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ABSTRACT: Partial atomic charge assignment is of immense practical value to force field
parametrization, molecular docking, and cheminformatics. Machine learning has emerged as
a powerful tool for modeling chemistry at unprecedented computational speeds given
accurate reference data. However, certain tasks, such as charge assignment, do not have a
unique solution. Herein, we use a machine learning algorithm to discover a new charge
assignment model by learning to replicate molecular dipole moments across a large, diverse
set of nonequilibrium conformations of molecules containing C, H, N, and O atoms. The
new model, called Affordable Charge Assignment (ACA), is computationally inexpensive
and predicts dipoles of out-of-sample molecules accurately. Furthermore, dipole-inferred
ACA charges are transferable to dipole and even quadrupole moments of much larger
molecules than those used for training. We apply ACA to dynamical trajectories of
biomolecules and produce their infrared spectra. Additionally, we find that ACA assigns
similar charges to Charge Model 5 but with greatly reduced computational cost.

Electrostatic interactions contribute strongly to the forces
within and between molecules. These interactions depend

on the charge density field ρ(r), which is computationally
demanding to compute. Simplified models of the charge
density, such as atom-centered monopoles, are commonly
employed. These partial atomic charges result in faster
computation as well as provide a qualitative understanding of
the underlying chemistry.1−4 However, the decomposition of
charge density into atomic charges is, by itself, an ambiguous
task. Additional principles are necessary to make the charge
assignment task well-defined. Here we show that a machine
learning model, trained only on the dipole moments of small
molecules, discovers a charge model that is transferable to
quadrupole predictions and extensible to much larger
molecules.
Existing popular charge models have also been designed to

reproduce observables of the electrostatic potential. The
Merz−Singh−Kollman (MSK)5,6 charge model exactly repli-
cates the dipole moment and approximates the electrostatic
potential on many points surrounding the molecule, resulting
in high-quality electrostatic properties exterior to the molecule.
However, MSK suffers from basis set sensitivity, particularly for
“buried atoms” located inside of large molecules.7−9 Charge
Model 5 (CM5)8 is an extension of Hirshfeld analysis,10 with
additional parametrization in order to approximately reproduce

a combination of ab initio and experimental dipoles of 614 gas-
phase dipoles. Unlike MSK, Hirshfeld and CM5 are nearly
independent of basis set.9 This insensitivity allows CM5 to use
a single set of model parameters. The corresponding trade-off
is that its charges do not reproduce electrostatic fields as well
as MSK.
A limitation of these conventional charge models is that they

require expensive ab initio calculation, which can be computa-
tionally impractical, especially for large molecules, long time
scales, or systems exhibiting great chemical diversity. Recent
advances in machine learning (ML) have demonstrated great
potential to build quantum chemistry models with ab initio-
level accuracy while bypassing ab initio costs.11 Trained to
reference data sets, ML models can predict energies, forces,
and other molecular properties.12−27 They have been used to
discover materials28−37 and study dynamical processes such as
charge and exciton transfer.38−41 Most related to this work are
ML models of existing charge models,9,42−44 which are orders
of magnitude faster than ab initio calculation. Here we show
that ML is able to go beyond emulation and discover a charge
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model that closely reproduces electrostatic properties by
training directly to the dipole moment.
In this Letter, we use HIP-NN (Hierarchically Interacting

Particle Neural Network),45 a deep neural network for
chemical property prediction, to train our charge model, called
Affordable Charge Assignment (ACA). ACA is effective at
predicting quadrupoles despite being trained only to dipoles,
demonstrating the remarkable ability of ML to infer quantities
not given in the training data set. Furthermore, its predictions
are extensible to molecules much larger than those used for
training. We validate ACA by comparing it to other popular
charge models and find that it is similar to CM5. We then
apply ACA to long-time dynamical trajectories of biomolecules
and produce infrared spectra that agree very well with ab initio
calculations.
We briefly review HIP-NN’s structure. A more complete

description is reported elsewhere in ref 45. HIP-NN takes a
molecular conformation as input. The input representation
consists of the atomic numbers of all atoms and the pairwise
distances between atoms. This representation is simple and
ensures that the network predictions satisfy translational,
rotational, and reflection invariances. Figure 1 illustrates how

HIP-NN processes molecules using a sequence of on-site and
interaction layers. On-site layers generate information specific
to each local atomic environment, and interaction layers allow
sharing of information between nearby atomic environments.
HIP-NN has previously been successful in modeling

energy45 and pre-existing charge models.9 In this work, we
extend the model for dipole prediction using

∑μ =
=

q r
i

N

i i
1

atoms

(1)

where ri and qi are the position and charge of atom i. HIP-
NN’s learned charge assignment qi (the ACA charge) is
decomposed as a sum over hierarchical corrections

∑=
=

q qi
l

N

i
l

0

interactions

(2)

As depicted in Figure 1, each qi
l is calculated from the

activations (i.e., outputs) of the lth set of HIP-NN on-site
layers. An equivalent decomposition is μ = ∑l μ

l where μl =
∑i qi

lri
l is the lth hierarchical dipole correction. HIP-NN is

designed such that higher-order corrections (i.e., μl for larger l)
tend to decay rapidly.
Training of HIP-NN proceeds by iterative optimization of

the neural network model parameters using stochastic gradient
descent. The goal of training is to maximize the accuracy of
HIP-NN’s dipole predictions (as quantified by the root-mean-
square error (RMSE)) subject to regularization. The full ACA
model of this Letter was generated by an ensemble of four
networks. More details about HIP-NN and its training process
are provided in ref 45 and the Supporting Information.
The HIP-NN training and testing data are drawn from the

ANI-1x data set, which includes nonequilibrium conformations
of molecules with C, H, N, and O atoms.46 The ANI-1x data
set was constructed through an active learning procedure47−49

that aims to sample chemical space with maximum diversity.
Although ANI-1x was originally designed for potential energy
modeling, its chemical diversity also enhances the trans-
ferability of ML predictions for other properties, such as the
dipole moment. We restrict molecule sizes to 30 atoms or less
and randomly select 396k for training and 44k for testing. Data
set calculations were performed with Gaussian 09 using the
ωB97x density functional and 6-31G* basis set.50 This level of
theory will be referred to as the quantum-mechanical (QM)
standard throughout this Letter.
We benchmark the ACA model according to the accuracy of

its dipole and quadrupole predictions. To demonstrate
extensibility, we test on the DrugBank (∼13k structures) and
Tripeptides (2k structures) subsets of the COMP6 bench-
mark,46 which contain nonequilibrium conformations of drug
molecules and tripeptides. Figure 2 shows the molecular size
distribution of these data sets; the molecules in the
extensibility sets are roughly four times larger on average
than those of ANI-1x, which we used to train ACA.
Figure 3 shows 2D histograms comparing ACA predicted

dipoles and quadrupoles to the QM reference, for all three data

Figure 1. Abstract schematic of HIP-NN in the context of dipole
prediction, illustrated for a water molecule.

Figure 2. Size distributions of molecules in three data sets. The top
panel counts the number of all atoms (C, H, N, O), and the bottom
panel counts the number of heavy atoms (C, N, O) per molecule.
Each histogram is normalized by its maximum bin count. Although
ACA is only trained to ANI-1x, its predictions are extensible to the
much larger molecules in the DrugBank and Tripeptides data sets.
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sets. We measure the RMSE and mean absolute error (MAE).
Left panels of Figure 3 compare Cartesian dipole components
in units of Debye (D). The MAE of 0.078 D for predicting
ANI-1x dipoles is comparable to the error between the QM

level of theory and experimental dipole measurements.51 The
MAE of ∼0.3 D for predicting DrugBank and Tripeptides
dipoles demonstrates the strong extensibility of ACA. Right
panels of Figure 3 compare quadrupole Cartesian components
in units of Buckingham (B). The agreement with QM is
remarkable (MAE = 0.705 B for the ANI-1x tests) in light of
the fact that ACA was trained only to dipoles. Furthermore,
ACA continues to make good quadrupole predictions for the
much larger COMP6 molecules. We conclude that the ACA
charges are physically useful for reproducing electrostatic
quantities. Additional material quantifying the distributions
depicted in Figures 2 and 3, including the error as a function of
molecular size, are available in the Supporting Information.
Next, we compare the dipole-inferred ACA model to some

conventional charge models. This analysis uses a subset of
GDB-11, denoted here as GDB-5, which contains up to five
heavy atoms of types C, N, and O.52 The data set contains a
total of 517 133 structures, including nonequilibrium con-
formations. Four charge models were included in the reference
data set: Hirshfeld,10 MSK,5,6 CM5,8 and population analysis
from natural bond orbitals53 (NBOs). Hirshfeld assigns atomic
contributions to the electron density based on their relative
weighting to the protodensity. MSK charges are constrained to
reproduce the dipole moment while attempting to match the
electrostatic potential at many points surrounding the
molecule. CM5 is an extension of Hirshfeld, empirically
parametrized to reproduce ab initio and experimental dipoles.
NBO charges are computed as a sum of occupancies from all
natural atomic orbitals on each atom. The NBO model is more
popular for capturing features such as bond character.
Figure 4 shows the correlation between each pair of charge

models and demonstrates the inconsistency between different
approaches for charge partitioning. The strongest correspond-
ence is between CM5 and ACA, with a mean absolute

Figure 3. 2D histograms showing the correlation between predicted
(ACA) and reference (QM) electrostatic moments using three test
data sets: ANI-1x, DrugBank, and Tripeptides. Left and right panels
show dipole and quadrupole correlations, respectively. The values for
the RMSE and MAE are provided in the lower right corner of each
subpanel. The color scheme for each histogram is normalized by its
maximum bin count. ACA is surprisingly effective in predicting
quadrupoles, given that it was only trained to ANI-1x dipoles.

Figure 4. 2D histograms showing correlations between all pairs of charge models. The upper and lower values in each subpanel are the root-mean-
square deviation and mean absolute deviation, respectively. The color scheme for each histogram is normalized by its maximum bin count. The
strong agreement between ACA and CM5 charge assignments was unexpected.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b01939
J. Phys. Chem. Lett. 2018, 9, 4495−4501

4497

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.8b01939/suppl_file/jz8b01939_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.8b01939


deviation of 0.031 e. Other model pairs have mean absolute
deviations that range from 3 to 8 times larger, a consequence
of differing principles used to design these models.
Conceptually, MSK, CM5, and ACA are similar in that they

attempt to partition charge such that the molecular dipole
moment is preserved in the point charge representation. We
note, however, that MSK differs significantly from CM5 and
ACA (Figure 4). MSK is constrained to match the QM dipole
exactly for each given input molecular configuration. This
constraint alone is underdetermined, and MSK therefore
invokes additional principles for its charge assignment,
attempting to fit the far-field electrostatic potential. However,
the far-field potential is relatively insensitive to the partial
charge assignments of internal atoms.7−9 Because MSK
performs its charge assignments according to global (rather
than local) criteria, the assigned charges can deviate
significantly from the local charge density field. Another
related difficulty of MSK is that it exhibits a noticeable basis set
dependence.7,9

CM5 was designed to address such drawbacks.8 Like CM5,
our ACA charge model is local-by-design, thus averting the
problem of artificial long-range effects. Specifically, ACA seeks
a local charge assignment model that best reproduces the QM
dipoles over the whole training data set. We remark that the
ACA dipole predictions do not perfectly reproduce the QM
dipoles. Allowing for this imperfection may actually be
important; collapsing a charge density field into a relatively
small number of monopoles while simultaneously forcing the
molecular dipole to be exact may be incompatible with locality
of the charge model.
As we show in Figure 4, the CM5 and ACA charges are

remarkably consistent, a result that we did not anticipate. CM5

reproduces the molecular dipole well but not as accurately as
ACA (see the Supporting Information). The reduced accuracy
of CM5 dipoles may be due to the fact that it is fit to a hybrid
of ab initio and experimental data. In contrast, ACA trains to a
homogeneous database of QM dipoles. The ML approach has
a conceptual advantage: it is fully automated and requires few
design decisions (primarily, the specification of an error metric
for training). As a consequence, the extension of ACA to new
atomic species and to new classes of molecules should be
straightforward.
A strong practical advantage of ACA is that assignment does

not require any new QM calculations. We highlight this
advantage of efficiency by applying ACA to calculate an
experimentally relevant quantity. Inspired by the work of ref
26, we use ACA to calculate dynamic dipoles and subsequently
infrared spectra for select molecules. Ground-state trajectories
were generated from the ANI-1x potential46 and were 100 ps
in length with a 0.1 fs time step, amounting to a total of 106

time steps. Dipoles were predicted along these trajectories
using ACA. Both the molecular dynamics and dipole
prediction were performed using only ML, that is, without
any QM calculation. Spectra were made by Fourier trans-
forming the dipole moment autocorrelation function. Har-
monic spectra were calculated with the Gaussian 09 software.
A comparison of time domain ML spectra to QM harmonic
spectra is shown in Figure 5, left panels. Although time domain
and harmonic spectra are not one-to-one, the comparison is
reasonable because spectral features are harmonic to first
order. ACA recovers the harmonic features across all
molecules.
To further validate the ACA dipole predictions, QM

calculations were performed at 103 subsampled time steps

Figure 5. (Left) Infrared spectra of select molecules, computed without polarization effects due to solvation. The values in parentheses are the total
number of all atoms (C, H, N, O) and of heavy atoms (C, N, O). The agreement between QM- and ACA-derived spectra is reasonable, given that
the harmonic approximation is not exact. (Right) 2D histograms of predicted (ACA) versus true (QM) dipoles at 103 subsampled time steps
throughout the 100 ps trajectories. The upper and lower values in each subpanel are the RMSE and MAE, respectively. The color scheme for each
histogram is normalized by its maximum bin count.
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throughout the trajectories. Figure 5, right panels, shows that
the ACA dipole predictions are in excellent agreement with
QM, another validation of ACA’s extensibility. The dipole
errors are consistent with those observed in the data sets of
Figure 3. Note that cholesterol and morphine have 74 and 40
atoms, respectively, whereas our training data set has no
molecules with more than 30 atoms. The quality of the ML-
predicted spectra for cholesterol and morphine is similar to
those of smaller molecules, such as aspirin.
We carried out an additional test with smaller molecules of

sizes 6−15 atoms, making it feasible to calculate QM dipoles at
all 106 time steps. The resulting infrared spectra are shown in
the Supporting Information and are in excellent agreement
with our ML-based approach. For these smaller molecules,
ACA yields a factor of greater than 104 computational speed-
up. The relative speed-up is even more dramatic for large
molecules.
In summary, the key contribution of this Letter is the

formulation of an electrostatically consistent charge model
called ACA. We construct the ACA model using a deep neural
network that outputs charges. The network is trained to DFT-
computed molecular dipole moments over a diverse set of
chemical structures. The fast and accurate predictive power of
the model was evidenced with extensibility tests (Figure 3) and
infrared spectra (Figure 5). Although ACA is only trained
directly to the molecular dipole, we show that it also captures
quadrupole moments, demonstrating transferability.
ACA is compared with four conventional charge models on

a data set containing over 500k molecules (Figure 4). The
rather poor correlation between most model pairs confirms the
ambiguity in charge partitioning. The ACA model correlates
well to CM5. CM5 was designed to combine advantages of the
Hirshfeld and MSK models. It is parametrized to reproduce a
combination of ab initio and experimental dipoles. ACA, like
CM5, is a local model that is designed to reproduce dipoles
but, unlike CM5, is built entirely from ab initio data. In
addition to fast charge assignments, a potential advantage of
ACA is its applicability to a wide range of chemically diverse
systems, assuming that appropriate training data is available.
This work is also a testament to how physics-informed ML can
be used to discover properties (here, charge assignment) not
employed as an explicit target in the training process. We
would also like to note an independent and concurrent study
(i.e., ref 54) that took a similar approach in constructing
dipole-driven partial charges. The authors of ref 54 confirm
that inferred charges produce interpretable insight into
chemical structure.
Future work will focus on improving and utilizing ACA for

quantum chemical prediction. Improvements to extensible
dipole prediction may be made by engaging in dipole-driven
active learning. Furthermore, ACA could be trained to higher-
order multipole moments such as quadrupoles; this could be
important for systems where the dipole does not provide
enough of a constraint for charge assignments. Currently, ACA
is limited to C, H, N, and O atoms, but this could be overcome
when more diverse data sets are available. Another important
drawback of the current model is that charged systems, such as
anionic and cationic species, cannot yet be treated. An
application underway is to predict dynamic charges in neutral
biomolecular systems to parametrize force fields for molecular
dynamics. We hope that this study not only sheds light on
charge models that best reproduce dynamical data but also

helps explain the interesting correlations among charge models
(visible in Figure 4).
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(54) Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K.-R.
Quantum-Chemical Insights from Interpretable Atomistic Neural Net-
works. https://arxiv.org/abs/1806.10349 (2018).

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b01939
J. Phys. Chem. Lett. 2018, 9, 4495−4501

4501

https://arxiv.org/abs/1806.10349
http://dx.doi.org/10.1021/acs.jpclett.8b01939

