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The nonlinear optical polarizabilities of conjugated
molecules are calculated and analyzed using a few collective
electronic normal modes. A firm relationship between the
optical response and ground state charge distributions and
bonding network is established. The resulting physically-
intuitive picture relates the optical response directly to mo-
tions of charges in real space, identifies the origin of the scaling
and saturation of optical nonlinearities with size, and has in-
terference effects naturally built in. Drastic reduction in com-
putational effort makes the present approach particularly at-
tractive for computing and high order polarizabilities of large
molecules.

I. INTRODUCTION

Calculating the nonlinear optical response of conju-
gated molecules constitutes a fundamental problem with
important practical implications for optical materials. A
challenging theoretical problem is to relate the optical
response to ground state (i.e. chemical) properties, thus
providing guidelines (structure/susceptibility relations)
for the synthesis of new optical materials with large sus-
ceptibilities [1–10]. An important issue is the scaling of
the off-resonant susceptibilities with the number of car-
bon atoms N . For the third-order polarizability we have
at γ ∼ N b where the exponents 4 < b < 6 for short chains
[11,12] and crosses over to b = 1 for molecules longer than
to the exciton coherence size [8–10,13].

Establishing the relation between optical and chemical
properties requires the development of efficient computa-
tional techniques. The sum-over-states (SOS) approach
[7,14], which involves the calculation of both the ground
state and excited states many-electron wavefunctions as
well as the electric dipole matrix elements, is limited to
small molecules. Intrinsic interference effects [1,2,15] re-
sulting in an almost cancellation of very large contribu-
tions further limit its accuracy.

A totally different approach, which avoids the calcu-
lation of many-electron excited state wavefunctions, is
provided by the Coupled Electronic Oscillator (CEO)
[8,9,16,17] procedure. The input to this calculation is
the single-electron reduced ground state density matrix
[18], defined by ρσ

nm ≡< c+
m,σcn,σ >, where c+

m,σ(cm,σ) is
the (creation) annihilation operator of a π-electron on the
m’th carbon atom with spin σ. The diagonal elements
(n = m) represent the charge distribution, and off diago-
nal elements (n 6= m) constitute the bond orders. The in-

teraction between π-electrons and the external field E(t)
polarized along the chain z-axis is −µ·E(t). We assume a
localized basis set so that the dipole moment is diagonal
µ =

∑
n,σ µnnc+

n,σcn,σ, with µnm = eznδnm. The optical
response is then calculated by solving nonlinear equations
of motion for the changes induced in the density matrix
by the external field. The approach provides a clear real-
space picture for the optical response in terms of the
dynamics of electron hole pairs which form collective os-
cillators (the eigenmodes of the linearized equations), in
complete analogy with the normal mode analysis of nu-
clear vibrations. The nonlinear terms in the CEO equa-
tions connect the optical nonlinearities to scattering of
oscillators, and can be incorporated and analyzed in the
same way as vibrational anharmonicities. The resulting
physically intuitive picture reproduces the correct scal-
ing of optical nonlinearities with system size and allows
a natural connection with other types of materials, such
as semiconductor nanostructures [19,20].

A particularly attractive aspect of the CEO represen-
tation is the observation that only a few (4-5) oscillators
dominate the optical response. This response thus de-
pends on a very small numbers of parameters represent-
ing the oscillator frequencies, oscillator strengths and a
few anharmonicity constants. This provides the basis for
a simple physical picture for the origin of the optical non-
linearities and how are they affected by molecular geom-
etry, substitutions, etc. In the absence of a priori method
for identifying the dominant oscillators, previous imple-
mentations of the CEO involved computing the complete
set of modes by the diagonalization of a N2 ×N2 matrix
representing the linearized equations of motion, N being
the basis set size. Subsequently these modes need to be
sorted out in order to find the few dominate ones.

Despite the tremendous computational advantages of
the CEO procedure over the sum over states, calculat-
ing the complete set of modes is still a computationally
demanding task. The rapid growth of numerical effort
with molecular size and order of nonlinearity constitutes
a bottleneck which severely restricts its range of applica-
bility. In this paper we report a novel sum-rule approach
which allows us to focus on the dominant modes from the
outset. The considerably reduced computational cost al-
lows us to extend the range of applicability to very large
molecules and higher nonlinearities than previously re-
ported. This makes it possible to obtain the response
all the way from small oligomers to the bulk in a single,
unified treatment. Furthermore, the microscopic origin
of the dominant mode picture is clearly established.

The sum-rule procedure can be best understood by
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pursuing the analogy with the calculation of complex lin-
ear absorption lineshapes using spectral moments [21].
Instead of calculating contributions of individual states
to the line profile, one calculates integrals of the spec-
tral line multiplied by the frequency to the n’th power
(i.e., the n’th moment). The moments can be readily
calculated using the short time dynamics without going
through a complex eigenvalue problem, and often very
few moments provide an adequate global representation
of the lineshape. The sum-rule method is based on the
same idea. However, rather than calculating the mo-
ments of a lineshape we calculate the spectral moments
of the time-dependent density matrix induced by the ex-
ternal field. The resulting matrix of moments is used to
construct the relevant modes. This is accomplished using
a family of sum rules which connect the short-time behav-
ior of the response function both to ground state prop-
erties, and to integrals over frequencies of the polariz-
abilities. We can then calculate the frequency-dependent
optical polarizabilities using a small number of parame-
ters (frequencies and oscillator strengths) characterizing
the dominant modes alone, which in turn are related to
ground state charge distributions and bonding network
through the ground state reduced single-electron density
matrix. In complete analogy with the moment analysis
of spectral lineshapes, the number of modes is increased
gradually untill the desired convergence is attained. This
procedure is both rapidly converging and physically in-
sightful.

II. ELECTRONIC-OSCILLATOR
REPRESENTATION OF THE NONLINEAR

RESPONSE.

Our analysis starts with the Pariser-Par-Pople (PPP)
tight-binding Hamiltonian for π-electrons which repro-
duces many important properties of conjugated polyenes
[22]. This hamiltonian contains nearest neighbor trans-
fer integrals tnm, and the Coulomb interaction Vnm. The
hamiltonian and parameters have been given elsewhere
[8,9]. The calculation starts by solving the Hartree-Fock
ground state density matrix ρ̄ and expanding the time-
dependent density matrix, representing the molecule
driven by the external field, as ρ(t) = ρ̄ + ξ(t) + T (ξ(t)).
Here ξ is the interband (particle-hole), and T (ξ) is the
intraband (particle-particle and hole-hole) parts of devi-
ation of the reduced single-electron density matrix from
ρ̄: using the time-dependent Hartree-Fock decoupling
scheme [23,24], T (ξ) is given by a power series in ξ,
which can be obtained order by order using the relation
ρ2(t) = ρ(t), resulting in T (ξ) = 1

2! [[ξ, ρ̄], ξ] + 0(ξ4). The
polarization to j’th order in the external field E(t) can
then be calculated by taking the expectation value of the
dipole moment operator µ with respect to the time de-
pendent density matrix P (j)(t) = Tr(µρ(j)(t)). The j’th
polarizability is obtained by dividing the polarization by
the j’th power of the field.

With this notation, the CEO equation to j-th order
can be written as

i
∂ξ(j)(t)

∂t
− Lξ(j)(t) = η(j)(t). (1)

This is a linear homogeneous equation for ξ(j). The linear
part is Lξ = [t + V (ρ̄), ξ] + [V (ξ), ρ̄], where η(j)(t) is
given in terms of ρ̄ and lower order ξ(k) k < j, η(1)(t) =
−E(t)[µ, ρ̄], etc.

The CEO technique maps the calculation of the optical
response onto the dynamics of coupled electronic oscil-
lators representing the electron-hole pair components of
the reduced single electron density matrix. To show that,
we compute the eigenmodes ξν of the linear operator L
with eigenfrequencies Ων , Lξν = Ωνξν . The eigenvectors
come in pairs. Each vector ξν with frequency Ων has
a counterpart ξ+

ν with frequency -Ων . The electronic-
oscillator coordinates (Qν) and momenta (Pν) are given
by the symmetric and antisymmetric combinations, Qν =
(ξν + ξ+

ν )/
√

2, Pν = −i (ξν − ξ+
ν )/

√
2. The j-th or-

der interband component of the reduced single-electron
density matrix ξ(j)(ω) can be expanded as

ξ(j)(ω) =
N2/4∑
ν=1

µ(j)
ν (ω)

[
Ων

Ω2
ν − ω2

Qν +
iω

Ω2
ν − ω2

Pν

]
. (2)

We have thus mapped the system onto a collection of
N2/4 electronic-oscillators with frequencies Ων , and ef-
fective frequency dependent transition dipoles µ

(j)
ν , N

being the basis set size. The density matrix can then be
expanded using this set of collective normal modes.

The Sum Rules procedure proposed here avoids the di-
rect diagonalization of L when calculating ξ(j). Instead,
the modes are obtained by expanding ξ(j) in powers of
time and comparing term by term with the spectral “mo-
ments” of the density matrix. The number of modes is
controlled by the truncation of the short time expansion,
and can be varied at will. We then obtain a nonlinear
system of equations for the dominant mode frequencies
Ων , their oscillator strengths µ

(j)
ν and the corresponding

coordinates Qν and momenta Pν .
Calculating the normal modes is the most computa-

tionally demanding task of the CEO procedure. This dif-
ficulty may be overcome using the Sum Rules procedure
outlined below, which avoids the direct diagonalization
of L when calculating ξ(j). We start by defining a fam-
ily of matrices related to the short-time dynamics of the
density matrix S

(j)
k (ω) = Lkη(j)(ω) k = 0, 1, 2 . . . . The

calculation of S
(j)
k only requires matrix multiplication (no

inversion or diagonalization), and they can be readily ob-
tained even for very large systems [25]. The modes are
obtained by expanding the short time response in powers
of time and comparing term by term with the spectral
“moments” of the density matrix. We then have

S(j)
n (ω) = i

M∑
ν=1

Ωn
νµ(j)

ν (ω)Pν n = 0, 2, 4, ..., 2M (3a)
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S(j)
n (ω) =

M∑
ν=1

Ωn
νµ(j)

ν (ω)Qν n = 1, 3, 5, ..., 2M − 1

(3b)

These are closed equations for 2M parameters (µν , Ων),
and 2M, N2 × N2 matrices (Pν and Qν). M is the
desired number of modes which can be varied at will,
M = 1, 2, . . ..

By tracing these equations with the effective dipole op-
erator we obtain a nonlinear system of 2M equations for
the dominant mode frequencies Ων , and their oscillator
strengths µ

(j)
ν . The system is solved numerically, start-

ing with a single mode approximation (M = 1). By suc-
cessively increasing the number of modes we obtain im-
proved approximations for the frequencies and effective
oscillator strengths of the dominant modes, until some
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FIG. 1. The effective dipole moments µν are displayed vs.
Electronic Oscillator Frequencies Ων for an N = 100 poly-
acetylene chain. Shown are the dominant modes in the first
five orders of nonlinearity (A - E). The dominant modes la-
beled (b-f) and displayed as contour plots in Figs. 4

convergence criteria are met. Once Ων and µν are calcu-
lated, and substituted in Eqs. (3), we can then calculate
the matrices representing the momenta Pν and coordi-
nate Qν of the desired modes by solving these equations.
The linear response j = 1 is calculated first. The result-
ing first order modes are used to calculate the relevant
modes for the second order response (j = 2) and so forth.

III. DISCUSSION

In Figure 1 we display the effective dipole moments,
µ

(j)
ν (Eq. (2)) of the dominant modes vs. mode frequen-

cies Ων calculated for a N = 100 polyacetylene chain,
and different orders in the radiation field j = 1, . . . , 5.
Since the molecule has an inversion symmetry, the odd
order responses (j = 1, 3, 5) depend only on antisymmet-
ric (Bu) oscillators (top three panels) whereas the even
order responses (j = 2, 4) depend on symmetric (Ag) os-
cillators (bottom two panels). Obviously only a small
fraction of the total 2500 oscillators are relevant. The
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FIG. 2. A - C) convergence of the lowest three nonvanish-
ing polarizabilities (α, γ, and δ) of polyacetylene chains (up to
40 carbon atoms) with the number of modes used for calcula-
tions. The results obtained with the full TDHF calcullations
(panel (A) and (B)) and with M = 12 modes (panel (C) are
shown by solid lines. Note that M = 7 modes approximation
gives good values for hyperpolarizabilities
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FIG. 3. A) Contour plots of ρ̄ (a) and the dominant modes (b-f) that contribute to the responses up to the fifth order for the
system of Fig.2. Shown are the absolute values of the density matrices smoothed over four points to eliminate fast oscillations
nd to highlight the long range behavior. Frequencies of b− f modes are 2.4, 3.9, 4.5, 4.7, and 5.1 eV , respectively. B) Same as
A but for a shorter chain (N = 30). Exiton confinement effects are clearly seen in panels c, d, e, f. Frequencies of modes b− f
are 2.6, 4.0, 4.8, 5.2, and 5.6 eV , respectively
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FIG. 4. A) Scaling and saturation of the lowest three
nonvanishing polarizabilities (α, γ, and δ) of polyacetylene
chains with size; B) variation of the scaling exponents
b ≡ d[lnχ]/d[lnN ], χ = α, γ, δ with size for the curves shown
in (A). Note how the exciton coherence size increases with
the degree of nonlinearity

linear response is dominated by the first Bu (b) mode,
but two additional modes (d,f) also make an important
contribution to the third order response.

The sum-rule procedure is rapidly converging since it
computes only the dominant modes whose number sat-
urates very rapidly with system size and with the order
of nonlinearity. The convergence of of the lowest three
nonvanishing polarizabilities (α, γ, and δ) of polyacety-
lene chains with up to 40 carbon atoms as a function of
the number of modes used is shown on Fig.2. The linear
response is well represented by a single mode calculation
whereas the 8 modes approximation gives good values for
high hyperpolarizabilities. Consequently, computational
time grows only ∼ N2 with system size compared with
∼ N6 for the TDHF. Furthermore, the computational
time of the j’th order polarizability scales only linearly
with j. This makes it possible to calculate high order
nonlinearities of very large molecules [25] with modest
computational effort.

Contour plots of the ground state density matrix ρ̄(a)

as well as the five dominant modes labeled b-f in Figure
2 is shown in Figure 3 A for N = 100. The delocalization
of the off diagonal elements represents electronic coher-
ence between different atoms. Figure 3 clearly shows how
electronic coherence which is very limited for the almost
diagonal ρ̄, increases very rapidly for the higher modes.
To illustrate finite size effects we display the same quanti-
ties for N = 30 in Figure 3 B. We note that modes a and
b are hardly affected by reducing the size from 100 to 30.
However, the higher modes which are more delocalized,
show significant confinement effects.

The calculated first- (α), third- (γ) and fifth-order (δ)
polarizabilities of polyacetylene chains with up to 200
carbon atoms are shown in the Fig. 4A. Panel B shows
the scaling exponents b (α, γ, δ ∼ N b). We note that
the variation with size is very rapid at small sizes but
b eventually saturates, and attains the bulk value 1. In
general, higher frequency modes contribute to the higher
nonlinear response. Since the size of the mode grows with
mode frequency (Fig. 3), the crossover (coherence) size
increases for higher orders nonlinearities (Fig. 4 A).

The present sum-rule procedure allows us to compute
the nonlinear response by solving a closed system of equa-
tions for a limited number of variables, since in practice,
only a small fraction of the total N2/4 modes contribute
significantly to the response. We completely avoid the
explicit and expensive calculation of excited electronic
states. Instead, the reduced single electron denstiy ma-
trix corresponding to the ground state is shown to carry
the essential information necessary for calculating and
interpreting the optical nonlinearities. The role of bond
length alternation in determining the susceptibilities has
been demonstrated on physical grounds. This type of
insight is contained clearly in the present scheme since
bond order alternation is related to the nearest neighbor
density matrix elements. Our analysis puts these obser-
vations on a firm theoretical basis, and extends them to
include additional information contained in the density
matrix. The resulting real space representation provides
a clear picture of the electronic coherence underlying the
nonlinear response. A new type of chemical intuition
which focuses directly on the electronic charges and co-
herences and is not based on properties of many-electron
eigenstates emerges naturally. Several other applications
of the present picture are straightforward. Effects of ex-
ternal perturbations (donor/acceptor substitutions, elec-
tric field, solvent, etc.) can be easily incorporated and
visualized. By rewriting the TDHF equations using the
dominant modes and solving them numerically in the
presence of the field (rather than expanding them pertur-
batively), we can compute the response to strong fields.
Time domain nonlinear spectroscopies [26,27] including
femtosecond coherent techniques which can be used to
probe electronic correlations can be simulated as well.
Spectral selectivity of excitons makes the dominant mode
picture even more applicable on Resonance. Finally, vi-
brational motions which show up as distinct resonances
(e.g., coherent Raman techniques) and also promote the
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optical nonlinearities [28,29], can be readily incorporated
by solving a larger system of equations for the coupled
electronic and nuclear modes.
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