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ABSTRACT: T he response of the single-electron density matrix of a many-electron
system to an external field is calculated using the T ime-Dependent Hartree-Fock
(T DHF) technique. A procedure for inverting the resulting nonlinear response func-
tions to obtain an effective quantum multilevel system that has the same response
is developed. T he number of effective states is gradually increased as higher-order
nonlinearities are computed. T he complete set of intrastate and interstate density
matrices and excited state energies can be calculated. A favorable N-scaling of com-
putational effort with size can be obtained making use the localization of the optical
transitions in real space. c© 1998 John Wiley & Sons, Inc . Int J Quant Chem 70: 711-727,

1998
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I . I NTRODUCTI ON

T he complete information on the optical response of a quantum system is contained in
its set of many-electron eigenstates |ν 〉, |η〉, . . . and energies εν , εη, . . . [1]. Since the number
of states increases exponentially with the number of electrons, exact calculations become
impractical even for fairy small molecules with a few atoms. An approximation at some level
of configuration interaction (CI) allows to compute the states, and optical susceptibilities
may be calculated using a summation over states (SOS) [2–5]. T he CI/SOS is computa-
tionally expensive. In addition, size consistency is not guaranteed a priori and special care
needs to be taken when choosing the right configurations.

Using the many-electron wavefunctions it is possible to calculate all n-body quantities
and correlations. Most of this information is, however, rarely used in the calculation of
common observables (energies, dipole moments, spectra, etc.) which only depend on the
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expectation values of one- and two- electron quantities. A reduced description which only
keeps a small amount of relevant information is called for. An important example of such
a method is density-functional theory (DFT ) [6–11] which only retains the ground state
charge density profile:

ρgg
nn = 〈g|c+

n cn|g〉 , (1.1)

where |g〉 denotes the ground-state many-electron wavefunction and c+n (cn) is the Fermi
annihilation (creation) operators for the n-th basis set orbital. Hohenberg and Kohn’s
theorem proves that the ground state energy is a unique and a universal functional of ρnn

[12,13], making it possible to compute self consistently the charge distribution and the
ground state energy. T his approach has been remarkably successful, and extensions to
excited states have been made as well [10,11].

In this paper we develop a semiclassical approach for calculating the excited state energies
ε ν , and density matrices

ρ ν η
nm ≡ 〈ν |c+

n cm|η〉 . (1.2)

T his approach is formally unrelated to DFT . Nevertheless, it shares its basic philosophy of
aiming at ”the truth but not the whole truth”. We recall that |ν 〉 and |η〉 represent the
global electronic states of the system, whereas n and m denote the atomic basis functions.
T hese quantities carry more information than ρgg

nn, yet considerably less than the complete
set of eigenstates. ρν ν is the reduced single-electron density matrix of state ν . For ν 6= η
ρν η is the density-matrix associated with the transition between ν and η. When the system
is driven by an optical field, its wavefunction becomes a coherent superposition states

Ψ(t) =
∑

ν

aν (t)|ν 〉 , (1.3)

and its density matrix is given by

ρnm(t) ≡ 〈Ψ(t)|c+
n cm|Ψ(t)〉 =

∑
ν η

a∗
ν (t)aη(t)ρ

ν η
nm . (1.4)

ρν η
nm are thus the building blocks for the time-dependent single-electron density matrix. In

addition, the density matrix provides the complete information necessary for computing the
matrix elements of all single-electron operators. Given the operator

µ =
∑
nm

µnmc+
n cn , (1.5)

we have

〈ν |µ|η〉 =
∑
nm

µnmρν η
nm . (1.6)

In particular, dipole matrix elements which determine on the optical properties have the
form of Eq. (1.6).

Our approach starts by coupling the molecule to an external field E(t) through
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Hint = −µE(t) ≡
∑
nm

Enm(t)c+
n cm . (1.7)

Where Enm(t) ≡ µnmE(t). We can then expand the induced density matrix in powers of the
incoming field

ρnm(t) = ρgg
nm +

∫
dτ
∑
n ′ m ′

S
(1)
nm,n ′ m ′

(t; τ)En ′ m ′ (τ)

+

∫ ∫
dτ1dτ2

∑
n ′ m′

n ′ ′ m′ ′

S
(2)
nm,n ′ m ′ ,n ′ ′ m ′ ′

(t; τ1, τ2)En ′ m ′ (τ1)En ′ ′ m ′ ′ (τ2) + . . . . (1.8)

T he j-th order density-matrix response functions (DMRF) S(j) can be conveniently cal-
culated using the T ime-Dependent Hartree-Fock (T DHF) approximation [18–20], which pro-
vides a closed system of equations for the reduced single-electron density-matrix ρmn. Since
the DMRF can be alternatively expanded in terms of the system energies and matrix ele-
ments of the single-electron operators c+

mcn, it constitutes a source of information on these
quantities. However, it is not easy to interpret the T DHF response in terms of the global
eigenstates since the structure of the T DHF expressions is very different from their standard
SOS counterparts.

T he present article provides an algorithm for inverting the DMRF to obtain an effective
multilevel system which has the same response functions, resulting in the eigenvalues and all
density matrix elements (Eq. (1.2)). Note that the DMRF are more general than the optical
response functions since the interaction (Eq. (1.7)) is not limited to the dipole operator. T he
latter has often selection rules which limit the information to a few dominant states. T he
freedom to use any field Enm(t) in Eq. (1.7) allows us to calculate all possible states.

T he effective multilevel system will be constructed in four steps (Fig. 1).
(i) Starting with the original quantum fermion model QFM we build its classical limit

by considering the space of single Slater determinants M (the space of coherent states as its
phase space). T he Poisson bracket on M and the classical Hamiltonian have been introduced
in [21]. We make use of the observation [22] that the T DHF approximation can be considered
as a classical limit of the original many-electron system. Hereafter we refer to the classical
limit of the QFM as the classical oscillator model (COM). As shown in [22] any classical
system can be mapped onto a set of classical coupled oscillators.

(ii) In the vicinity of the stationary solution ρgg ∈ M of the T DHF equation we trans-
form the local variables on M so that the Poisson bracket assumes a canonical form. T his
establishes the oscillator representation of the COM. Stated differently, this shows the equiv-
alence of the COM and a classical canonical oscillator model (CCOM) defined as the COM
represented in terms of the canonical variables.

(iii) We build the quantum oscillator model (QOM) by quantizing the CCOM, so that
the classical limit of the QOM reproduces the CCOM. T he classical system of oscillators can
therefore be viewed as the classical limit of a system of quantum coupled oscillators. We
thus have two quantum models: QFM which corresponds to the original electronic system,
and the system of quantum anharmonic oscillators (QOM). T heir classical limits COM and
CCOM respectively are equivalent, and the COM describes the QFM within the T DHF
approximation.
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FIG. 1. The four steps involved in c onstruc ting the effec tive multilevel system (EMS)out of

the original quantum Fermion Model (QFM). Obtaining a Bosonized Quantum Fermion Model

(BQFM) out of the quantum osc illator model should allow to reproduc e the exac t density matrix

response func tions, and not rely on the TDHF. This extension goes beyond the sc ope of the present

work.

(iv) Finally, using a perturbative approach we build an effective multilevel system (EMS)
whose exact optical response reproduces the classical approximation of the QOM which is
the CCOM and in turn coincides with the T DHF approximation of the original model QFM.
In summary, the EMS constitutes a quantum model whose optical response reproduces the
T DHF approximation of the original model.

In Section II we carry out steps (i) and (ii) and map the original quantum fermion model
onto a classical canonical oscillator model. Steps (iii) and (iv) are made in Section III. Com-
putational details are given in the Appendices. In Section IV we apply this algorithm to a
family of unsubstituted and acceptor-substituted carotenoids. T he induced density matrices
ρν η

nm for the states which dominate the linear and the quadratic response are investigated.
Finally we discuss and summarize our results in Section V.

I I . THE TDHF APPROACH: CLASSI CAL ELECTRONI C OSCI LLATORS

We consider a system described by the molecular electronic Hamiltonian [14,23].

Ĥ =
∑
mnσ

tmnc
+
mσcnσ +

∑
mn kl

σσ ′

〈nm|kl〉c+
mσc+

nσ ′

ckσ ′ clσ − E(t)
∑
mnσ

µmnc
+
mσcnσ, (2.1)
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where c+
m,σ(cm,σ) are the annihilation (creation) operators of an electron on atomic orbital

m with spin σ which satisfy the Fermi anticommutation relations (assuming an orthogonal
basis set)

cmσc
+
nσ ′

+ c+
nσ ′

cmσ = δmnδσσ ′ , (2.2)

and all other anticommutators of c+ and c vanish. ρ̂σ
nm = c+

m,σcn,σ is the reduced single-
electron density operator [14–17]. T he first term in Eq. (2.1) is the single-electron (core)
hamiltonian describing the kinetic energy and nuclear attraction of an electron, the second
term represents electron-electron (Coulomb) interactions where 〈mk|nl〉 are the two-electron
integrals, and the last term gives the interaction between the electrons and the external
electric field E(t), µ being any single-electron operator [21,23].

T he classical oscillator model is constructed using the procedure for approaching the
classical limit outlined in [22]. We start by defining the phase space of the single Slater
determinants M (defined up to a phase) known as the Grassman manifold G(M, N ; C),
N being the basis set size and M is the number of electrons. T he Grassman manifold
M = G(M, N ; C) can be alternatively represented as the space of hermitian N × N single-
electron reduced density-matrices with ρ2 = ρ and rank(ρ) = M . T he classical Hamiltonian
is given as

H(ρ) = 〈Ω(ρ)|Ĥ|Ω(ρ)〉, (2.3)

where Ω(ρ) is the Slater determinant corresponding to ρ. Expressions for H(ρ) in terms of the
original parameters of the molecular electronic Hamiltonian (Eq. (2.1)) and for the Poisson
bracket were given in [21]. T he T DHF equation adopts the form of the equation of motion
of Hamilton’s classical dynamics on M. T he stationary point of the T DHF equations which
corresponds to the minimum of the energy function H(ρ) on M constitutes the Hartree-Fock
(HF) reduced ground state single-electron density matrix ρgg which can be found by solving
the Hartree-Fock (HF) equation [14]

[F (ρgg), ρgg] = 0, (2.4)

where F (ρgg) is the Fock matrix

F (ρgg) = t + V (ρgg), (2.5)

and the matrix elements of the Coulomb electronic operator V are

V (ρgg)mn =
∑
k,l

ρgg
kl [〈mk|nl〉 − 1

2
〈mn|kl〉]. (2.6)

T o construct the classical oscillators (step (ii)) we need to define local coordinates on M

representing deviations from ρgg. T he restricted T DHF scheme [21] allows us to reduce the
number of variables from N2 to particle-hole variables M(N − M) only. T o that end we
decompose the single-electron density matrix in the form

ρ = ρgg + ξ + T (ξ) . (2.7)
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Here ξ represents the particle-hole whereas T (ξ) is the particle-particle and the hole-hole
parts of the deviation of the reduced single-electron density matrix from the ground state
ρgg. ρgg, ξ, and T (ξ) in Eq. (2.7) are N ×N matrices. 1 T he particle-particle and hole-hole
components of the density matrix are not independent variables, since they can be expressed
in terms of the particle-hole part [21,23]. T herefore only the particle-hole components of
the density matrix, ξ, need to be calculated explicitly. T can be expanded in a T aylor series
which contains only even powers of ξ. For computing DMRF not higher than third order it
is sufficient to retain only the lowest (second order) term [21,23].

T (ξ) =
1

2
[[ξ, ρgg], ξ] = (I − 2ρgg) ξ2. (2.8)

where I is the N × N unit matrix.
A convenient coordinate system can be introduced by parameterizing the electron-hole

component (ξ) of the density matrix. T o introduce variables close to canonical (as will be
explained latter) it is convenient to use the T DHF equations for ξ(t):

i
∂

∂t
ξ(t) = L(ξ) − E [µ, ρ] + [V (ξ), ξ + T (ξ)] + [V (T (ξ)), ξ + ρgg] , (2.9)

where ρ is given by Eq. (2.7) and the Liouville space operator (superoperator) L represents
the linear part of the equation [21,23]

L(ξ) = [t + V (ρgg), ξ] + [V (ξ), ρgg] . (2.10)

T he oscillator variables are computed as the eigenmodes of the linear part of Eq. (2.9)
satisfying:

L(ξα) = Ωαξα, L(ξ−α) = −Ωαξ−α . (2.11)

T hese oscillators are orthonormal:

T r(ρgg[ξ−α, ξβ]) = δα,β . (2.12)

and the particle-hole part of the density matrix can be expanded in ξα [21,23]

ξ(t) =
∑
α>0

zα(t)ξα + z ∗α(t)ξ+
α . (2.13)

Each oscillator α is described by two complex operators ξα and ξ+
α . Following the notation

of Ref. [21] we define ξ−α = ξ+
α . zα and its complex conjugate z−α = z ∗α constitute the

complex oscillator amplitudes. A classical picture is obtained by introducing the oscillator
coordinates Qα ≡ 1√

2
(ξα + ξ+

α ) and the momenta Pα ≡ i√
2
(ξα − ξ+

α ) [21]. However, it is more
convenient to keep the complex ξα variables

Eqs. (2.13) and (2.7) define a local coordinate system zα on M where ρgg is the origin.
Substitution of Eqs. (2.13) and (2.7) into Eq. (2.3) yields the classical Hamiltonian for
the variables zα. H(zα) can be calculated in a form of an expansion in powers of zα. T he

1 ρ gg and ξ(t) are matric es of rank M , M < N .

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY VOL. 70, NO. 4/5 6



T RET IAK, CHERNYAK, AND MUKAMEL EXCIT ED ELECT RONIC ST AT ES OF CAROT ENOIDS

expression to fourth-order is presented in [21]. For the applications made in this paper we
only need the Hamiltonian up to third-order

H(z) =
∑
α>0

Ωαz−αzα +
1

3

∑
αβγ

Vα,βγzαzβzγ − E(t)P(z) , (2.14)

with the polarization

P(z) =
∑

α

µαzα +
1

2

∑
αβ

µαβzαzβ , (2.15)

where

µα = T r([ρgg, ξα][µ, ρgg]) (2.16a)

µα,β = T r([ρgg, ξα][µ, ξβ]) (2.16b)

Vα,βγ = T r([ρgg, ξα][V (ξβ), ξγ])

+ T r([ρgg, ξα][V (
1

2
[[ξβ, ρgg], ξγ]), ρ

gg]). (2.16c)

All quantities here are N ×N matrices in the single-electron space, and the trace is defined
in this space.

T he Poisson bracket for the zα variables is calculated in [21] and to first-order in zα it
has the canonical form

{zα, zβ} = iδα,−β . (2.17)

It has the following useful properties:

{zα, zβ} = −{zβ, zα} , (2.18)

{zα, zβzγ} = {zα, zβ}zγ + zβ{zα, zγ} . (2.19)

T he classical Hamilton equation of motion ż = {H, z} obtained using Eqs. (2.14)-(2.16)
can be written as

i
∂

∂t
zα = Ωαzα − Eµ−α − E

∑
β

µ−α,βzβ +
∑
βγ

V−α,βγzβzγ . (2.20)

T hese equations are equivalent to Eq. (2.9). T he linear and the second order response
functions calculated by solving these equations are given in Appendix A.

Eqs. (2.14)-(2.20) define the classical oscillator model. T he variable zα describes the
α’th oscillator, as is clearly seen from the form of the Poisson bracket [Eq. (2.16)]. Higher-
order terms of the Hamiltonian can be calculated order-by-order. Similarly, the Poisson
bracket is not strictly canonical and the r.h.s. of Eq. (2.17) can be expanded in powers of
zα. Second order corrections have been calculated in [22]. T hese deviations can however
be eliminated since the Poisson bracket can be always transformed to a canonical form [24]
using a nonlinear transformation of variables

z′α = zα +
∑
αβγδ

Sα,βγδzβzγzδ + . . . . (2.21)

In practice, the canonical variables can be calculated order-by-order in zα. Expressing the
Hamiltonian in terms of the canonical variable z′α allows us to define a CCOM to any given
order in zα. T his accomplishes step (ii) of the procedure.
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I I I . I NTRASTATE AND TRANSI TI ON ELECTRONI C DENSI TY MATRI CES

FOR THE EFFECTI VE MULTI LEVEL SYSTEM

Steps (iii) involves the construction of a quantum oscillator model QOM whose classical
limit reproduces the CCOM. T o that end we associate with each classical variable zα an
annihilation operator aα (zα = 〈aα〉, α > 0), z−α = z ∗α is associated with a creation operator
a+

α (z ∗α = 〈aα〉+). T hese satisfy the boson commutation relations:

[aα, a+
β ] = δαβ . (3.1)

We define the QOM Hamiltonian H1 by

H1 =: H(aα, a+
α ) : , (3.2)

where H(aα, a+
α ) is the classical Hamiltonian of the CCOM, which is given by Eqs. (2.14)

and (2.15) up to third order, and :. . .: stands for normal ordering. We then have

H1 =
∑

α

Ωαa+
α aα +

1

3!

(∑
αβγ

Vα,βγaαaβaγ + 3
∑
αβγ

V−α,βγa
+
α aβaγ + h.c.

)
− EP(a+

α , aα) , (3.3)

with

P(a+
α , aα) =

∑
α

µαaα +
1

2!

(∑
αβ

µαβaαaβ +
∑
αβ

µ−αβa+
α aβ + h.c.

)
, (3.4)

and the summation in Eqs. (3.3) and (3.4) runs over α, β, γ > 0.
T he classical limit of the QOM can be obtained by requiring that each oscillator α

remains in a coherent state parameterized by zα at all times. T his amounts to the following
factorizations 〈aαaβ〉 = zαzβ and 〈a+

α aβ〉 = z ∗αzβ. Using these factorizations, the Heizenberg
equation of motion ȧα = i

~
[H1, aα] with H1 given by Eq. (3.3) coincides with the classical

equation of motion (Eq. (2.20)). T he CCOM is thus the classical limit of the QOM and step
(iii) is accomplished.

We turn now to step (iv), namely constructing the effective multilevel system EMS whose
response reproduces the classical limit of QOM (which, in turn, coincides with the T DHF
approximation of the QFM). T his will be based on the picture established in [22] that the
semiclassical expansion is a reexpansion of the optical response in the anharmonicities of
the Hamiltonian and nonlinearities of the polarization operator in a and a+. T his is carried
out for the response up to second order in Appendix B. In particular, the linear response
in the classical approximation is obtained by setting Vα,βγ = 0 and µαβ = 0 (i.e., using the
model of a set of linearly driven uncoupled harmonic oscillators) whereas the second-order
response also depends on the terms proportional to Vα,βγ and µαβ.

T he QOM is improved successively by incorporating higher-order responses. We will
concentrate on the lower-energy excited states which can be constructed using the linear
and the second-order responses. For the linear response we set Vα,βγ = 0 and µαβ = 0
and obtain a system of harmonic oscillators with the polarization linear in a and a+. Since
the polarization is represented by the most general operator given by linear and bilinear
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combinations c+
mcn of fermion operators, we can obtain the matrix elements of c+

mcn between
the ground state and single-excited oscillator states involved in the linear response. T he
second order response depends on the anharmonicities to the first order. T his leads to
first-order corrections to the oscillator wavefunctions whereas the eigenvalues remain the
same (since they only contain higher-order corrections). T his implies that in this order of
perturbation theory which corresponds to the classical limit, the system remains harmonic
and simply attains new matrix elements of c+mcn.

It follows from Eqs. (2.1) and (3.3) together with Eqs. (2.16) that the operator c+
mcn

can be represented in terms of the oscillator operators in the following form

c+
mcn = ρgg

mn +
∑

α

{
(ξ+

α )mna+
α + (ξα)mnaα

}
+

1

2

∑
αβ

{
([ξ+

α , ρgg]ξ+
β ])mna+

α a+
β

+ ([ξ+
α , ρgg]ξβ])mna

+
α aβ + ([ξα, ρgg]ξ+

β ])mnaαa+
β + ([ξα, ρgg]ξβ])mnaαaβ

}
. (3.5)

T he EMS is constructed as a system of harmonic oscillators with the eigenstates |kα, lβ, . . .〉
and eigenenergies E = kΩα + lΩβ + . . ., where the integers k, l = 0, 1, 2, . . . label the excited
states of the various oscillators. T he EMS are calculated to first-order in V in terms of
the oscillator states of QOM in Appendix B. T he contributions to the response functions
S(j) can, therefore, be classified according to the matrix elements of the effective oscillator
system 〈kα, . . . |c+

mcn|lβ, . . .〉.
T he effective level scheme that reproduces the linear response S(1) (Eq. (A3) consists of

the ground state |g〉 and all single excitations |1α〉. T he relevant density matrix elements
are

〈g|c+
mcn|g〉 = ρgg

mn , (3.6a)

〈g|c+
mcn|1α〉 = (ξα)mn . (3.6b)

Eqs. (3.6a) and Eq. (3.6b) simply recover our input i.e. the ground state density matrix and
the T DHF electronic modes contributing to the linear response.

T he second-order response S(2) (Eq. (A4) is represented by an effective system consisting
of the ground state |g〉, single |1α〉, and double |1α1β〉 excited states. T hese are given by
Eqs. (B3) to first order in V . (T he state |2α〉 is the special case of |1α1β〉 when α = β.)
T he necessary additional matrix elements are obtained by combining Eqs. (B3) and (3.5):

〈g|c+
mcn|1α1β〉 =

([ξα, ρgg]ξβ])mn

2
+ 2

∑
γ

{
Vαβ−γ(ξγ)mn

Ωα + Ωβ − Ωγ

− Vαβγ(ξ
+
γ )mn

Ωα + Ωβ + Ωγ

}
, (3.7a)

〈1α|c+
mcn|1β〉 = ρgg

mnδαβ

+ ([[ξ+
α , ρgg]ξβ])mn +

∑
γ

{
V−α−βγ(ξγ)mn

−Ωα + Ωβ − Ωγ

+
Vαβ−γ(ξ

+
γ )mn

Ωα − Ωβ − Ωγ

}
, (3.7b)

〈1α|c+
mcn|1β1γ〉 = (ξγ)mnδαβ + (ξβ)mnδαγ , (3.7c)

where Vαβγ is given by Eq. (2.16c).
Eq. (3.7a) gives transition density matrices involving the ground state. Eq. (3.7b) ex-

presses the transition density matrices between singly-excited states obtained from S(1), and
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Eq. (3.7c) gives the transitions between singly and doubly excited states. T he first term in
Eqs. (3.7a) and (3.7b) represents the interband (particle-particle and hole-hole) part of the
density matrix, and involves only two electronic modes. T he second (intraband, particle-
hole and hole-particle) term, involves a summation over all electronic modes. T hese matrices
provide an approximation for the density matrices between states contributing to the first-
and to the second-order optical responses. T he corresponding energies are

Ω1α = Ωα; Ω1α1β = Ωα + Ωβ . (3.8)

T aking higher order anharmonicities into account will allow us to compute density
matrix elements involving new states. For example, the third-order response S(3) in-
cludes higher lying excitations: 〈g|c+

mcn|1α1β1γ〉, 〈1α|c+
mcn|1β1γ1δ〉, 〈1α1β|c+

mcn|1γ1δ1ζ〉,
〈1α1β|c+

mcn|1γ1δ〉. In general, S(j) involves all transitions contributing to the lower order
responses, j-transitions from the ground, single, double, ..., (j − 1)th excited states to the
j’th excited state, and transitions between (j − 1)th excited states.

By using an arbitrary single-particle operator µmn in Eqs. (3.7) we can compute the
full density matrix response function, which depends on all electronic modes. When µmn

is taken to be the dipole operator, we only obtain those modes that dominate the optical
response. T he ability to focus on the dominant modes alone has proved to be very useful for
calculating the optical response [23,26–29]. However, in order to compute the excited-state
density matrices we need to capture all the modes (optically bright and dark).

When only few modes are known, Eqs. (3.7a) and (3.7b) are dominated by the interband
term ([ξα, ρgg]ξβ]). T he summation over available modes gives a negligible contribution be-
cause, in general, Vαβγ � 1. T he resulting transition matrices (〈1α|c+

mcn|1β〉, 〈g|c+
mcn|1α1β〉)

will, therefore, preserve all localization properties of the ground state ρgg and electronic
modes ξα and ξβ. On the other hand, the summation over all T DHF modes significantly
increases the contribution of the second term in Eqs. (3.7a) and (3.7b) yielding the transi-
tion matrices which do not depend on the way the molecule interacts with the optical field
(molecular dipole) but represent intrinsic molecular properties.

I V. DENSI TY MATRI CES OF ACCEPTOR-SUBSTI TUTED CAROTENOI DS.

We have applied the present algorithm to a family of symmetric nonpolar (N) and polar
(P ) conjugated polyenes whereby one end is substituted with a strong acceptor group (see
Fig. 2). T he linear absorption and the electronic modes responsible for the optical response
of these molecules were studied in [23,25]. T he Hartree-Fock ground-state density matrices
were calculated first. Optimal ground-state geometries were obtained at the AM1 level using
Gaussian-94. T he ZINDO code was utilized to generate INDO/S [30–32] hamiltonian, and
the collective electronic oscillator (CEO) procedure [23,26,28] was then applied to compute

the dominant electronic modes and the corresponding dipole moments µ
(j)
ν which contribute

to the first and to the second order off-resonant optical response:2

2INDO/S hamiltonian was initially parameterized to reproduc e elec tronic spec tra at CIS level.

However, we found that it works also extremely well without further reparameterization with
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N

P
S

O

NC
CN

O

2        4       6      8     10     12     14     16     18
1        3       5      7       9      11     13    15     17

1
18

FIG. 2. Struc tures and atom labeling of the neutral N and polar P (substituted by the strong

ac c eptor) molec ules.

ξ(j) =
∑

ν

µ(j)
ν ξν + (µ(j)

ν ) ∗ ξ+
ν , j = 1, 2 . (4.1)

Satisfactory convergence of the response to within ∼ 10−3 was achieved using 10-15 effective
electronic modes.

In Figure 3 we display the dipole moments (Eq. (4.1)) of the dominant modes vs. mode
frequencies Ων , calculated using the first and the second order response. Since the N molecule
has an inversion symmetry, the first-order response depends only on antisymmetric (Bu) os-
cillators (panel A) whereas the second-order response depends on symmetric (Ag) oscillators
(panel B). T he figure shows that the response of the N molecule is dominated by a single
electronic mode. In contrast, the P molecule shows four major peaks in each order of the
response, and its electronic oscillators do not possess any symmetry. T he same modes (a
and b) with different dipoles show up in both responses.

We next examine the single-electron density matrices ρν η
nm for the states corresponding

to peaks a, b, and c in N and a’ b’, c’ and d’ in P. T hese density matrices computed using
Eqs. (3.6) and (3.7) represent the projection of the full matrix which contributes to the first
and to the second order response, because only the electronic modes which dominate the
linear and the quadratic optical responses were used in the calculations. Other components
of the matrix do not have a dipole moment and, therefore, do not contribute to the optical
response. T he acceptor’s effect on the molecular properties can be illustrated using contour
plots of the density matrices. T he absolute value of the reduced ground state density matrix
ρgg of N is shown in the upper left panel of Fig. (4). T he axes represent carbon atoms. T he
ground state density matrix is dominated by diagonal and near-diagonal elements, reflecting

the CEO for a broad range of molec ules: Computed linear absorptions of ac c eptor-substituted

c arotenoids [23], stilbenoid aggregates [33], phenylac etylene dendrimers [28], porphins [34,35], and

static sec ond-order polarizabilities of donor/ac c eptor substituted polyenes [29] c ompared well with

experiment. The input to these c alc ulations, the ground-state struc tures, c ould be obtained using

other semiempiric al (e.g. AM1), ab initio optimized molec ular geometries, experimental X-ray

diffrac tion, or NMR data. The issue of optimizing INDO/S hamiltonian parameters for the CEO

approac h or using other hamiltonians is an open problem that lies beyond the sc ope of c urrent

paper
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Ων

FIG. 3. The dipole moments µν are displayed vs. elec tronic mode frequenc ies Ων for the

molec ules shown in Fig. 2. Shown are the dominant modes in the first two orders of nonlinearity.

The dipoles are given in arbitrary units.

the bonds between nearest neighbors. T he (x1) scaling factor indicates that the largest values
of the matrix shown by the blue color are equal to 1. T he diagonal elements represent the
electronic charges on each carbon atom. T he absolute values of the matrix ∆ρaa ≡ ρaa − ρgg

(panel N(ρaa)) is the difference between the density matrix of state a and the ground state
density matrix. T he matrix is delocalized over the entire molecule. T he x10 factor implies
that the part of the excited state density matrix which contributes to the second-order
optical response only changes slightly compared to the ground state. T he difference for
the density matrix of state b ∆ρbb (panel N(ρbb)) is less delocalized compared with ∆ρaa.
In addition it is nonuniform along the diagonal, which leads to diagonal localization sizes.
∆ρcc corresponding to the electronic mode contributing to the second-order optical response
possesses a delocalization and magnitude similar to ∆ρaa. For all excited state matrices,
the off-diagonal elements are much larger than the diagonal. T his means that upon optical
excitation of the unsubstituted molecule the changes in the bonding pattern are much more
significant compared with the charge redistribution.

T he transition density matrices are displayed in the middle and the right columns of
Fig. (4). T ransitions involving the ground state are described by the electronic modes (ρga,
ρgb, and ρgc). T heir role in the optical response has been analyzed in [23]; T hey have
delocalization properties very similar to the corresponding states density matrices, because
in the calculations of the latter these modes make the dominant contribution. Similarly,
the transition density matrices between excited states shown in the right column of Fig. (4)
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FIG. 4. Contour plots of ground and exc ited state density matric es whic h dominate the linear

absorption of molec ules N. The axis labels represent the individual c arbon atoms as labeled in Fig.

2. Panel labels indic ate the molec ule (Fig. 2) and the state c orresponding to the peak in Fig. 3.

ρ gg ground state density matrix; ∆ρ ν ν ≡ ρ ν ν − ρ gg the differenc e between the density matric es of

state ν and the ground state; ρ ν η the transition density matric es.
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FIG. 5. Same as in Fig. 4 but for the polar molec ule P.

are symmetric and delocalized over the entire molecule. T he largest coherences appear to
be at the center of the matrices because the density matrices of states a, b, and c have the
strongest bonding pattern at the center.
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Fig. (5) displays the absolute values of the calculated density matrices of P. T he strong
acceptor perturbs the ground state, as shown by the reduction of the electronic density
towards the acceptor in panel P ρgg. T he difference ∆ρa ′ a ′

for state a’ is localized in the
acceptor end (panel P(ρa ′ a ′

)), whereas ∆ρb′ b′ for state b is localized on the neutral end of the
molecule (panel P(ρb′ b′ )). Note that ∆ρa ′ a ′

has very large diagonal and off-diagonal elements
implying that excitation to state a changes the charge distribution as well as the bonding
pattern compared to the ground state. In contrast, ∆ρb′ b′ is dominated by off-diagonal
elements, which makes it similar to the excited state density matrices of the unsubstituted
molecule. T his reflects the fundamental difference between states a’ and b’. ∆ρc′ c′ and ∆ρd ′ d ′

corresponding to the electronic mode contributing to the second-order optical response are
both localized at the acceptor end, and are dominated by a few large diagonal and off-
diagonal elements. T he former has a stronger bulk contribution.

T he transition density matrices between the ground and the excited states (electronic
modes ρga ′

and ρgb ′ ) are highly asymmetric and delocalized, reflecting the motions of charges
along the molecule upon optical excitation. T he x and the y axis label the electron and
the hole respectively. T he diagonal elements ρnn show induced charges on various atoms
whereas the off-diagonal elements ρnm represent the probability amplitude of finding an
excess electron at the m-th atomic orbital and a hole on the n-th atomic orbital. ρgc ′

and ρgd ′ corresponding to the high frequency excited states and contributing to the second
order response are less asymmetric than the former and delocalized over the entire molecule
(compared with ρc′ c′ and ρd ′ d ′ ). T he transition density matrices shown in the right column
of Fig. (5) are delocalized over the entire molecule. T he largest coherences appear where
the density matrices of corresponding states have the strongest bonding patterns. Note that
these density matrix elements are smaller (x10-12) compared to the other displayed matrices
(x4-9), because the states a, b’, and c’ are localized in different regions.

V. DI SCUSSI ON

T he T DHF uses the single-electron density matrix 〈g|c+mcn|g〉 to calculate the single-
electron transition density matrices (electronic modes) between the ground state and the
excited electronic states 〈g|c+

mcn|1α〉 which contribute to the linear response. In this article
we made one step further: using the ground-state density matrix and the electronic modes
we calculated additional density matrices: between the ground state and the excited states
〈g|c+

mcn|1α1β〉 which contribute to the second-order response, transition density matrices
between states 〈1α|c+

mcn|1β〉 as well as the single-electron density matrices of the excited
states 〈1α|c+

mcn|1α〉 which contribute to the linear response.

T he T DHF procedure maps the quantum many-electron system onto a system of classi-
cal oscillators. T he present approach is based on inverting the optical response function and
mapping the original system onto an effective set of quantum states. An algorithm is de-
veloped for calculating Density-Matrix-Response-Functions (DMRF) for excited electronic
states using the T ime-Dependent Hartree-Fock (T DHF) approximation. T he DMRF carries
additional excited-state information about charge distributions and bonding patterns as well
as the dynamical changes induced in these quantities by the external field.
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T he present analysis has several advantages. First, it connects the T DHF representation
with the quantum-mechanical treatments of the optical response in terms of global many-
electron eigenstates. T he latter may be useful for representing the properties of optically
excited molecule. T he procedure is further numerically inexpensive. T he absence of long
range electronic coherence may be used to reduce the number of density matrix elements
from ∼ N2 to ∼ NNc where Nc denotes the number of orbital points of closely lying atoms
[36] which communicate coherently upon optical excitation. T ypically Nc � N results in
favorable linear N-scaling of computational effort with size. For example, Nc ∼ 20 heavy
atoms (∼ 100 atomic orbitals in semiempirical hamiltonian) in polyenes. T his is analogous
to similar developments in ground state calculations [37]. We anticipate to achieve ∼ N and
∼ N2 scaling of memory and total computational time with molecular size, respectively. 3

T he present approach can be extended to compute vibronic structure of electronic tran-
sitions by including the dependence of the electronic modes on nuclear coordinates.

Finally, the present analysis was based on the T DHF approximation for the DMRF.
T he resulting EMS is not equivalent to the original QFM. It simply reproduces its T DHF
response. It is possible however to extend this approach and obtain an exact EMS. T o that
end the QOM should be deformed to yield a bosonized quantum fermion model (BQFM)
which will be equivalent to QFM [40–43] (see Fig. 1). T he T DHF is then used only to define
a convenient set of collective coordinates. T hese coordinates may then be used to compute
the exact DMRF, and we no longer rely on the T DHF. T his should result in extending
the T DHF equation to include higher-order oscillator variables [22]. T he T DHF is then
a classical approximation which follows the evolution of a point in phase space. T hese
extensions are semiclassical since they follow the evolution of wavepackets which amounts
to including higher moments of the classical variables.

In this paper we have used the single Slater determinants which constitute a set of gener-
alized coherent states [44] for the many-electron problem, to construct the classical limit of
the original model. T his allowed us to introduce the boson language which has been demon-
strated to be useful for developing various approximation schemes. T he coherent states form
an overcomplete basic set which leads to certain difficulties in using them to describe quan-
tum dynamics. However, they possess the property of the unit operator decomposition [44]
which eliminates the difficulties. T here are several ways how the coherent states can be used
to generate new approximate descriptions of the original many-bodied problem [18,19]. One
way is to start with the BQFM which is equivalent to the original QFM, as described in the
paper, and derive closed equations of motion for one- and two-boson variables in full analogy
with the Frenkel exciton systems [45]. Another way is to use variational dynamical approach
by applying Ansätze for the many-body wave function and representing it as a wavepacket
in the space of coherent states [18,19]. Finally the coherent states can be used to formulate
non-traditional configuration interaction (CI) approaches. Usually the CI schemes take into
account certain important configurations which are classified and truncated according to the

3To c alc ulate the elec tronic modes of c arotenoids (see Sec tion IV) we used the DSMA tec h-

nique [23] whic h implements Lanc zos-type algorithm and gives ∼ N2 and ∼ N 3 size-sc aling of

memory and c omputational time, respec tively. We c onsidered molec ules of moderate size (∼ 40

heavy atoms). These c omputations are inexpensive and therefore the N-sc aling proc edure was not

implemented.
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number of electron-hole pairs, i.e. single CI, double CI, etc. T he coherent states allow to
introduce new types of configurational spaces. T his can be accomplished by defining the
configurational space as spanned onto a certain subspace of coherent states. T he space of
coherent states M as stated in this paper form a Grassmanian manifold which has a com-
plex analytical structure. We can immerse the complex projective line C P

1 (which is a 1D
compact complex manifold) into M and form a vector subspace in the many-body space
of states as generated by the coherent states which belong to C P

1. T his should result in a
configurational space with the same dimensionality of single CI, which nevertheless contains
an arbitrary number of electron-hole pairs.

APPENDI X A: THE CLASSI CAL TDHF RESPONSE

T o compute the DMRF we recast Eq. (2.20) in the form

i
∂zα(t)

∂t
= Ωzα(t) +

∑
βγ

(
V−α−β−γz

∗
β(t)z ∗γ(t) + 2V−α−βγz

∗
β(t)zγ(t) + V−αβγzβ(t)zγ(t)

)
− E(t)

[
µ−α +

∑
β

(
µ−α−βz

∗
β(t) + µ−αβzβ(t)

)]
, (A1)

where the summation goes over α, β, γ > 0. T his nonlinear equation may be solved by
expanding z(t) (z ∗ (t)) in powers of the external field E(t): z(t) = z(1)(t) + z(2)(t) + . . ..
Using the time-domain Green function

Gα(t) = exp(−iΩαt), (A2)

the first order solution of Eq. (A1) is

z(1)
α (t) = i

∫ t

−∞
dτE(τ)µ−αGα(t − τ) . (A3)

T o second order we obtain

z(2)
α (t) =

∫ t

−∞

∫ τ
2

−∞
dτ2dτ1E(τ2)E(τ1)

∑
β

(
µ−α−βµβG∗

β(τ2 − τ1)

− µ−αβµ−βGβ(τ2 − τ1))Gα(t − τ2) + i

∫ t

−∞

∫ t

−∞
dτ2dτ1E(τ2)E(τ1)

∫ t

τ
2

dτ

×
∑
βγ

(
V−α−β−γµβµγG

∗
β(τ − τ2)G

∗
γ(τ − τ1) − 2V−αβ−γµ−βµγGβ(τ − τ2)G

∗
γ(τ − τ1)

+ V−αβγµ−βµ−γGβ(τ − τ2)Gγ(τ − τ1)) Gα(t − τ) . (A4)

T he time-dependent linear and second-order polarizabilities are given by
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P(1) =
∑

α

µ−αz ∗ (1)
α (t) + µαz(1)

α (t) , (A5)

P(2) =
∑

α

µ−αz ∗ (2)
α (t) + µαz(2)

α (t)

+
1

2!

∑
αβ

(
µ−α−βz

∗ (1)
α (t)z

∗ (1)
β (t) + 2µα−βz

∗ (1)
α (t)z

(1)
β (t) + µαβz

(1)
α (t)z

(1)
β (t)

)
, (A6)

where z(1)(t)(z ∗ (1)(t)) and z(2)(t)(z ∗ (2)(t)) are given by Eqs. (A3) and (A4) and their her-
mitian conjugates. Linear and second-order time-domain response functions are defined
by

P(1) =

∫
dτE(τ)R(1)(t; τ) , (A7)

P(2) =

∫
dτ2dτ1E(τ2)E(τ1)R

(2)(t; τ1, τ2) . (A8)

Comparing Eqs. (A7) and (A5) (Eqs. (A8) and (A6)) and using Eqs. (A3) and (A4) we
obtain for linear and second-order time-domain response function

R(1)(t; τ) = −
∑

α

µ−αµα(Gα(t − τ)G∗
α(t − τ)) , (A9)

R(2)(t; τ1, τ2) = i
∑
αβγ

∫ t

τ
2

dτ
(
V−α−β−γµαµβµγG

∗
α(τ − τ2)G

∗
β(τ − τ1)Gγ(t − τ)

− 2Vα−β−γµ−αµβµγGα(τ − τ2)G
∗
β(τ − τ1)Gγ(t − τ)

+ Vαβ−γµ−αµ−βµγGα(τ − τ2)Gβ(τ − τ1)Gγ(t − τ)) + h.c.

+
1

2!

∑
αβ

(2µ−α−βµαµβG
∗
α(τ2 − τ1) − µα−βµ−αµβGα(τ2 − τ1))Gβ(t − τ2) + h.c.

− (µ−α−βµαµβG
∗
α(t − τ1)G

∗
β(t − τ2) + µαβµ−αµ−βGα(t − τ1)Gβ(t − τ2)

− 2µα−βµ−αµβGα(t − τ1)G
∗
β(t − τ2)

)
. (A10)

Applying the Fourier transform

f(ω) =

∫
dtf(t)exp(−iωt) ; f(t) =

1

2π

∫
dωf(ω)exp(iωt) (A11)

to Eqs. (A10) and (A9), we obtain the frequency-dependent linear and second-order polar-
izabilities

P (1)(−ωs; ω) =

∫
dω

2π
2πδ(−ωs + ω)α(−ωs; ω)E(ω) , (A12)

P (2)(−ωs; ω1, ω2) =

∫
dω1

2π

dω2

2π
2πδ(−ωs + ω1 + ω2)β(−ωs; ω1, ω2)E(ω1)E(ω2) . (A13)

T he final expressions for the linear and the second order polarizabilities are:

α(ω) =
∑

α

2µ−αµαΩα

Ω2
α − ω2

, (A14)
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β(−ωs = ω1 + ω2; ω1, ω2) = −1

4

∑
αβγ

(Vαβγµ−αµ−βµ−γ + h.c.)

×
(

1

(Ωα − ω1)(Ωβ − ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα + ω1)(Ωβ + ω2)(Ωγ − ω1 − ω2)

)
+ (2Vα−β−γµ−αµβµγ + h.c.)

×
(

1

(Ωα + ω1)(Ωβ − ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα − ω1)(Ωβ + ω2)(Ωγ + ω1 + ω2)

+
1

(Ωα − ω1)(Ωβ + ω2)(Ωγ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ − ω2)(Ωγ − ω1 − ω2)

)
+ (V−αβγµαµ−βµ−γ + h.c.)

×
(

1

(Ωα + ω1)(Ωβ + ω2)(Ωγ + ω1 + ω2)
+

1

(Ωα − ω1)(Ωβ − ω2)(Ωγ − ω1 − ω2)

)
+

1

4

1

2!

∑
αβ

(µαβµ−αµ−β + h.c.)

(
1

(Ωα − ω1)(Ωβ + ω1 + ω2)
+

1

(Ωα − ω2)(Ωβ + ω1 + ω2)

+
1

(Ωα − ω1)(Ωβ − ω2)
+

1

(Ωα + ω1)(Ωβ − ω1 − ω2)

+
1

(Ωα + ω2)(Ωβ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ + ω2)

)
+ 2µ−αβµαµ−β

(
1

(Ωα + ω1)(Ωβ + ω1 + ω2)
+

1

(Ωα + ω2)(Ωβ + ω1 + ω2)

+
1

(Ωα + ω1)(Ωβ − ω2)
+

1

(Ωα − ω1)(Ωβ − ω1 − ω2)

+
1

(Ωα − ω2)(Ωβ − ω1 − ω2)
+

1

(Ωα + ω1)(Ωβ − ω2)

)
(A15)

APPENDI X B: SUM-OVER-STATES POLARI ZABI LI TI ES OF THE EFFECTI VE

MULTI LEVEL SYSTEM

In this Appendix we calculate optical polarizabilities for the quantum model QOM using
the standard Sum-over-States expressions [1]. T he linear and the quadratic polarizabilities
are given by

α(ω) =
∑

n

2ωngrgnrng

ω2
ng − ω2

(B1)

β(−ωs = ω1 + ω2; ω1, ω2) = −1

4

∑
n,n

′

rgnrnn
′ rn

′

g

(
1

(ωn
′

g + ω1 + ω2)(ωng + ω1)

+
1

(ωn
′

g − ω1 − ω2)(ωng − ω1)
+

1

(ωn
′

g + ω1 + ω2)(ωng + ω2)
+

1

(ωn
′

g − ω1 − ω2)(ωng − ω2)
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+
1

(ωn
′

g + ω1)(ωng + ω1 + ω2)
+

1

(ωn
′

g − ω1)(ωng − ω1 − ω2)
+

1

(ωn
′

g + ω2)(ωng + ω1 + ω2)

+
1

(ωn
′

g − ω2)(ωng − ω1 − ω2)
+

1

(ωn
′

g − ω2)(ωng + ω1)
+

1

(ωn
′

g + ω2)(ωng − ω1)

+
1

(ωn
′

g − ω1)(ωng + ω2)
+

1

(ωn
′

g + ω1)(ωng − ω2)

)
, (B2)

where the sum runs over all excited states n and n
′

, and g stands for the ground state.
rkl = 〈k|P|l〉 (rlk = r ∗kl) is the transition dipole between k’th and l’th states.

We start with the Hamiltonian (Eq. (3.3)) representing N - quantum oscillators with the
electronic polarizability operator P(a+, a) (Eq. (3.4). T o calculate the transition dipoles we
first compute the wavefunctions of our oscillator system to first order in V :

φ(0) = |g〉0 − 1

3!

∑
αβγ

V−α−β−γ

Ωα + Ωβ + Ωγ

a+
α a+

β a+
γ |g〉0 (B3a)

φ(1)
α = a+

α |g〉0 +
1

3!

∑
βγ

Vα−β−γ

Ωα − Ωβ − Ωγ

a+
β a+

γ |g〉0 (B3b)

φ
(2)
βγ = a+

β a+
γ |g〉0 −

1

3!

∑
α

2V−αβγ

Ωα − Ωβ − Ωγ

a+
α |g〉0

+
1

3!

∑
δζ

(
V−γ−δζa

+
β

Ωγ − Ωδ − Ωζ

+
V−δ−ζβa+

γ

Ωβ − Ωδ − Ωζ

)
a+

δ a+
m|g〉0 (B3c)

where Vαβγ is given by Eq. (2.16c) and |g〉0, a+
α |g〉0, a+

α a+
β |g〉0, and a+

α a+
β a+

γ |g〉0 denote the
ground, single, double and triple excited states of the uncoupled system respectively.

T he transition dipoles among the ground and the first two excited states are given by:

〈φ(0)|P|φ(0)〉 = 0 , (B4a)

〈φ(0)|P|φ(1)
α 〉 = µα , (B4b)

〈φ(0)|P|φ(2)
αβ〉 =

1

2!
µαβ + 2

∑
γ

{
Vαβ−γµγ

Ωα + Ωβ − Ωγ

− Vαβγµ−γ

Ωα + Ωβ + Ωγ

}
, (B4c)

〈φ(1)
α |P|φ(1)

β 〉 = µ−αβ +
∑

γ

{
Vαβ−γµ−γ

Ωα − Ωβ − Ωγ

+
V−α−βγµγ

−Ωα + Ωβ − Ωγ

}
, (B4d)

〈φ(1)
α |P|φ(2)

αβ〉 = µβ . (B4e)

Substituting these transitions dipoles in Eqs. (B1) and (B2) we obtain expressions for the
linear and the second-order polarizabilities which coincide with Eqs. (A14) and (A15). T his
proves the equivalence of the linear and the second-order polarizabilities of the QOM calcu-
lated in the classical limit and using the Sum-over-States expression.
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APPENDI X C: NONLI NEAR RESPONSE OF SYSTEMS WI TH

COORDI NATE-DEPENDENT ANHARMONI CI TI ES

When the anharmonicities in Eqs. (3.3) and (3.4) only depend on coordinates qα =
(a+

α +aα)q0α/
√

2 (and not on the momenta pα = (a+
α −aα)p0α/

√
2) the DMRF are simplified

considerably. In this case we have

Vαβγ = V−α−β−γ = V−αβγ = V−α−βγ ≡ V q
αβγ

q0αq0βq0γ(√
2
)3 , (C1)

µ−α−β = µαβ = µ−αβ ≡ µq
αβ

q0αq0β(√
2
)2 , (C2)

µα = µα ≡ µq
α

q0α√
2

. (C3)

T he time-domain response (Eq. (A10)) then becomes

R(t; τ1, τ2) = −
∫ t

τ
2

dτ
∑
αβγ

V q
αβγµ

q
αµq

βµq
γ

(q0αq0βq0γ)
2

8
Cα(τ − τ2)Cβ(τ − τ1)Cγ(t − τ)

+
∑
αβ

µq
αβµq

αµq
β

(q0αq0β)2

4
(2Cα(τ2 − τ1)Cβ(t − τ2) + Cα(t − τ1)Cβ(t − τ2)) , (C4)

where

Cα(t) = i(Gα(t) − G∗
α(t)) = 2sin (Ωαt) , (C5)

is the classical linear response of a harmonic oscillator.
Similarly Eq. (A15) reduces to

β(−ωs = ω1 + ω2; ω1, ω2) = −
∑
αβγ

V q
αβγµ

q
αµq

βµq
γ

MαMβMγ

1

(Ω2
α − ω2

1)(Ω
2
β − ω2

2)(Ω
2
γ − (ω1 + ω2)2)

+
∑
αβ

µq
αβµq

αµq
β

MαMβ

(
1

(Ω2
α − ω2

1)(Ω
2
β − (ω1 + ω2)2)

+
1

(Ω2
α − ω2

2)(Ω
2
β − (ω1 + ω2)2)

+
1

(Ω2
α − ω2

1)(Ω
2
β − ω2

2)

)
. (C6)
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