O

0 ðxÞ and
/O

1 ðxÞ) and Y (/SðxÞ and /PðxÞ) joints have been further tabulated.
Figs. 5a and 6a display the resulting functions after polynomial fits.

The number of the relevant ES dipole parameters describing a
molecular joint is related to the symmetry as well. The transition
dipole parameters of planar joints always appear in pairs (projec-
tions on two principle axes x and y, see Fig. 5a and Fig. 6b inset).
The parameter extraction for a molecular vertex is similar to that
for the terminus [35,33]. Real-valued parameters are retrieved
with respect to the standing waves instead of plane waves and
can be related to the parameters in Eq. (8). The external contribu-
tions should be carefully evaluated. For example, in V and Y joints,
the contribution from the region marked with ‘‘-” (due to the
repeat unit overlap) in the phenyl ring of the linkage should be
subtracted from the one from the region marked with ‘‘+” [as
shown in Fig. 5a and Fig. 6b inset] [35,33].

The ES dipole parameters for the V joints are transition charge q
and two real dipole parameters dx and dy. Here the symmetry of
electronic excitations is defined as the symmetry of the x projec-
tion of the transition dipole distribution. Therefore, q can only be
extracted from the data on the antisymmetric modes, since the
symmetry of the exciton dual wave function is opposite to that
of the exciton wave function [35]. Thereby, the charge parameters
of the meta- (qMðxÞ) and ortho- (qOðxÞ) joints have been calcu-
lated by comparing the transition charge to the sum of the ampli-
tudes of the dual wave functions on both sides of the joint, using
antisymmetric excitations. Furthermore, the respective dipole

parameters dM
y ðxÞ and dM

x ðxÞ (dO
x ðxÞ and dO

y ðxÞ) are retrieved using
the sum of the values of the wave functions and their duals at both
sides of the joint. The results are shown in Fig. 5. The ES dipole
parameters for symmetric Y joint are transition charge qYðxÞ and
dipole dYðxÞ (due to symmetry dY

x ¼ dY
y ¼ dY ) [33]. These quantities

have been extracted using similar to the V-joint procedure and the
resulting functions are plotted in Fig. 6.

At this juncture, our ES library is rich enough to predict optical
spectra in large complicated PA based molecular structures and
networks. For example, the absorption spectrum of a dendrimer
has been calculated under the ES framework and compared to
the quantum-chemical results in Fig. 6c. We notice that the ES
spectrum accurately reproduces the result of the reference method
even in macromolecules containing many short segments, compa-
rable in length to the exciton size.
4. Conclusions

In this Account, we reviewed the formalism of the Exciton Scat-
tering (ES) approach developed for spectroscopic calculations in
branched conjugated macromolecules, where the electronic excita-
tions can be viewed as quasiparticles (excitons) that reside on the
corresponding quasi-1D molecular graphs [16]. The ES methodol-
ogy has been illustrated using various phenylacetylene based
molecules including structures with donor/acceptors substituents
with TD-DFT being the reference quantum chemistry method.
Exciton dispersion and scattering matrices of commonly used



Fig. 6. (a) The scattering phases of symmetric Y-type joint. (b) The transition charge and dipole parameters of Y joint. Insets: The overlapping atoms from the attached repeat
units are labeled with ‘‘(–)”; the coordinate system for the transition dipole is shown on the right (dY

x ¼ dY
y ¼ dY ). (c) Comparison of the absorption spectra obtained from TD-

DFT calculations (top panel) and the ES approach (bottom panel) for dendrimer shown in the inset.
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molecular vertices have been extracted, which allows efficient and
numerically inexpensive calculations of the excitation energies and
exciton wave functions. The transition charge and dipole parame-
ters of aforementioned molecular building blocks are also charac-
terized. The retrieved ES parameters allow for fast calculations of
absorption spectra in molecules that consist of the characterized
building blocks, no matter how large or complex they are. Being
specific, the ES approach reduces the computer time scale to sec-
onds compared to days or even weeks when conventional quan-
tum-chemical methods are used. The results accurately
reproduce the outcome of time-consuming supramolecular TD-
DFT calculations. This became possible because the ES modeling
relies solely on the pre-tabulated library of scattering parameters,
completely bypassing quantum-chemical computations. The accu-
racy of the ES simulations can be further improved by refining the
ES parameters using high-quality spectroscopic data for small
molecules representing building blocks [30,31]. Calculations of
the ES parameters for complex asymmetric vertices are possible
as well using the respective exciton wave functions (in addition
to the excitation energies) [31,32].

Overall, the ES multiscale approach fills the gap between the
need for the accurate characterization of optical spectra in conju-
gated macrostructures and restrictions of general quantum-chem-
ical methods due to high numerical cost. The ES methodology is
thus complementary, rather than alternative, to the commonly
used quantum-chemical methods and is likely to substantially
extend their capability to compute excited-state electronic struc-
ture in much larger systems, including supramolecules, super-
structures and molecular networks. Moreover, developing
extensive sets of scattering parameters for various molecular
building block families brings forward a great potential of the ES
approach for real-time computational design of molecular struc-
tures with desirable electronic and optical properties.

Finally, proposed quasiparticle scattering idea bridges tradi-
tional molecular description (spatially confined wavefunctions,
orbitals) with solid-state physics picture (periodic delocalized
wavefunctions, quasiparticles), providing a universal framework
closely related to the conventional condensed matter quasiparticle
description of many excitation processes and dynamics such as
excitons, polarons, spins, plasmons, etc. Consequently, the ES
methodology can be naturally augmented by adding exciton-elec-
tron, exciton-phonon and electron–phonon scattering processes
occurring at the interfaces, chemical defects and impurities. For
example, to incorporate electron–phonon coupling and conforma-
tional disorder in ’soft’ electronic materials, it is possible to
reformulate the scattering equations in terms of an effective
tight-binding (lattice) model, which is a Hamiltonian describing
the parent scattering problem [47].

The tight-binding models can be build in an efficient way by
studying the topological properties of the scattering matrices,
namely the integer-valued topological charge, or equivalently
winding number associated with the corresponding scattering
matrix [48]. The topological charge provides useful information
on how many cites in the related tight-binding model are needed
to adequately describe a scattering center. Studying analytical
(geometrical) properties of the scattering matrices, namely the
analytical continuations of CðkÞ with k being the quasimomentum,
from the Brillouin zone, represented by a unit circle in the complex
plane c (or its compactified version, known as the projective space
CP1) provide useful microscopic insights into the chemical proper-
ties of molecular substituents [49], connected to polymer back-
bones. The positions of poles (or zeros) of CðkÞ in CP1 describe
the energies and spectral widths of the bound and resonant states
that occur in a conjugated molecule due to the presence of the sub-
stituent, with the above energies sometimes being very different
form the energetics of an uncoupled fragment. Treating a localized
molecular geometry distortion, e.g., a bond-alternation stretch or
an around-a-bond rotation as a scattering center for electronic
excitations (excitons), allows the dependence of the tight-binding
model parameters (on-site energies and hopping constants) to be
extracted from quantum chemistry computations [50], which leads
eventually to an exciton-phonon Hamiltonian. This allows effects
of incoherent energy transfer in a branched conjugated molecule
to be treated at the computational cost of a Frenkel-exciton system
counterpart.

So far we have been considering polymer backbones with the
repeat units that can be more or less adequately described by a
single site in the respective tight-binding model. In the case of
multiple sites in a repeat unit, or/and longer range hopping (e.g.,
next to nearest-neighbor) analytical properties of the scattering
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matrices, as well as exciton spectra show more complexity. They
can be still efficiently studied, and, according to our preliminary
studies (the results will be published elsewhere), the Scattering
matrices can be still represented as meromorphic functions on
higher Riemann surfaces, or using more mathematical language
on algebraic (complex-analytical) curves of higher genus g.
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