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ABSTRACT: The ability to accurately and efficiently compute quantum-mechanical partial atomistic charges has many
practical applications, such as calculations of IR spectra, analysis of chemical bonding, and classical force field parametrization.
Machine learning (ML) techniques provide a possible avenue for the efficient prediction of atomic partial charges. Modern ML
advances in the prediction of molecular energies [i.e., the hierarchical interacting particle neural network (HIP-NN)] has
provided the necessary model framework and architecture to predict transferable, extensible, and conformationally dynamic
atomic partial charges based on reference density functional theory (DFT) simulations. Utilizing HIP-NN, we show that ML
charge prediction can be highly accurate over a wide range of molecules (both small and large) across a variety of charge
partitioning schemes such as the Hirshfeld, CM5, MSK, and NBO methods. To demonstrate transferability and size
extensibility, we compare ML results with reference DFT calculations on the COMP6 benchmark, achieving errors of 0.004e−

(elementary charge). This is remarkable since this benchmark contains two proteins that are multiple times larger than the
largest molecules in the training set. An application of our atomic charge predictions on nonequilibrium geometries is the
generation of IR spectra for organic molecules from dynamical trajectories on a variety of organic molecules, which show good
agreement with calculated IR spectra with reference method. Critically, HIP-NN charge predictions are many orders of
magnitude faster than direct DFT calculations. These combined results provide further evidence that ML (specifically HIP-NN)
provides a pathway to greatly increase the range of feasible simulations while retaining quantum-level accuracy.

■ INTRODUCTION

The solution to the Schrödinger equation of quantum
mechanics (QM) provides, in principle, a complete description
of all chemical phenomena. However, exact solutions are
infeasible for systems of practical interest due to the
exponential scaling of computational cost with molecular size
(i.e., the number of constituent atoms). Modern theoretical
chemistry has turned to a wide range of approximate methods
for the simulation of chemical systems with an important
trade-off between accuracy and computational cost. For
example, one of the most popular theoretical methods (with
over 15000 publications per year)1,2 is density functional

theory (DFT), where the computational effort is reduced to
roughly cubic scaling with molecular size. Yet, even cubic
scaling is prohibitive for many applications. Physically relevant
length and time scales are often completely inaccessible to
DFT and higher-order QM methods. The development of
more efficient methods that can retain quantum accuracy will
open the door to a wealth of useful studies for physics,
chemistry, biophysics, and materials science.
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A conventional approach to address these challenges is the
formulation of better numerical techniques (e.g., to enable a
more efficient solution of DFT and related theories). An
alternative and emerging approach is to use Machine Learning
(ML) models, which are poised to revolutionize the state of
electronic structure methods. ML offers the accuracy of high
fidelity quantum mechanical calculations at a fraction of the
cost. ML methods commonly scale linearly with the number of
atoms.3,4 A typical ML approach utilizes a reference data set
and supervised learning algorithm which constructs a robust
model of the data. Since ML is data-dependent, it is not a
replacement for, but a complement to existing electronic
structure theory by enabling multistep modeling. It is well-
known that what drives the accuracy and generality of a model
is the data used to train it.3,5−8 It was shown by many groups
that ML models which utilize a proper descriptor and a
reference database of small and diverse molecules or fragments,
which represent “building blocks” for extended systems, can
lead to size extensible potential energy predictions.3,4,9,10

Prediction of molecular potential energies using ML has been
explosively developing in recent years.4,8,11−18 Modern ML
models commonly fit DFT energy data sets to within 0.5 kcal/
mol (1 kcal/mol is frequently quoted as a gold standard for
chemical energy accuracy). Remarkably, this is closer to DFT
than DFT is to the exact energy. Moreover, once trained, a ML
prediction is usually thousands of times faster than a
conventional DFT calculation. Many published ML property
prediction models scale between O(N) and O(N2).4,11

Additionally, reported examples of ML in quantum chemistry
beyond energy prediction include ML of band gap
calculations,19,20 high-throughput screening for materials
discovery,21,22 crystal structure prediction,23 and excited state
dynamics.24−26

Atomic charges constitute an important quantity allowing
chemists to rationalize and extend their chemical intuition and
to calculate a variety of molecular properties. Most charge
assignment schemes require complete quantum mechanical
calculations of the electronic density with subsequent
partitioning of the latter into atom-centered point charges.27

Recent work on electrostatic equilibration method (EEM) has
demonstrated that accurate charges (root-mean-square error ≈
0.01e−)28 can be obtained with parametrized models,
bypassing the Schrödinger Equation.29,30 Still, these simu-
lations required the solution of an O(N3) set of equations,
which can be reduced to O(N log(N)) using locality
approximations and batching.29 This illustrates how charge
assignment is critical to broad areas in theoretical chemistry,
ranging from modeling of infrared (IR) spectra,31 evaluation of
solvation free energies,32,33 classical force field parametriza-
tion,34,35 etc. Recent work has demonstrated the ability of ML
to predict charges36−39 and IR spectra40,41 to high accuracy on
a single system at a time. Other work has produced accurate
results learning a variety of properties such as energies, forces,
monopoles, dipoles, and quadrupoles,42,43 the most general of
these being Parkhill and co-workers’ TensorMol.3 Yet, many
questions remain unexplored, including extensibility (i.e., how
well can we predict charges on systems much larger than those
included in the reference data set?), charge partitioning
reliability (i.e., can all charge assignment methods be well-
learned?), and transferability (i.e., can systems external to the
reference data set be accurately predicted?).
In this article, we use the hierarchically interacting particle

neural network11 (HIP-NN) ML model to predict atomic

charges from a variety of charge assignment schemes. Our
goals are three-fold: first, we demonstrate that HIP-NN can
accurately and efficiently predict charges for a wide range of
small molecules, which is critical for classical force field
parametrization. Second, we show that HIP-NN can effectively
predict many different charge assignment schemes, allowing
user customization for a variety of applications. Finally, we
validate the extensibility of ML models validating them against
significantly larger systems (such as druglike molecules, short
peptides, and small proteins) than those included in the
reference data set. This demonstrates conclusively that a
carefully constructed reference data set combined with a
properly optimized network can make reliable predictions on
never seen before systems.

■ METHODS
Charge Partitioning Schemes. From a QM perspective,

charge is distributed as a continuous density across the entire
molecule. Unfortunately, there is no unique or exact way to
condense charge density onto individual constituent atoms.
However, the ability to describe charges as points on atoms
leads to vastly simplified physics in a myriad of applications.
There are three broad classes of atomic charge assignment
schemes that can be derived from ab initio simulations.27 First,
the electron density obtained from ab initio calculations can be
partitioned directly onto each atom. In this category, Mulliken
charges44 are the simplest, cheapest, and least accurate.
Hirshfeld charges45 are a more sophisticated and accurate
version. Also, the natural bond orbital (NBO)46,47 scheme
assigns charges according to the natural atomic orbitals of a
molecule, which are orbitals designed to capture the behavior
of atomic orbitals in a given molecular environment. The
second family of approaches is to use ab initio calculations to
produce molecular properties, which guide charge assignment.
Popular choices include charge multipoles and the electrostatic
field at specific points surrounding the molecule. Then, the
charges are fit to best recover these properties. Merz−Singh−
Kollman (MSK)48 charges are restrained to exactly reproduce
the molecular dipole calculated from the continuous charge
distribution. In the last family, one combines ab initio
electronic density with gas-phase experimental measurements
using a simple correction. An example is Charge Model 5
(CM5),27 in which the correction is parametrized to replicate
dipole moments for electrostatic energy calculations. Unlike
MSK charges, CM5 charges are not constrained to exactly
replicate the quantum molecular dipole. Rather, one expects
CM5 charges to produce an approximate dipole moment.
Section 1 of the Supporting Information contains further
details on these charge schemes. In this work, we test the HIP-
NN model trained against commonly used Hirshfeld, NBO,
MSK, and CM5 charge schemes.
To illustrate these distinct charge schemes and to establish a

baseline accuracy for our ML model, we consider charge
assignment in the methanol molecule (CH3OH). We select
methanol because it has a strong molecular dipole moment and
is simple enough for chemical intuition to be applicable. In
Table 1, we report the charge on the carbon and oxygen atoms
in methanol on a variety of charge schemes. The charges were
generated using DFT calculations with wB97x functional and
two different basis set sizes (additionally, results obtained with
a simpler 6-31G basis are reported in the Supporting
Information). There is a significant variation between the
methods. Of the four charge schemes, only MSK assigns a

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00524
J. Chem. Theory Comput. 2018, 14, 4687−4698

4688

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00524/suppl_file/ct8b00524_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00524/suppl_file/ct8b00524_si_002.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00524/suppl_file/ct8b00524_si_002.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00524


positive charge to the carbon atom. The Hirshfeld method
attributes a nearly neutral charge to the carbon, while the
remaining schemes assign various negative charge values to this
atom. This demonstrates how differing charge schemes may
operate in fundamentally disparate ways, each posing an
independent challenge for ML modeling.
Both CM5 and Hirshfeld charges are nearly independent of

basis set, with the difference between assigned charges under
0.01 e− (elementary charge). NBO has a larger basis set
dependence, with the charge variation within 0.03 e−. Here, the
local atomic charge densities that are used to partition the
molecular charge density are nearly independent of basis set
size. In contrast, MSK charges vary greatly with the basis set
size. This is because the global constraint to reproduce the
dipole moment introduces nonlocality into the charge
partitioning. It is not obvious whether larger basis sets result
in more practical charge assignments.49 As basis sets get larger
and orbitals are more diffuse, associating charge with specific
atoms becomes more ambiguous. Within a single charge
assignment scheme, it is unreasonable to expect errors smaller
than 0.01 e−. Thus, in the following analysis, we aim to build
ML models of charge assignment that are accurate to within
0.01 e−.
HIP-NN Approach. Here we briefly describe deep neural

networks for chemical property prediction,50,51 and, in
particular, the hierarchically interacting particle neural network
(HIP-NN) used in this work. For details, see Section 2 of the
Supporting Information and ref 11.
To begin, a molecule is converted into a feature

representation that can be parsed by a neural network. A
variety of schemes are available,52−57 such as the Coulomb
matrix58 or atom-centered symmetry functions suggested by
Behler and used in ANI-1.16 The feature representation used
for HIP-NN is minimal: we use the atomic number of each
atom and the pairwise distances between atoms. This simple
representation ensures the network predictions satisfy transla-
tional, rotational, and reflection invariances. The features are
passed through many hidden layers to produce a vector of new
internal features or activations at each layer. Each layer’s
activations are produced using matrix-vector products and an
element-wise nonlinearity. Finally, output layers form linear
combinations of the activations to produce predictions at each
atom. The internal weights used in these computations
constitute the learnable parameters of the network. These
parameters are fit to match the training data set using an
iterative optimization process. In this work, each network has
about 104 parameters.
The structure of HIP-NN is depicted in Figure 1. The

network variables reside on each atom in the molecule, whose
initial features encode the species of the atom. Green bars
illustrate interaction layers, which allow sharing of information
between nearby atoms. Interaction layers are comprised of
many sensitivity functions, which allow atoms at different

distances to interact in different ways. The sensitivity functions
are constrained by two cutoff distances: the soft cutoff is the
distance at which all interactions begin decreasing, and the
hard cutoff is when all interactions fall to zero. Red squares in
Figure 1 illustrate on-site layers, which perform processing of
activations on each atom independently. Additionally, HIP-NN
is organized into interaction blocks, each of which contains a
single interaction layer, followed by a series of on-site layers. At
the end of each series of on-site layers, an output layer gathers
the current information on a given atom and produces a
contribution to the atomic charge. In this way, the total charge
on an atom is given by a sum over layer-wise contributions:

∑̂ = ̂
=

_

q qi
j

N

i
j

0

interaction layers

We use ADAM,4,59 a variant of stochastic gradient descent
(SGD) to learn the parameters for our networks. Briefly, the
source data set is randomly partitioned into sets: training
(60%), validation (20%), and test (20%). The training data is
repeatedly fed through the network, and the parameters of the
network are adjusted so that the outputs of the network tend
toward the true reference charges (i.e., those from the given
charge assignment). After each pass of the training data set, the
performance on the validation set is recorded in order to
estimate how the current parameters generalize to new data.
The training process is terminated once the performance on
the validation set stops improving. This early stopping
procedure helps to prevent overfitting (i.e., helps the network
to learn generalizable patterns, rather than irrelevant details
specific to the training set). The model that scored the best on
the validation set is kept and is used to measure the out-of-
sample performance on the test set. Since the test set does not
play any role in the fitting process, the error on the test set
constitutes a fair measure of the network performance on data

Table 1. Charges on Carbon and Oxygen Atoms in
Methanol (CH3OH) According to Various Charge
Partitioning Schemes and Typical Basis Sets

atom basis set Hirshfeld CM5 MSK NBO

oxygen 6-31G* −0.255 −0.475 −0.618 −0.751
oxygen 6-31+G* −0.252 −0.472 −0.699 −0.777
carbon 6-31G* −0.007 −0.132 0.142 −0.317
carbon 6-31+G* −0.010 −0.134 0.234 −0.334

Figure 1. A diagrammatic representation of HIP-NN. Green bars
represent interaction layers and red squares represent on-site layers
for atoms. The blue squares are the output layers which return a series
of corrections to the atomic charge. The molecule on top illustrates
how information can be passed from one atom to another. This
includes information being indirectly passed from distance atoms
through an intermediate interaction layer.
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that is similar in scope to the training data set. Section 2 of the
Supporting Information contains a more detailed description
of the training process.
Training Databases and Tested Networks. Here our

choices were motivated by previous experience of learning
energies within HIP-NN and ANI-14 approaches. To help
understand the transferability of ML algorithms, we use two
different databases to train the HIP-NN charge model. The
first we denote GDB-5: a subsample of GDB-1160,61 data set
used to train the ANI-1 ML force field.4,5 The configurations
include up to 5 heavy atoms (of types C, N, and O) all in
charge neutral molecules. The conformations are based on the
ANI-1 normal mode sampling scheme. This data set contains
517133 individual molecular structures. The subsampling of
the GDB-11 was done for two reasons: first, the smaller data
set allowed us to produce charges for many different
partitioning schemes without expending excessive computa-
tional resources on DFT calculations. Second, the data set of
only small structures is used to determine how networks
trained to small molecules can predict charges on larger
systems. The Gaussian0962 computational suite was used to
run the DFT calculations with the wB97x/6-31G*63,64

functional and basis set. For each molecule in the data set,
Hirshfeld, CM5, NBO, and MSK charges were generated for
every atom. This allowed us to construct networks trained to
reproduce each type of charge assignment.
The second database examined, specifically the data set used

to train the ANI-1x potential, was developed by Smith et al.9

using an active learning method, whereby the training set is
progressively built by selectively performing new DFT
simulations to cover the regions of greatest model
uncertainty.4,40,65−68 ANI-1x data set samples vast and very
diverse chemical space and include aromatic and hetero-
aromatic systems, most common substituents and functional
groups containing only C, H, N, and O atoms. While a
summary of methods can be found in Section 3 of the
Supporting Information, one key component of this procedure
is “Query-by-Committee”.69 QBC is performed by training an
ensemble of ANI models to related data and using them to
predict values on the same unknown system. The variation
between the predictions of each model becomes a proxy for the
confidence of prediction on each data point. In other words, if
the chemical system is well represented in the training data, all
the networks will give similar predictions, while if the system is
not well-represented by the training data, the predictions of the
various networks are likely to be widely disparate. The
complete technical details are described in ref 9. ANI-1x was
produced by sampling chemical space and only performing
reference calculations on those systems for which an ensemble

of neural networks produced no consensus energy value. The
procedure produced a data set of 5.5 million structures, with an
average of 15 atoms per structure and a maximum size under
60. For our charge modeling, we use 6% of ANI-1x for the
training set and an additional 2% each for test and validation
sets. All molecules in both training data sets are charge neutral
and closed shell, thus our networks are only applicable to
neutral, closed shell molecules.
The active learning process to construct the ANI-1x data set

is based on learning the energy of thermally accessible
molecules and conformations, rather than charge learning.
While it would be possible to construct an active learning
database using charge rather than energy for QBC, we believe
our results show this is not necessary. Due to the active
learning procedure, the ANI-1x data set contains a vast array of
diverse configurations and conformations which covers the
space of interest to bio and organic chemists. While ANI-1x
does a very good job of sampling organic molecules, it has two
limitations of note: first, the AL sampling only searched for
molecules that can be constructed with hydrogen, carbon,
nitrogen, and oxygen atoms. Second, while dimer interactions
were sampled, extensive solvent interactions arising from many
body interactions were not. This limits the applicability of this
training data set when examining solvated systems.
Training a single HIP-NN model to the GDB-5 energy data

set takes roughly 12 h with GPU acceleration using a NVIDIA
1080Ti, while training to ANI-1x takes roughly 120 h. Roughly
a factor of 3 can be saved by initially training on GDB-5 and
then “transferring” the model to train on ANI-1x database. We
observe a similar cost savings for HIP-NN charge models
trained using the same transfer learning protocol. No
significant loss of accuracy was observed between the
traditionally trained network and the transfer network, as
seen in Table S1.
Table 2 describes the various forms of HIP-NN that are

examined in this work. The R = 6.0 network is trained on both
the small GDB-5 as well as the active learned ANI-1x training
data. The goal of this network is to allow all distance functions
to be trained even when using data sets of very small
molecules. The R = 4.0 network is a network designed to focus
only on nearest neighbor interactions. The R = 8.0 network
closely resembles the design for predicting energy in the
original HIP-NN paper.11

■ RESULTS

Benchmark Databases. To illustrate the generality of
HIP-NN, we computed Mulliken, Hirshfeld, CM5, MSK, and
NBO reference charges for the entire GDB-5 database and
trained the same HIP-NN network on each of the charge

Table 2. Parameterization for Various Networks Applied to Charge Traininga

layer 1 layer 2

network
name

sensitivity
functions

soft cut-off
(Å)

hard cut-off
(Å)

number of
units

sensitivity
functions

soft cut-off
(Å)

hard cut-off
(Å)

number of
units

R = 4.0 8 2.5 4.0 20 8 2.5 4.0 20
R = 6.0 10 3.0 6.0 20 8 2.5 4.0 20
R = 8.0 20 5.5 8.0 40 20 5.5 8.0 40

aSensitivity functions shows the number of unique functions that facilitate the interactions between atoms at each interaction layer. Cut-off is the
largest possible distance to the maximum of the last spatial sensitivity function, and hard cut-off is when all spatial sensitivity functions go to zero.
Each network has three atomic layers following each interaction layer. Networks are named for the hard cut-off of the first interaction layer. As each
network has two interaction layers, the maximum possible range (receptive field) of the network prediction is the sum of the cut-offs for the
interaction layers.
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schemes. Figure 2 reports the mean absolute error (MAE) and
root mean squared error (RMSE) for each network trained to

its respective charge scheme. An RMSE much greater than
MAE indicates that distribution of errors has a long tail (i.e., it
contains outliers). HIP-NN learns almost all of the charge

schemes with a MAE of about 0.005 e− and a slightly larger
RMSE. This is significantly better than our target precision of
0.01 e−, set by the consistency of the charge models.
Additionally, the prediction of these charges takes approx-
imately 0.234 ms per conformation. Thus, using these neural
networks to predict charges on molecules similar to those
found in GDB-5 is significantly computationally cheaper, but
no less precise, than using a quantum calculation. The one
exception to this is MSK charges, which are replicated to
approximately a precision of 0.02 e−. We believe the
explanation is as follows: MSK charges are constrained
posthoc to exactly replicate the dipole moment of the
molecule. This makes the charge scheme nonlocal; charges
may differ between similar conformations in order to produce
the correct dipole moment. This nonlocality is potentially
difficult to represent within the HIP-NN model, which
describes only local interactions.
To test the transferability and extensibility of networks

trained to both the GDB-5 and ANI-1x databases, we applied
various versions of HIP-NN (Table 2) to the COMP6
benchmark suite9 of organic molecules (Figure 3). COMP6
samples a diverse selection of molecular configurations and
conformations aimed at validating the accuracy of an ML
potential. This suite supplies energies, forces, and Hirshfeld
and CM5 charges for the validation of ML methods, all
computed using wB97x/6-31G*. COMP6 contains six bench-
marks, each containing different types of molecules: GDB-7to9
(built from GDB-1160,61), GDB-10to13 (built from GDB-
1160,61 and GDB-1370), Tripeptides, DrugBank,71 ANI-MD,
and S66 × 8 noncovalent interaction72 benchmarks. These
benchmarks are described below.

Figure 2. Test set mean absolute and root-mean-square errors for the
R = 6.0 (see Table 2) network trained to the GDB-5 database (A) and
ANI-1x database (B) using different charge schemes. HIP-NN is able
to learn almost all charge schemes to equal precision, with the
exception of the MSK scheme. While the test set error for the more
diverse ANI-1x data set is larger than the test set error for the GDB-5
data set, the predictive accuracy of networks trained to ANI-1x is
significantly better (see Figure 3).

Figure 3. Predictions of various versions of HIP-NN on the COMP6 benchmark with all charges originating from the Hirshfeld partitioning
scheme. Mean absolute error (MAE) and root mean squared error (RMSE) given for all data sets. The blue shading indicates 0.01e−, the target
error for this method. The R = 6.0 network trained to ANI-1x has an error significantly less than the target for all pieces of the COMP6 benchmark.
A full table of this data can be found in Section 4 of the Supporting Information.
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The GDB-7to9 and GDB-10to13 benchmarks aim to
validate the universality of the predictor on a comprehensive
list of artificially generated small molecules with many
nonequilibrium conformations per molecule. These sets
contain 1500 and 2996 configurations with 36000 and 47670
total conformers, respectively. The tripeptide benchmark
provides 1984 random conformations for 248 generated
tripeptides. The DrugBank benchmark provides 13379 random
configurations of 837 drug molecules from the DrugBank71

database. The S66 × 872 is a benchmark of 66 different
interacting dimers for validating a methods accuracy in
reproducing noncovalent interactions. Interactions included
in this data set include hydrogen bonding, London
interactions, and π−π stacking. ANI-MD contains random
structures from MD trajectories generated with the ANI-1x
active learned ML potential9 for 13 common drug molecules
and two small proteins. The largest of these structures contains
312 atoms, which is more than 6 times larger than the largest
system used to train the network. More details on these data
sets are provided in Section 4 of the Supporting Information.
Figure 3 illustrates the accuracy of various combinations of

training set and network shape applied to the COMP6
benchmark. Critically, we consider the R = 6.0 network trained
to ANI-1x to be the best performing network with a MAE and
RMSE not exceeding 0.004 e− and 0.007 e−, respectively, on
any of the sub-benchmarks. Further, when examining only the
largest structures in this database (128 conformations of 1L2Y
contained in ANI-MD), the error rises negligibly to 0.00606 e−

and 0.00795 e− MAE and RMSE, respectively. This protein is 6
times larger than the largest system in ANI-1x and clearly
shows extensibility of the charge prediction scheme. Addition-
ally, the MAE of these predictions is only slightly larger than
the dependence on the basis set size for even Hirshfeld charges
(0.0048 e− for carbon). This is to say that the accuracy of the
predictions on extremely large systems is roughly the same as
the certainty of the charge assignment itself.
Figure 3, column 1, shows accuracies of the networks given

in Table 2 on their respective charge schemes and test sets.
This shows that GDB-5 charges are much easier to learn than
those in ANI-1x. This is due to the smaller size of GDB-5, as
well as the lower variety in the data. For example, GDB-5 lacks
nonbonding interactions. The rest of the columns in Figure 3
demonstrate the network performance on each benchmark in
COMP6. The networks trained to GDB-5 predict charges on
the benchmark data with significantly lower accuracy; training
to GDB-5 does not generalize well.
Interestingly, when training to the ANI-1x data set, the R =

6.0 network outperforms the R = 8.0 network (Figure 3,
bottom half). This illustrates that local models need to ensure
proper special coverage (a cutoff radius the size of the
molecules in the training set) of the given training set, or else
generalization to large structures can be hindered. Thus, we
would like to emphasize the importance of limiting longer
range interactions when considering the extensibility of NNs.
Section 5 of the Supporting Information contains the exact
training accuracies across all benchmarks.
Figure 4 displays the correlation between charge and

predicted charge on the COMP6 benchmark for an R = 6.0
network trained to ANI-1x. A similar plot for a network trained
to the GDB-5 database is reported as Figure S1 in the
Supporting Information. The ANI-1x network (Figure 4)
performs significantly better and exhibits far fewer outlying
predictions than the network trained to GDB-5. We emphasize

that the HIP-NN model form is completely identical for each
network, the difference in prediction quality is dictated entirely
by the parameter values learned from the training data set. . In
both cases, the network contains far fewer parameters (∼104)
than training conformations (∼3 × 105 for each data set). This
illustrates the need to train to larger and more diverse chemical
structures than present in GDB-5 in order to capture all of the
subtle chemical interactions pertinent to charge assignment.
In general, the previous results show that accurate and

extensible charge prediction can be obtained by learning to a
data set that contains larger molecules and more data diversity,
even though such data sets are more difficult to learn,
producing a larger MAE test set error. However, we concluded
that properly constructed network trained on a diverse data set
is capable of making accurate predictions on systems
significantly larger than those seen in the training set with
only a minimal loss in accuracy.

Simulation of IR Spectra. One of the applications for a
rapid charge prediction scheme is the construction of IR
spectra from molecular dynamics data. Here we construct fully
ML-based IR spectra by generating gas phase MD trajectories
for a few small molecules (methanol, ethanal, acetamide, and
dimethylacetamide) using the ANI-1x potential.9 Trajectories
of 100 ps with a 0.1 fs time step were collected on a single
molecule at 300 K using an NVT thermostat at 300 K. From
the trajectory conformations, neural network charges were
generated at every point using the R = 6.0 HIP-NN trained to
GDB-5 Hirshfeld charges. GDB-5 serves as a sufficient training
database because the molecules in the IR study are of a similar
size and composition. Using the position and ML charge data
for each frame, a molecular dipole is constructed. The IR
spectrum is constructed (red dashed line) from the Fourier
transform of the autocorrelation of the dipole moment using
the code by Efrem Braun.73 To produce a fair comparison to
DFT, we also generate the IR spectrum with the same
algorithm but using true Hirshfeld and CM5 charges computed
from the same trajectory. We refer to these as the “ML charge”
and the “QM charge” in Figure 5, respectively. Figure 5 shows
that both curves virtually coincide, demonstrating the accuracy
of ML charge predictions.
This needs to be contrasted to the other sources of error

underlining the modeling. First of all, accuracy of ANI-1x force
field potential can be tested for selected cases of methanol and
acetamide (owing to a large numerical expense) by calculating

Figure 4. Correlation plot of the R = 6.0 network (see Table 2) when
applied to the Hirshfeld charges for the entire COMP6 benchmark.
The networked trained to ANI-1x is pictured here while the
correlation plot for the network trained to GDB-5 can be found in
Section 5 of the Supporting Information.
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the IR spectrum using the DFT Born−Oppenheimer
Molecular Dynamics. Here 20 parallel trajectories were run
with a time step of 0.2 fs at 300 K for 5.5 ps using the fully
quantum gradient computed at the wB97x/6-31G* level. The
autocorrelation function of the quantum dipole moment was
taken for each of these trajectories separately and averaged
together. Then, the IR spectrum was generated in the same
way (Figure 5, blue line). The second error is related to
inaccuracy of the DFT model compared to gas phase
experimental IR spectra.74 Both of the charge-based IR spectra

are significantly different from the full DFT Born−
Oppenheimer Molecular Dynamics IR spectra. While the
agreement to experiment is generally good (green shade), it is
not perfect. Much of this failure can be attributed to the
underlying QM methodology, as the DFT Born−Oppen-
heimer Molecular Dynamics simulations exhibit the same
failures. Additionally, the DFT-BOMD spectrum is red-shifted
compared to the ML spectrum. This is likely due to the larger
time step of the DFT-BOMD calculations, which was used due
to computational limitations. See Section 6 of the Supporting

Figure 5. Comparison of IR spectrum predicted by ML (red dashed line) to experiment (green shade), quantum BOMD simulations (blue line),
and exact charges along the ML dynamics trajectory (black). The red and black lines utilize Hirshfeld and CM5 charges on the left and right frames,
respectively. Comparison between the red and black lines illustrates how precise the ML charge scheme is, as there is almost no difference between
these curves. Comparison between the ML spectra and experiment show reasonable agreement for all molecules except ethanal. For methanol and
acetamide, full QM trajectories and dipoles were computed, which show that a significant amount of error in the ML spectra arise from the
underlying QM methods.

Figure 6. IR spectrum generated completely by machine learning (red line) and from a normal-mode analysis (black line). The ML spectrum was
generated with an identical method as in Figure 5. Different charge assignment schemes produce significantly different IR spectra with Hirshfeld
charges being the most reliable for larger molecules.
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Information for a thorough comparison of ML, DFT, harmonic
mode, and experimental charge spectra on several small
molecules.
Figure 6 is an application of the ML calculation of IR

spectra, using the R = 6.0 network trained to ANI-1x, to larger
molecules including aspirin, caffeine, cholesterol, morphine,
and tyrosine. Caffeine, cholesterol, and morphine do not
appear in the training data set, and so this application also tests
the extensibility of our methods. Since DFT-BOMD would be
too expensive for systems of this size and experimental IR
spectra were all performed in the condensed phase, these ML
results are compared to spectral calculations using vibrational
normal modes. There is noticeable variance between networks
trained to different charge schemes, with Hirshfeld charges
giving the best agreement with the normal mode spectra. The
overall agreement is good regardless of charge scheme, giving
further evidence that our methods produce an extensible
model.

Computationally, molecular dynamics and charge generation
using ANI and HIP-NN is extremely fast, requiring roughly 25
min on a GPU-equipped workstation to generate an IR
spectrum. For comparison, the DFT-BOMD calculation for a
single molecule took 20000 CPU hours, leading to a speedup
of over 4 orders of magnitude. For larger molecules such as
cholesterol, the ML compute time increased negligibly to 30
min, while performing this calculation with BOMD would
require an intractable 300000 CPU hours.

Charge Prediction on Proteins. Another application of
our models is the prediction of charges on systems too large for
quantum chemistry (e.g., proteins). Due to the speed of ML
charge prediction, it is possible to dynamically assign charges
during an MD run for an entire protein, allowing for a dynamic
estimate of the coulomb contribution to the force field. As a
test of the accuracy of this method on systems of this size, we
extracted two proteins from the ANI-MD benchmark:
Chignolin (IUAO)75 and a Trp-Cage mini-protein Construct
(1L2Y).76 These proteins contain 149 and 312 atoms,

Figure 7. Ensembles of (A) 4 and (B) 8 networks, trained on GDB-5, predicting charges on GDB-7−9 structures. This demonstration shows that
standard deviation between an ensemble of neural networks can be used to limit the maximum absolute error of the ensemble. The larger number
of neural networks makes this effect more prominent.
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respectively, and are the largest systems where reference DFT
charges were gathered. The geometries originate from
molecular dynamics calculations using the ANI-1x potential.
As additional Supporting Information, we have included a
spreadsheet with the reference and ML predicted CM5 and
Hirshfeld charges for lowest energy configuration of these two
systems. Importantly, the MAE of our charge predictions on
these systems is just over 0.006 e−, which is only slightly
greater than the error on the total ANI-MD benchmark. Thus,
our ML charge predictor is extensible: it is accurate when
applied to systems 6 times larger than those included in the
training set. Further, we analyze our prediction accuracy by
atom type in Section 7 of the Supporting Information. Finally,
as a test of speed, we predicted charges on the glucoamylase
protein (1AYX), which has a mass of over 50 kDa and a length
of 492 residues.77 Since this protein is too large for DFT
calculations, the goal was to explore how fast we could perform
our analysis. For prediction, crystallographic water was
removed and protons were added using the Reduce program.78

In total, this methodology took less than 2 min to predict
charges on the entire system. Such a prediction would be
almost impossible with traditional quantum-chemical methods.
On very large systems such as this protein, we find that the
total predicted charge of the system does not remain precisely
zero. However, the total charge defect is around 0.001 e− per
atom. A more in depth discussion can be found in Section 8 of
the SI.
Error Estimation. The ability of ML to determine the

uncertainty of a prediction through schemes like “Query by
Committee” is extremely powerful because it allows for a
minimum number of reference calculations to be run when
constructing optimized training sets. Although active learning
has been studied in the context of molecular energy
modeling,4,9,40,65−68 this concept has yet to be applied to
charge prediction. Here we demonstrate how the consensus of
an ensemble of neural networks can be used as a proxy for their
accuracy in a “Query by Committee” framework (see earlier
discussion in Training Databases and Tested Networks
section).69

To test this for charges, two ensembles (of size 4 and 8) of R
= 6.0 HIP-NN were trained to the GDB-5 database. The
networks were then applied to predict charges in GDB-7to9.
For each atomic charge, the ensemble average prediction error
and ensemble prediction standard deviation was computed.
In Figure 7, we show density maps of prediction error versus

ensemble standard deviation for the GDB-7to9 data set for
each ensemble. The standard deviation provides a typical
bound for the ensemble error; the upper left quadrant of the
density map is empty, demonstrating that there are no points
with low ensemble standard deviation and high error. Points in
the upper-left quadrant would be problematic for QBC; they
correspond to points which are predicted confidently but
inaccurately by the ensemble.

■ CONCLUSION
In this study, we have demonstrated the ability of HIP-NN to
learn and predict several charge partitioning schemes for
neutral organic molecules made of carbon, hydrogen, nitrogen,
and oxygen. HIP-NN was first applied to predicting molecular
energies. We find, however, that by minimally modifying the
output layer structure, it predicts atomic charges with an
accuracy comparable to or better than the basis set error of
roughly 0.01 e−. Our best performing R = 6.0 network can

predict charge with a MAE and RMSE, not exceeding 0.004 e−

and 0.007 e−, respectively, across all of COMP6 benchmark
set. Since COMP6 contains structures 6 times larger than
those seen in ANI-1x, such high accuracy on the COMP6
benchmark show the HIP-NN charge model is extensible to
large molecules. This combined achievement of accuracy and
extensibility sets the HIP-NN charge model apart from any
previously published work in ML charge prediction. Addition-
ally, the computational cost of ML charge prediction is roughly
4 orders of magnitude faster than reference DFT calculations
for small molecules.
However, there are a few limitations to this methodology.

Most importantly, the training data sets are only designed to
predict charges on organic molecules containing carbon,
hydrogen, nitrogen, and oxygen. The network can be made
more versatile at the cost of running addition quantum
calculations for inclusion in the training set and the respective
retraining of the neural nets. Another fundamental limitation is
the lack of anionic or cationic (i.e., charged) species in both
the training and testing set. Charge localization (i.e., the spatial
location of an electron or a hole when considering large
system) is a problem that is yet to be solved with ML
algorithms. Additionally, we find MSK charges, which are
constrained to replicate the quantum molecular dipole, pose a
more difficult learning task for local ML models than local
charge schemes owing to nonlocal nature of the scheme
construction.
We demonstrate two applications of the HIP-NN charge

model presented in this work. First, we use a trained model to
calculate the IR spectrum for both small and large organic
molecules. These spectra are in excellent agreement with other
theoretical methods, and no degradation in performance is
observed for molecules larger than those in the training set.
This demonstrates transferability and extensibility of charge
prediction over a variety of systems without specifically tuning
the network. This makes the presented HIP-NN model a
concrete step toward a universal ML charge predictor.
However, quantitative agreement with experiment is not
achieved, showing that the underlying DFT methods are
insufficient. This leaves us with a path toward systematic
improvement: performing higher accuracy quantum-chemical
calculations on our data set should lead to a substantial
improvement in accuracy while retaining the same computa-
tional cost at run-time. Second, we generate charges for a large
protein, where the application of quantum mechanics is
extremely difficult. The speed of this prediction is evidence
that ML methods can generate dynamic charges for fast and
accurate electrostatic calculations in MD. In this work, we
limited ourselves to a simple protein; however, the same
methodology could be extended to metalloenzymes or proteins
that contain metal ions. This would require substantial
additional calculations of metal compounds in different charge
and spin states.
Additionally, we used the concept of query-by-committee to

show a correlation between the accuracy and standard
deviation of predictions made by an ensemble of ML models;
when the ensemble agrees on a charge prediction, the
prediction is more likely to be accurate. This is critical to
the advancement of ML as applied to chemistry, as it facilitates
active learning for the development of strong, diverse training
sets. This is also useful when making predictions for
unexplored systems, as the confidence for any ML prediction
may be obtained without reference QM calculations.
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The strong performance on COMP6 benchmarks and other
applications demonstrates transferability of our ML approach
to systems larger and more diverse than in the training set.
Future models need not scale their data to sizes of target
molecular systems. Data sets can be built using fragmentation
and/or sampling of small molecules, and uncertainty can be
estimated with query-by-committee. This provides a path
forward to estimating chemical properties of systems intract-
able by QM methods.
Despite our success in training HIP-NN to various charge

schemes, the underlying QM charge partitioning itself has
drawbacks. The full charge density cannot be exactly
represented within any charge assignment scheme. Two
consequences are that different schemes disagree with each
other, and that charge-derived quantities (such as the
molecular dipole moment) may not be faithfully represented
by atomic charge assignment. Future work may focus on
overcoming the limitations of charge schemes by focusing
instead on predictions of experimentally accessible quantities.
Additionally, a more widely applicable model will be obtained
by adding more element types (such as chlorine and sulfur) to
the training set as well as specific sampling of many-body
solvent interactions. The many possible applications of ML to
quantum chemical properties (such as bond orders, vibrational
and electronic excitations, electron density, and dipole
moment) indicate tremendous potential present at the
intersection of quantum chemistry and machine learning.
In summary, our results provide a complete analysis of which

charge partitioning schemes are easier for ML models to learn
and further evidence that machine learning techniques trained
to data sets of small molecules can replicate charge partitioning
schemes from high-level quantum mechanical calculations of
larger molecules with orders of magnitude speedup.
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