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ABSTRACT: Determining the structural properties of condensed-phase systems is a
fundamental problem in theoretical statistical mechanics. Here we present a machine learning
method that is able to predict structural correlation functions with significantly improved
accuracy in comparison with traditional approaches. The usefulness of this ex machina (from
the machine) approach is illustrated by predicting the radial distribution functions of two
paradigmatic condensed-phase systems, a Lennard-Jones fluid and a hard-sphere fluid, and
then comparing those results to the results obtained using both integral equation methods
and empirically motivated analytical functions. We find that application of the developed ex
machina method typically decreases the predictive error by more than an order of magnitude
in comparison with traditional theoretical methods.

Atomistic structural correlations in condensed-phase
systems are often determined by complex multibody

interactions that give rise to rich collective behaviors at the
macroscale. As such, predicting how a system’s microscopic
structure leads to its macroscopic properties is one of the
primary challenges in equilibrium statistical mechanics.1−5

Solving this problem is paramount in multiple fields and
disciplines, as knowledge of the mapping between the
microscale and macroscale can lead to enhanced system
designs and to the implementation of new system function-
alities.6−13 Because of its importance, theoretical determination
of structural correlation functions has been an ongoing
research focus for nearly a century.1,14−20 There are three
primary approaches for predicting structural correlations: (a)
applying integral equation methods,19−24 (b) fitting data to
empirically motivated functional forms,25−32 and (c) estimat-
ing the correlation functions directly in molecular simula-
tions.33−38 Integral equation methods often give accurate
predictions for the properties of fluids. Currently, however,
there is not a significantly robust theoretical framework for
these methods that is void of both numerical complexity and
the need for ad hoc manipulation for applications to complex
molecular systems.19 Fitting data to empirically motivated
functional forms can result in simple and accurate predictive
models, but the applicability of these functions is limited.26,27

Moreover, in many systems, applying these two methods is
intractable or results in inaccurate predictions, and molecular
simulation approaches must be employed. This is often
problematic because simulations that include atomistic-level
descriptions of the system can incur significant computational
costs in order to make simple predictions.
Machine learning (ML) methods have shown significant

promise for generating faster and/or improved solutions to a
number of problems in physics and chemistry,39−47 albeit in

typically limited application windows.48 Here we develop an
ML method that can be used to predict structural correlation
functions in condensed-phase systems with increased accuracy
in comparison with traditional analytical approaches. This ML
process is trained using a limited set of molecular dynamics
(MD) simulation data. After training, the process allows
structural correlation functions to be predicted with high
accuracy over a broad range of system parameters at a
negligible computational cost. We illustrate the power of this
method by predicting the pair correlation functions of two
historically significant models from statistical mechanics, a
Lennard-Jones system and a hard-sphere fluid, and then
comparing the results predicted by ML to results generated by
various other theoretical methods. Compared with traditional
theoretical methods that fit to fixed functional forms,26−29 our
ex machina (from the machine) approach can enable significant
error reduction, typically an order of magnitude or greater,
when trained on comparable amounts of MD data (more
specifically, comparable sampling densities within the thermo-
dynamic feature space). This magnitude of error reduction is
also observed in comparison with integral equation methods.
The developed ML method can also reduce the computa-

tional time needed to generate structural correlation data in
comparison with using purely simulation-based approaches.
Specifically, this method will be computationally advantageous
when (a) knowledge of the atomistic structure is needed over
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large regions (or at a high density of state points) in the
thermodynamic feature space,46,47,49,50 (b) large batches of
structural data and the thermodynamic properties derived from
those data are needed in order to fit simple empirical functions
for analytical manipulation,26−29,51−54 and/or (c) thermody-
namic properties must be generated quickly in order to
efficiently connect with continuum codes.55−57 As an example,
we estimate that the present ML method can generate the
atomistic structural data obtained in ref 46 using MD at ∼1/
25th of the computational cost. The computational advantage
of the given ML approach should be particularly significant
when ab initio molecular dynamics simulations are needed in
order to generate accurate predictions for structural proper-
ties.58,59

Our goal is to train an ML process to predict a particular
structural correlation function G. Common examples of G are
the radial distribution function g(r) (see Figure 1) and the

triplet correlation function. Formally, we want to use ML to
construct the mapping [x, f ] → G(x, f), where x = {x1, x2, ...,
xS} is a set of S spatial variables and f = {f1, f 2, ..., f N} is set of N
thermodynamic features. Typical spatial variables in x are
distances and angles between particles or atoms. Typical
features in f are density, pressure, and temperature.
The ML process that we apply is a segmented linear

regression with multivariate function decomposition approach.
A full review of ML concepts can be found in ref 60. A
schematic representation of this procedure is shown in Figure
1. The data used to train this process consist of inputs of the
form [xk, f

(s)], which are mapped to targets G(xk, f
(s)), where

the subscript k denotes a set of specific values for x and the
superscript (s) denotes a specific set of values for f. These
training data will typically be the results of molecular
simulations and/or experimental measurements. The algorithm
for the ML approach is as follows: First, the feature space F = f1
× f 2 × ··· × f N is partitioned into n feature subspaces Fj.

Second, at each xk, a collection of local least-squares regression
processes are trained in these subspaces, where each process in
the collection is applied to generate the desired structural
correlation function G in a specific subspace. Finally, this
collection of processes are combined into a single program that
can be used to generate G over the total feature space and over
each xk.
To generate an output from this procedure, the ML program

takes a feature space input point p = f(p) (this is the point at
which G is to be predicted), decides which points from the
training data to use in the regression process on the basis of the
region of the feature space in which p lies, and then generates
the function G(x, f(p)). One way of selecting the training data
used in each regression process is to employ proximity-based
approaches, that is, to train the process using data points that
are near the input point p. If the training data are generated on
a grid in feature space and p ∈ Fj, one particular choice is to
use the points from the training data that form the 2N vertices
of Fjthis is the method used here.
The ML process is trained by assuming that in each

subspace the dependence of G on each feature in f is locally
linear at each xk value. That is, in the neighborhood about the
input point p, with the spatial variables held constant, we
assume that the feature-space dependence of the true
correlation function can be well-approximated by a hyperplane.
In this approximation, the correlation function can be
constructed at a specific xk as

∑≈ ̂ = +
=

x f x f x xG G a a f( , ) ( , ) ( ) ( )j k k
j

k
j

k
i

N

i
j

k i
( )

0
( )

1

( )

(1)

where Ĝk
(j) is a function that is linear in the elements of f (see

Figure 1) and ai
(j)(xk) is the spatially dependent coefficient of

feature f i ∈ f evaluated at xk, whose value is determined from
least-squares regression. This procedure produces Gj at discrete
xk points. A function that is continuous in x can be constructed
in each subspace Fj by interpolating between xk points, leading
to

≈ ̂x f x fG G( , ) ( , )j k
j( )

(2)

The total correlation function G over the entire feature space F
can then be constructed as

≈ [ ]x f x f x f x fG G G G( , ) ( , ), ( , ), ..., ( , )n1 2 (3)

where is a functional (a selector) that takes the set G = {G1,
G2, ..., Gn} as an argument and returns the function Gj such
that the input point p is an element of Fj. For example, if p ∈ F1
then = G1, if p ∈ F2 then = G2, and so forth. The most
expensive computational element of this method will typically
be generating the training data. After the ML process is
traineda negligible computational expenseit approximates
structural correlation functions at significantly reduced
computational cost with respect to molecular simulations.
One of the most important and well-studied structural

correlation functions is the pair correlation function g(r), i.e.,
the radial distribution function (RDF). The RDF plays a
significant role in the development of theories of the liquid
state because it can be used to directly calculate thermody-
namic observables in systems that are dominated by pairwise
interactions. To express the RDF in the notation developed
above, G = g and x = {r} where r is the distance between
particles. Because of its importance, the remainder of this

Figure 1. Schematic representation of the application of the
developed ML method to predict a radial distribution function g
(red curve) that depends on distance r, density ρ, and temperature T.
In the body of this Letter, we present a generalized procedure to
predict structural correlation functions that could depend on
additional variables beyond ρ and T. Each gray plane represents the
linear approximation ĝk

(j) to g at a particular r = rk. The index j denotes
a small region of ρ × T space over which the local model ĝk

(j) (see eq
1) interpolates from MD data. The smooth blue tube suggests that
interpolation between positions [r1, r2, ... ] would also be possible.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c00627
J. Phys. Chem. Lett. 2020, 11, 4372−4378

4373

https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00627?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00627?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00627?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00627?fig=fig1&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c00627?ref=pdf


Letter focuses on applying the present ML approach to
determine the RDFs of Lennard-Jones (LJ) and hard-sphere
(HS) fluids, two paradigmatic and historically significant
condensed-phase models. Specifically, we generate RDF
training data for both of these systems using MD simulations
and then use that data to train the ML process described
above. Full details of the MD simulation methods used to
generate the training data are provided in the Supporting
Information.
The pertinent thermodynamic features of a Lennard-Jones

system in the canonical ensemble are density ρ and
temperature T (both given dimensionless LJ units36), and
therefore, in this case f = (ρ, T). To generate training data for
the LJ system, we partitioned the ρ × T plane (the feature
space) using a grid and then generated RDF data by
performing MD at each grid point. The accuracy of the
model and the cost to collect the MD data set are determined
by the spacing between grid points; we use Δρ = 0.05 and ΔT
= 0.2 in the respective dimensions. A detailed analysis of how
varying the grid spacing affects the accuracy of the ML
procedure is given in the Supporting Information. The feature
subspaces Fj correspond to quadrilateral grid cells, and the data
used to train the local regression process in each subspace are
taken from the four grid points at the vertices of Fj in the ρ × T
plane.
A comparison between the LJ RDFs predicted using ML and

measured using MD simulations is shown in Figure 2 for

various state points in the ρ × T plane. The curves, from top to
bottom, are the results for state points ρ = 1.06, T = 2.47; ρ =
0.625, T = 1.71; and ρ = 0.255, T = 2.87. In all cases, there is
excellent agreement between the predicted and measured
RDFs. In fact, at the given level of visual fidelity, the two
functions are indistinguishable. This illustrates the effectiveness
of using the presented ML method to generate structural
correlation functions. The temperature of each of these state
points is above the LJ critical temperature,61−63 and each point
lies in the supercritical fluid region of the phase diagram. We
have also confirmed that a similar level of agreement is
observed between the ML and MD RDFs in other regions of
the phase diagram.

To quantify the error between between the RDF predicted
theoretically, gtheory, and the RDF measured in simulation, gMD,
and to make comparisons to other theoretical methods, we
computed the error

Δ = −g r g r g r( ) ( ) ( )theory MD (4)

for the ML method developed here and two other theoretical
approaches discussed below.26,27 Figure 3 shows the results for

Δg(r) in the LJ system at the same state points used in Figure
2. Each subplot corresponds to the results from a different state
point. The three colored curves in each subplot correspond to
the results generated by ML and by applying the expressions of
Goldman26 and Morsali et al.27two of the most prominent
analytical functions used to generate the LJ RDF. These
expressions are constructed by fitting LJ simulation data to
empirically motivated functions. At each state point, the ML
method generates significantly lower error. This is especially
pronounced at r ≈ 1 where the empirical functions generate
significant errors. It is noteworthy that the errors generated
through application of the two analytical functions are
manifested as quasi-oscillations (aperiodic systematic diver-
gences) whereas the error from ML takes a noiselike form.
For a particular grid spacing, the accuracy of the ML

procedure is not significantly affected by the distance to the
nearest training point in a feature space grid cell. This implies
that the data from the training points is weighted in a way that

Figure 2. Radial distribution function of an LJ system measured using
MD (dashed blue) and predicted using the ML method developed in
this Letter (red). Results are shown for the state points labeled in the
plot. Some of the plots have been vertically shifted for visual clarity.
All quantities are expressed in LJ units.

Figure 3. Difference between the predicted and measured RDF,
Δg(r), of a LJ fluid as a function r for the state points labeled in the
individual subplots. Each subplot contains the results for three
theoretical methods used to predict the RDF: the ML method
developed in this manuscript (red), the expression by Morsali et al.
(black), and the Goldman expression (blue). All quantities are
expressed in LJ units.
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generates uniform RDF error over the grid cell area. The
Supporting Information contains a detailed analysis of how
variation in the grid spacing affects the accuracy of the
predicted RDF.
In order to quantify how the error generated by each

empirical function compares with that for the ML approach,
we computed the mean absolute error,

≡ ⟨|Δ |⟩g rMAE ( ) (5)

for each method over the interval 0 ≤ r ≤ 4 at each state point
shown in Figure 3 and then calculated the ratios of the MAEs.
The ratios extracted from the data shown in Figure 3a for ρ =
1.06, T = 2.47 are MAEMor/MAEML ≈ MAEGold/MAEML ≈ 25.
This state point is in a regime with significant structural
correlations, as quantified by the magnitudes of the primary
and secondary peaks of the RDF shown in the top curve of
Figure 2. In this highly structured regime, ML reduces the
error by greater than an order of magnitude in comparison
with the other methods. For comparison, using the RDF data
from the nearest point in the training set (ρ = 1.05, T = 2.4) to
approximate the RDF at this state point produces an error ratio
MAEnearest/MAEML ≈ 10, illustrating that the accuracy of the
method arises from the ML scheme and not from the density
of the training data. The MAE ratios extracted from the data
shown in Figure 3b for state point ρ = 0.625, T = 1.71 are
MAEMor/MAEML ≈ 15 and MAEGold/MAEML ≈ 20. For the
low-density state point ρ = 0.255, T = 2.87 shown in Figure 3c,
the error ratios are MAEMor/MAEML ≈ 30 and MAEGold/
MAEML ≈ 40.
We also examined the performance of the ML method and

how the training data grid spacing affects this performance
using a test set consisting of MD results from ∼200 randomly
sampled state points in the region = [0.05, 1.1] × [1.2, 5.0]
in ρ × T space. Applying the ML method to this test set using
few as ∼50 training points to cover generates over an order
of magnitude decrease in the average MAE compared with the
Morsali and Goldman expressions. Also, when only nine
training points are used, the ML method produces an MAE
that is lower than that produced by the other theoretical
methods. Full details of these calculations can be found in the
Supporting Information. In general, we find that ML typically
decreases the predicted RDF error for an LJ fluid by greater
than an order of magnitude in comparison with the empirical
functions that are developed from human-guided fitting
procedures.
Finite-size effects in the training data limit the range of

interpolation in the spatial variables. These effects, and the
errors that arise from them, may be significant in systems
where the training data are generated using simulations of a
small number of particles. A major advantage of applying the
present ML approach is that only a limited number of training
points are needed in order to generate accurate predictions for
the RDF over a large area in the thermodynamic feature space.
Therefore, the computational expense to mitigate these size
effects is small because large systems can be simulated at a
sparse number of training points. The Supporting Information
contains a detailed analysis of how variation in the grid spacing
affects the accuracy of the predicted RDF. Moreover, extending
the interpolative domain of the ML method in feature space
can also be accomplished using a limited number of additional
training points.
The hard-sphere system is a well-studied condensed-phase

model that qualitatively, and in some cases quantitatively,

describes the interactions and collective behaviors in isotropic
fluids through a simple pairwise potential that is amenable to
analytical examination. HS fluids are athermal, and therefore,
in monodisperse HS systems the only pertinent feature is the
volume fraction η. We generated RDF training data using MD
simulations of the HS system at different η values with an
equidistant spacing of Δη = 0.01 between points. The
Supporting Information contains an analysis of how the
accuracy of the ML procedure varies with the grid spacing and
full details of the MD simulation methods used to generate the
training data. The lower and upper bounds for η in the training
data were η = 0.1 and η = 0.46, respectively, with the upper
bound being below the fluid−solid phase transition value (ηf ≈
0.492).64 In the ML procedure, the training data used in the
local regression process in each feature subspace are taken
from two nearest-neighbor points on the η line.
A comparison between the predicted and measured RDFs

for the HS system is shown in Figure 4 as a function of r (given

in units of σ) for volume fractions η = 0.455, η = 0.311, and η =
0.1271. Again, as for the LJ fluid, the functions predicted using
ML are indistinguishable from those measured by simulation at
the given level of visual fidelity. These results reiterate the
effectiveness of using ML to predict structural correlation
functions and also support the robust applicability of the
present ML method.
Two prominent expressions to predict the HS RDF are the

solution to the Percus−Yevick (PY) integral equation21,22 and
the Trokhymchuk−Nezbeda−Jirsaḱ−Henderson (TNJH) ex-
pression,32 of which the former is a purely analytical approach
and the latter is a hybrid method that combines information
from several sources into an empirically motivated physics-
informed function. The PY solution is often corrected using
the modification proposed by Verlet and Weis.65−68 Here, we
call this method the PYVW solution. Shown in Figure 5 are the
results for Δg(r) in the HS system using the ML, PY, PYVW,
and TNJH methods. Each subplot corresponds to the results
for a different volume fraction. In all panels, it can be observed
that the PY solution systemically underestimates the value of
the RDF at contact, g(σ+) while the ML prediction for g(σ+) is
in excellent agreement with the MD result. The ML method

Figure 4. Radial distribution function of an HS fluid measured using
MD (dashed blue) and predicted using ML (red) as a function of r
(given in units of σ). Results are shown for the volume fractions
labeled in the plot. Some of the plots have been vertically shifted for
visual clarity.
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results in significant error decreases across all volume fractions
with respect to the other methods. Also, just as in the LJ case,
the error from the traditional methods is quasi-oscillatory while
the ML error presents as noise.
In order to quantitatively compare how the RDF error

generated by each of the analytical expressions discussed above
compares with that for ML, we computed the MAEs generated
by the four methods over the interval 1 ≤ r ≤ 4 and then
calculated the ratios of the MAEs at each volume fraction
shown in Figure 5. For η = 0.455, the error ratios are MAEPY/
MAEML ≈ MAETNJH/MAEML ≈ 150 and MAEPYVW/MAEML ≈
50. These correspond to error reductions by a factor greater
than 2 orders of magnitude in comparison with PY and TNJH
and greater than an order of magnitude in comparison with
PYVW when the present ML approach is used. For η = 0.311,
the error ratios are MAEPY/MAEML ≈ MAETNJH/MAEML ≈ 50
and MAEPYVW/MAEML ≈ 20. Applying ML therefore results in
error reductions of a factor greater than an order of magnitude
in comparison with the other examined methods at
intermediate HS fluid densities. In the low-density system
with η = 0.1271, the error ratios are smaller (MAEPY/MAEML
≈ MAEPYVW/MAEML ≈ 4 and MAETNJH/MAEML ≈ 10), but
the error reductions generated using ML are still significant.
We further examined the performance of the ML method

using a test set of 100 HS RDFs calculated using MD at
random and uniformly distributed volume fractions over the
interval [0.1, 0.47]. Using a grid spacing of Δη = 0.01 in the
training data, the same as used above, results in more than an
order of magnitude decrease in the average MAE of the test set

in comparison with the other three theoretical methods.
Additionally, using a grid spacing as large as Δη = 0.12 yields
an average MAE that is lower than those for the PY and TNJH
expressions, and a spacing as large as Δη = 0.06 yields an
average MAE lower than that for the PYVW expression. A
detailed analysis of these calculations is provided in the
Supporting Information. These results illustrate that using ML
can decrease the predicted RDF error for an HS fluid by
greater than an order of magnitude in comparison with other
theoretical approaches.
In conclusion, we have shown that an ex machina method

can be used to predict structural correlation functions with
significantly increased accuracy in comparison with integral
equation methods and human-guided fitting procedures.
Applying the developed method to determine structural
correlations in anisotropic systems, complex molecular fluids,
and coarse-grained systems is straightforward and, provided
that the training data used in the procedure are correspond-
ingly dense, should lead to errors similar to those generated
here. The main advantages of the present approach include the
following: it is simple to implement; it provides accurate
estimates; and from the standpoint of training the process, the
computational cost to apply it is negligible. The main
disadvantages are that generating training data using molecular
simulations can be computationally expensive and that scaling
the method into high-dimensional feature spaces could be
problematic, particularly with respect to generating sufficient
training data. We posit that these disadvantages can be
mitigated by augmenting the present method with active
learning and deep learning approaches. The methodology
developed in this Letter should serve as motivation for the
design and implementation of data-driven approaches to
compute structural correlation functions across diverse
condensed-phase systems.
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