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ABSTRACT: Ab initio molecular dynamics (AIMD) simulation, analyzed in terms of
vibrational normal modes, is a widely used technique that facilitates understanding of complex
structural motions and coupling between electronic and nuclear degrees of freedom. Usually,
only a subset of vibrations is directly involved in the process of interest. The impact of these
vibrations can be evaluated by performing AIMD simulations by selectively freezing certain
motions. Herein, we present frozen normal mode (FrozeNM), a new algorithm to apply
normal-mode constraints in AIMD simulations, as implemented in the nonadiabatic excited
state molecular dynamics code. We further illustrate its capacity by analyzing the impact of
normal-mode constraints on the photoinduced energy transfer between polyphenylene ethynylene dendrimer building blocks. Our
results show that the electronic relaxation can be significantly slowed down by freezing a well-selected small subset of active normal
modes characterized by their contributions in the direction of energy transfer. The application of these constraints reduces the
nonadiabatic coupling between electronic excited states during the entire dynamical simulations. Furthermore, we validate reduced
dimensionality models by freezing all the vibrations, except a few active modes. Altogether, we consider FrozeNM as a useful tool
that can be broadly used to underpin the role of vibrational motion in a studied process and to formulate reduced models that
describe essential physical phenomena.

1. INTRODUCTION

Design of new functional molecular and solid materials
frequently benefits from identification of a few coupled
electronic and structural degrees of freedom that dominantly
participate in the key physicochemical processes and are
associated with desired functions. Examples include charge and
energy transfer, nonradiative relaxation, molecular stability, and
reactivity, to name a few. On the other hand, extensive
atomistic details offered by modern simulations, such as ab
initio molecular dynamics (AIMD) modeling, may hinder
determination of the reduced set of variables, given the
complexity of the entire manifold of nuclear motions. Within
this context, an elaborate analysis of AIMD simulations in
terms of vibrational normal modes helps to elucidate this issue.
Equilibrium normal modes (ENMs), typically calculated

from the second derivatives of the ground-state (GS) energy
with respect to nuclear coordinates, are extensively used to
identify relevant vibrational motions of polyatomic mole-
cules.1−5 In particular, infrared and Raman spectroscopy
measurements are usually interpreted in terms of vibrational
band assignments associated with frequencies of these
ENMs.6−12 Because ENMs are obtained at the equilibrium
geometry of the minimum of the ground-state potential energy
surface (PES), they can be subjected to reordering and
transient mixing during molecular dynamics (MD) even at
room temperature.13,14 Despite that, they have typically
preserved the general average features of their identities,

making ENMs a major tool for analyzing complex dynamics
behavior in a large variety of biological and chemical systems.15

In most cases, only a selected subset of ENMs, the so-called
active normal modes, are the ones directly involved in the
physical process of interest, for example, enzyme catalysis,
protein conformational changes, and photoinduced dynamics
in molecules. Different techniques have been developed to
analyze these relevant vibrations.16−20 On the one hand, the
identification of active normal modes lends useful chemical
insights into specific structure−property relationships that can
guide the manipulation of desired technological or biological
molecular functionalities. On the other hand, it allows to build
and assess models of reduced dimensionality potentials that are
necessary for high fidelity simulations including nuclear
quantum effects that include these dominating nuclear
motions.20,21 Once the most important normal modes are
identified, their impact on the selected aspects of dynamics can
be explored by performing AIMD simulations by selectively
freezing them.
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In the realm of excited state dynamics, ENMs have also
shown to be useful when analyzing vibrational energy
redistribution pathways during ultrafast nonequilibrium
processes such as photoinduced electron and energy transfer
in conjugated chromophores.22−27 However, a somewhat
better description of these processes involving several coupled
electronic excited states would require the use of state-specific
normal modes. For this purpose, excited-state equilibrium
normal modes (ES-ENMs), calculated at the minimum of the
corresponding ES PESs, are convenient coordinates to describe
internal conversion processes and characterize specific PESs
features such as conical intersections.28,29

A large variety of methods have been developed to perform
structure-constraint MD simulations, particularly by freezing
bond length, angle, or dihedral angles.30−43 Nevertheless, none
of them has been extended to routinely freeze specific normal
modes. Herein, we propose a new algorithm, called frozen
normal mode (FrozeNM), to apply normal-mode constraints
in MD simulations. The algorithm is an extension of
RATTLE,30 a “velocity” version of the SHAKE31 algorithm
for MD simulations. While both SHAKE and RATTLE have
been originally developed to constrain bond length, and angles,
FrozeNM aims to include ENM constraints. Similar to
RATTLE, our method is based on the Velocity Verlet
algorithm using Cartesian coordinates. FrozeNM guarantees
that a selected set of collective coordinates, that is, normal
modes, satisfy the required constraints at each time step.
FrozeNM has been implemented in the nonadiabatic excited
state molecular dynamics (NEXMD) computational pack-
age,44,45 which is freely available at GitHub. The Non-adiabatic
EXcited state molecular dynamics (NEXMD) Program code,
license, and documentation may be accessed at https://github.
com/lanl/NEXMD.
To illustrate a practical example, we further use FrozeNM to

analyze the impact of normal mode constraints on the
photoinduced nonadiabatic energy transfer between poly-
phenylene ethynylene (PPE) dendrimer building blocks. The
NEXMD code has been previously successfully applied to
simulate the intramolecular electronic and vibrational energy
relaxation and redistribution in many extended conjugated
PPE dendrimers.46−52 Herein, we consider a simple model
system 23PPE shown in Figure 1a, composed of two- and
three-ring linear PPE chromophore units linked through
metasubstitution. This molecular system is composed of
building blocks present in more complex light harvesting
dendrimers, such as the nanostar.53−57 The metabranching
localizes excitations within each linear fragment. These
dendrimers have been shown to undergo highly efficient and
unidirectional two-ring → three-ring electronic and vibrational
energy transfer.46−48 The ultrafast energy transfer takes place
in the direction of the nonadiabatic couplings with the
participation of a few ES active normal modes.28,58 Thus,
23PPE is a good system for analyzing the normal mode
contributions to the ultrafast nonadiabatic electronic energy
relaxation that takes place after photoexcitation. We show that
the electronic relaxation can be significantly slowed down by
freezing a small subset of active normal modes characterized by
their contributions in the direction of energy transfer, thus
demonstrating the utility of the FrozeNM tool for various
applications.

2. METHODS
2.1. Normal Mode Analysis. The ENM [{Qi}, (i = 1, ...

3N − 6), N being the number of atoms in the molecule], and
their frequencies υ λ π=( ( /2 ))i i are obtained from the
eigenvector matrix L and eigenvalues [{λi}, (i = 1, ... 3N − 6)]
upon diagonalization, L†HL = Λ, of the corresponding mass-
weighted Hessian matrix H. The elements of H are defined as

= −∂ ∂ ∂ |r rH E q q( ) /ij i j0
2

0 (1)

and they are evaluated at the equilibrium structure r0, obtained
after performing geometry optimization of a molecular system
on a given electronic PES, being either ground or excited state.
E i s the co r r e spond ing po ten t i a l ene rgy and

= −−q m x x( ),i i i i3 2 0, = −−q m y y( )i i i i3 1 0, a n d

= −q m z z( )i i i i3 0, are the mass weighted Cartesian displace-
ments of the ith atom. Equilibrium coordinates r0,1 = (x0,i, y0,i,
z0,i) are defined in a body-f ixed reference frame, with the origin
at the center of mass of the molecule and axes corresponding
to its principle axes of inertia.
The ENM amplitudes can be obtained throughout the MD

simulation as a linear combination of the Cartesian coordinates
as

∑ ∑= = = −
= =

Q t l q t L S t i N( ) ( ) ( ) 1, ... , 3 6i
j

N

ji j
j

N

ji j
1

3

1

3

(2)

where l j i are the elements of a matrix L , and
= =− −L m l x( 1, 2, 3),i x j i i x j3 , 3 , S3i−2 = (xi − x0,i),

S3i−1 = (yi − y0,i), and S3i = (zi − z0,i) are redefined elements of
L and coordinates corresponding to the ith atom, respectively.
At this point, it is important to stress that MD simulations

are commonly performed in the space-f ixed Cartesian

Figure 1. (a) Schematic representation of 23PPE-conjugated
chromophore, the model dendritic molecule studied in this work. It
is composed of two- and three-ring linear poly(phenylene ethynylene)
units linked by metasubstitution. The localization of the electronic
transition densities for S1 and S2 states at the ground-state minimum
are also shown. (b) Time evolution of the populations of S1 and S2
electronic states averaged over an ensemble of trajectories as
calculated by NEXMD without normal-mode constraints. (c)
Comparison of the time evolution of the average population of the
S2 state for 23PPE obtained from NEXMD simulations. R = 0
indicates simulations without constraints. The ENMs that are frozen
in each set of simulations are labeled using a superscript to indicate
the singular value decomposition (SVD) vector and a subscript to
indicate ith mode with the largest overlap with d12

SVD1/2.
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coordinates. Matrix L is the linear transformation matrix that
expresses the set of {Qi} on the basis of {qi} defined in the
body-f ixed Cartesian reference frame. Therefore, eq 2 requires
that the Cartesian coordinates obtained from the MD
simulations be erstwhile translated and rotated from the
space-f ixed to the body-f ixed reference frame.
2.2. FrozeNM Algorithm. Consider a molecular system

subject to R normal mode constraints that keep the j normal
mode frozen at its initial value

∑σ = − = { − } =

=
=

t Q t Q L S t S

j R

( ) ( ) (0) ( ) (0) 0

( 1, ..., )

j j j
k

N

kj k k
1

3

(3)

The Newtonian equations of motions when applying the
corresponding Lagrange multipliers λj can be written as

∑ λ σ̈ = − ∂
∂

− ∂
∂

=

=
m S t

E
S S

t t

i N

( ) ( ) ( ),

( 1, ..., 3 )

S i
i i j

R

j j
1

i

(4)

where mSi corresponds to the mass of the ith atom associated

to Si, and we assume one Lagrange multiplier associated with
each jth ENM.
Considering that

∑σ∂
∂

= ∂
∂

− =

= =
=

t

S S
L S t S L

j R i N

( )
( ( ) (0)) ,

( 1, ..., ; 1, ..., 3 )

j

i i k

N

kj k k ij
1

3

(5)

Equation 4 can be written as

∑ λ= − =
=

m a t F t t L i N( ) ( ) ( ) , ( 1, ..., 3 )S i i
j

R

j ij
1

i
(6)

with ai(t) being the acceleration, and the force Fi(t) along the

trajectory r(t) is defined as − ∂
∂ .rE t

S
( ( ))

i

According to the velocity Verlet algorithm, the unrestricted
Si
u displacements at each time step Δt are calculated as

+ Δ = + Δ +
Δ

=

S t t S t v t t
t F t

m

i N

( ) ( ) ( )
( )

2
,

( 1, ..., 3 )

i i i
i

S

u
2

i

(7)

where vi(t) is the velocity in the direction of Si(t). When
adding constraints, we obtain

∑ λ+ Δ = + Δ − Δ

=

=
S t t S t t

t
m

t L

i N

( ) ( )
2

( ) ,

( 1, ..., 3 )

i i
S j

R

j ij
u

2

1i

(8)

Because the normal mode constraints (eq 3) must be valid at
any time during the propagation, using eqs 7 and 8, we can
write

∑ ∑

∑

σ

λ

+ Δ = + Δ −

= Δ +
Δ

− Δ

= =

= =

=

t t Q t t Q t

L v t t
t F t

m
t

t

L L

m
j R

( ) ( ) ( )

( )
( )

2 2
( )

0, ( 1, ..., )

j j j

k

N

kj k
k

S i

R

i

k

N
kj ki

S

1

3 2 2

1

1

3
k

k

l
m
ooo
n
ooo

|
}
ooo
~
ooo

(9)

and us ing the or thogona l i ty o f the L matr ix ,
δ∑ = ∑ == =

−l l L m L ,k
N

kj ki k
N

kj S ki ji1
3

1
3 1

k
, we obtain

∑λ = Δ Δ +
Δ

=

−

=
t t L v t t

t F t
m

j R

( ) 2 ( )
( )

2
,

( 1, ..., )

j
k

N

kj k
k

S

2

1

3 2

k

l
m
ooo
n
ooo

|
}
ooo
~
ooo

(10)

In the velocity Verlet algorithm, the new velocities are
obtained as

+ Δ = + + + Δ Δ

=

v t t v t a t a t t t

i N

( ) ( )
1
2

( ( ) ( )) ,

( 1, ..., 3 )

i i i i

(11)

So that, using eq 6, we can write

∑ λ λ

+ Δ = + Δ + + Δ

− + + Δ =
=

v t t v t
t

m
F t F t t

L t t t i N

( ) ( )
2

( ( ) ( ))

( ( ) ( )) , ( 1, ..., 3 )

i i
S

i i

j

R

ij j j
1

i

l
m
ooo
n
ooo

|
}
ooo
~
ooo

(12)

As it has been pointed out in the ref 30, eq 12 cannot be
used to obtain vi(t + Δt) because λj(t + Δt) cannot be
obtained with a simple iterative scheme as the one under-
pinning the Verlet algorithm. In order to overcome this issue,
the RATTLE30 algorithm propose to define λj(t + Δt) = γj(t),
and eq 12 can be written as

∑ λ γ+ Δ = + Δ − Δ +

=

=
v t t v t t

t
m

L t t

i N

( ) ( )
2

( ( ) ( )),

( 1, ..., 3 )

i i
S j

R

ij j j
u

1i

(13)

where the unrestricted velocities are given by

+ Δ = + Δ + + Δv t t v t
t

m
F t F t t( ) ( )

2
( ( ) ( ))i i

S
i i

u

i (14)

In order to calculate the values of γj(t), the ENM velocities
can be obtain using eq 2 as

∑̇ + Δ = + Δ =
=

Q t t L v t t i N( ) ( ), ( 1, ..., 3 )i
k

N

ki k
1

3

(15)

Using the fact that Q̇i(t + Δt) = 0 for the R ENM constraints
and substituting eq 13 in 15, we finally obtain

∑γ λ= Δ + Δ −

=

−

=
t t L v t t t

j R

( ) 2 ( ) ( ),

( 1, ..., )

j
k

N

kj k j
1

1

3
u

(16)
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Altogether, eqs 8, 10, 13, and 16 summarize the application
of the FrozeNM algorithm.
2.3. Computational Details. The photoexcitation and

subsequent electronic relaxation of the 23PPE molecular
system (see Figure 1a) have been simulated using the NEXMD
package.44,45 NEXMD combines the surface hopping algo-
rithm59,60 with “on the fly” analytical calculations of excited
state energies, gradients, and nonadiabatic coupling terms at
the configuration interaction singles (CIS) level with the
semiempirical Hamiltonian models, as was detailed else-
where.45 Here, we use the AM1 model.61

Within the NEXMD framework, while nuclei are propagated
classically with the Newtonian equations of motions (eq 4),
the electronic wave function ψ ϕ= ∑α α αt c t( ) ( ) is propagated
quantum-mechanically using the basis of adiabatic electronic
states ϕα

∑ℏ ̇ = − ℏ ·α α α
β

β αβi c t c t E i c t v d( ) ( ) ( )
(17)

here, Eα is the energy of the α
th electronic excited state, and dαβ

are the nonadiabatic derivative coupling vectors defined as dαβ
= ⟨ϕα|∇rϕβ⟩. Details of the NEXMD approach, implementa-
tion, advantages, and testing parameters can be found in our
previous works.44,45

The NEXMD simulations were performed on the 23PPE
molecular system at constant energy. Initial conditions were
collected from 1 ns of an equilibrated ground-state molecular
dynamics simulation at 300 K with the Langevin friction
coefficient γ = 20.0 ps−1. For each set of selected ENM
constraints, 600 individual NEXMD trajectories were started
from these initial configurations by instantaneously promoting
the system to the second excited state S2. A classical time step
of 0.5 fs has been used for nucleus propagation in the ground-
state dynamics.
For excited-state dynamics simulations, a classical time step

of 0.1 fs has been used for nucleus propagation, and a quantum
time step of 0.025 fs has been used to propagate the electronic
coefficients. Specific treatments of decoherence,62 and trivial
unavoided crossings63 have been applied. According to the
surface hopping prescription,59,64,65 adjustments to the nuclear
velocities are required in order to conserve total energy
following hops between electronic states. The direction in
which the velocity vi(t) of each of the ith atom in the molecular
system is commonly rescaled, corresponds to the direction of
the dαβ. In order to avoid the effect that these rescalings could
have on the intramolecular vibrational flux during electronic
relaxation, atomic velocities were rescaled in the same
directions as they were at the time step before the hopping
event occured.22

3. RESULTS AND DISCUSSION
Normal-mode constraint dynamics has been applied to the
electronic energy relaxation process after photoexcitation of
23PPE. The molecule is initially excited to its S2-excited singlet
state localized on a two-ring linear segment that then relaxes to
the lower-energy S1 state localized on the three-ring seg-
ment.46−48 Figure 1a indicates that S2 and S1 states are mostly
localized on the two-ring and three-ring linear PPE units.
Therefore, the S2 → S1 electronic energy relaxation involves a
two-ring → three-ring energy redistribution. Figure 1b shows
the evolution in time of the average populations on S1 and S2
states obtained from unconstraint nonadiabatic MD simu-

lations, that is, without the use of FrozeNM algorithms,
allowing participation of all vibrational normal modes. As was
previously reported,46 an ultrafast transfer of the electronic
population can be seen from the initially populated S2 state to
the lower-state S1 on the timescale of around hundreds of
femtoseconds.
We next perform constraint nonadiabatic MD simulations

using the FrozeNM tool. As it has been pointed out
previously,28,45 d12 (see Section 2.3) represents the direction
of the effective S2 → S1 vibronic energy transfer. Therefore, we
analyze the effect of systematically introducing constraints into
ENMs according to their contribution to this vector. For this
purpose, a representative d12

SVD vector associated with the S2 →
S1 transition is defined by constructing a matrix A of dimension
3N × K, with K being the number of NEXMD trajectories
featuring an effective S2 → S1 transition. We define an effective
S2 → S1 transition, or a hop, as the last S2 → S1 transition
without further S1 → S2 back-hopping during the rest of the
trajectory dynamics. Matrix A is built with columns
representing the d12 at the moment of effective S2 → S1
transition in each of the K NEXMD trajectories. Matrix A
represents a numerical characterization of nonadiabatic
coupling vectors at a conical intersection seam sampled by
an ensemble of MD trajectories. Thereafter, SVD of matrix A is
performed, that is, A is written as

= · ·A U W VT (18)

where matrix U is a 3N × K column-orthogonal matrix, and V
and W are K × K column-orthogonal and diagonal matrices,
respectively. We denote d12

SVD1 and d12
SVD2 as the first and second

columns of matrix U with the associated largest values of wi
(shown in Figure 2a,b). These two vectors can describe more

than 80% contribution of the original d12 vectors from the
ensemble and 74% if only d12

SVD1 is taken into account.
Therefore, they can be considered as dominating representa-
tives of the entire set. This is reflected in Figure 2c, where the
overlap between each d12 and d12

SVD1 versus the overlap between
the same d12 and d12

SVD2 is depicted. d12
SVD1 shows a good

representation of the majority of the original d12 vectors, and
only a minority of them are expressed by d12

SVD2. d12
SVD1 and

d12
SVD2 vectors can be interpreted as leading nonadiabatic
couplings, characteristic for spatial localization of donor and
acceptor states, respectively. As it has been pointed out in the
previous study,46 the major contributions to d12

SVD1 come from
the stretching motions in the direction of the ethynylene
bonds, especially the bonds corresponding to the two-ring

Figure 2. (a) d12
SVD1, (b) d12

SVD2, and (c) density plot of the overlap of
each of the d12 from the ensemble with d12

SVD1 versus the overlap with
d12
SVD2. The bar color in the right indicates probability density.
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linear unit. Besides, the delocalization of d12
SVD1 between the

two-ring and three-ring linear PPE units allows the coupling
between the two differently localized S1 and S2 states (see
Figure 1a).
The FrozeNM algorithm can be applied to either GS- or

excited-state normal modes (ES-ENM(Sα), α = 0, 1, 2). We
note that ES-ENM(S2) allows to achieve better representations
of d12 (i.e., less number of ENMs are involved in the dynamics)
compared to ES-ENM(S1) or ENM(S0) because the non-
adiabatic coupling is particularly strong at the minimum of S2
(because it is close to the conical intersection seam) affecting
the normal mode structure.28 Therefore, in the present work,
we conduct the FrozeNM-constraint NEXMD simulations
using ES-ENM(S2) and, for the sake of simplicity, denote the
latter as ENM. The complete list of ci values, obtained by
projecting d12

SVD1 and d12
SVD2 onto the basis of ES-ENM(S2), is

provided in Table S1 of Supporting Information
A further inspection of d12

SVD1 and d12
SVD2 can be performed by

projecting them onto the ENM basis set
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with ci = d12·Qi. The participation number (PN) of these
projections is given by66,67
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PN represents the number of ENMs that contribute to d12.
Values of PN ≈ 3N − 6 indicate the fully delocalized d12 with
contributions from every ENM, whereas PN ≈ 1 corresponds
to d12, being identical to a unique ENM. PN values of 1.3 and

17.3 have been obtained for d12
SVD1 and d12

SVD2, respectively,
indicating that at least 1−2 and 17−18 ENMs are required to
represent these vectors. Therefore, in order to analyze the
impact that these directions of nuclear motions have on the S2
→ S1 energy transfer timescales, NEXMD simulations have
been performed constraining the first and second ENMs that
overlap the most with d12

SVD1 (i.e., those with the largest values
of (ci)

2, see eq 19) and the 18 ENMs that overlap the most
with d12

SVD2. The obtained results are shown in Figure 1c. Here,
in order to clarify which ENMs are frozen, we labeled them
using a superscript to indicate the SVD vector and subscript to
ith mode with the largest overlap with d12

SVD1/2. We can observe
a significant impact of these ENM constraints at earlier times
of the electronic relaxation immediately after photoexcitation.
Nevertheless, the freezing of other modes than the one with
the largest overlap with d12

SVD1 seems not to have further effects.
This is a consequence of two features. On the one hand, the
144th ENM, which overlaps the most with d12

SVD1, presents a
significant overlap (0.94) with d12

SVD1, while the second largest
overlap (42nd ENM) is only 0.11 (see Table S1). Therefore,
the impact of the latter on the main direction of electronic
relaxation is expected to be less. On the other hand, d12

SVD2

represents only a minority of the original d12 vectors, and,
therefore, its impact on the electronic relaxation is also
expected to be less. After the first ∼80 fs of dynamics, the
molecular system seems to find different segments of the
conical intersection seam.
In order to further explore the effect of ENM constraints on

the electronic relaxation of 23PPE, we have performed
NEXMD simulations while gradually increasing number R of
ENM constraints selected according to the decreasing order of
values for ENM overlaps with d12

SVD1 (see Table S1). The initial
configurations for these new sets of simulations were the same

Figure 3. (a) Time evolution of the average populations of S1 and S2 electronic states calculated with a different subset R of the ENM constraints
selected in the decreasing order of overlap with d12

SVD1. The ENMs that are frozen in each set of simulations are labeled using a subscript to indicate
ith mode with the largest overlap with d12

SVD1. Populations of S1 (yellow) and S2 (green) states obtained from 10 new sets of NEXMD simulations
with constraints performed over reference subsets of R randomly selected modes are also shown. (b) Comparison of time evolution of the average
population of the S2 state for the different constraint simulations.
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original 600 configurations selected for the unconstraint
NEXMD simulations. The effect of constraints over each of
these selected set of R active normal modes has been
statistically validated by comparing with results obtained by
freezing an equivalent R number of randomly selected modes.
For each R subset of modes, 10 new subsets of R randomly
selected modes were built. These new subsets were considered
as references, and for each of them, 600 individual NEXMD
trajectories have been performed with the same initial
configurations. Figure 3 shows that the electronic relaxation
slows down significantly with the number of the ENM
constraints when they are selected in the decreasing order of
overlap with d12

SVD1. The resulting half-life (i.e., time required
for the S2 population to reach a value of 0.5) values is 23.1,
43.1, 60.6, 98.3, 109.9, 107.3, and 132.9 fs for unconstrained
and ENM constraint simulations with 1, 10, 20, 30, 40, and 50
frozen modes, respectively. This is not the case for subsets of
randomly selected ENMs, where the corresponding average
half-lives remain the same as for the unconstrained dynamics
across the entire series 22.0 ± 1.5 fs. That is, the observed
slowdown is related to a systematic closure of relaxation
pathways rather than the simple reduction of the nuclear
degrees of freedom serving as an effective bath for large
molecules.
The observed slowdown in the electronic relaxation for the

ENM constraint simulations can be analyzed in terms of the
changes in the relative values of the nonadiabatic coupling
between S1 and S2 states. According to eq 20, the evolution in
time of the electronic populations is dictated by the coupling
term NACT12 = v·d12. Therefore, freezing those normal modes
that contribute the most to d12 magnitude leads to decreased
values of NACT12 with a subsequent reduction of the
electronic population transfer rates between states. Figure 4

shows the evolution in time of NACT12 calculated during the
different ENM constraint simulations. We can observe an
initial significant decrease of the coupling in ENM constraint
simulations with respect to unconstraint ones. Besides,
throughout the simulations, we confirm the gradual decrease
of NACT12 as R increases. Notably, the spikes in the behavior
of this quantity are relevant to the near-degenerate energies of
S1 and S2 states, evidencing that the trajectory is sampling the
conical intersection seam. We further observe in Figure 4 that
these spikes persist even for constrained simulations despite
the reduced rates of appearance. This means that the dynamics
is still able to sample different segments of seams of conical
intersection when some vibrational coordinates are frozen.
At this point, it is interesting to analyze the effect of the

ENM constraint dynamics on the vibrational energy flux that
takes place concomitantly to the electronic energy transfer and

relaxation. Vibrational kinetic energy K(t) can be decomposed
into individual contributions Ki(t) of each ENM as
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and the total vibrational energy associated with a given ENM is
obtained from the virial theorem, Ei(t) = 2Ki(t). Figure 5a,b
shows the average vibrational energies Ei(t) for individual
normal modes at the moment of effective S2 → S1 transition
(thop). Besides the 144th ENM, a bundle of active ENMs with
frequencies (υi) in the range of ∼ [1790, 2470] cm−1 (i.e.
121th to 125th ENMs) have values of Ei(t) > kT. This
situation changes once the 144th mode is constrained because
the excess of energy on this bundle of modes significantly
decreases. That is, freezing the 144th ENM not only affects the
vibrational flux in this direction but also leads to a vibrational
energy redistribution with less participation of the previously
identified bundle of active modes. A further insight can be
gained by analyzing the average Ei(t) as a function of delay
time, τ = t − thop, relative to the effective S2 → S1 transition.
This is shown in Figure 5c,d for a few selected active modes.
We observe that the 144th ENM (with an average overlap of
0.94 with the direction of coupling between states, see Table
S1) acts as a donor mode whose energy is transferred to the
121th to 125th bundle of acceptor ENMs after S2 → S1
transition. Once the 144th ENM is frozen, these modes cannot
further receive an excess of electronic energy with the same
efficiency as before, leading to a less-efficient electronic and
vibrational energy transfer.
The ENM constraint simulations allow us to directly

measure the impact of hindering specific vibrations on the
studied dynamical process. As an alternative to this procedure,
we can analyze the effect of freezing vibrations that are not
relevant to the dynamical process of interest and, therefore,
test models of reduced dimensionality. For this purpose, we
have performed the ENM constraint simulations in which all
but a few ENM were frozen, that is, calculations considering
only a few nuclear degrees of freedom. Figure 6 shows the
results obtained by freezing all ENMs except those previously
frozen in Figure 3 to exemplify a case when the molecular
system is allowed to move along only a few selective nuclear
degrees of freedom. We start with analysis of a simple situation
when only a single nuclear degree of freedom is unfrozen.
When only the 144th ENM (which has the largest overlap with
d12
SVD1) participates, we observe an efficient electronic relaxation
but being still slower compared to the unrestricted simulation
shown in Figure 6a. As a reference, Figure 6a also displays the
results for another 10 sets of simulations starting with the same
600 initial configurations as those selected for the original set,
where only a single randomly selected normal mode was
enabled. As expected, no electronic relaxation is found on the
ultrafast timescales for these 10 reference simulations.
Therefore, the direction of d12

SVD1 dictates the majority of the
nonadiabatic transitions. Previous works28 have explored the
conical intersection topography in the energy difference
gradient and nonadiabatic coupling vector branching plane
for these types of PPE dendrimer building blocks, revealing a
conical intersection seam in the direction of the nonadiabatic
coupling vector. Figure 6b points out that by systematically
increasing the number of participating ENMs selected in
decreasing order of overlap with d12

SVD1, only around 20 modes
(i.e., 14% of the total nuclear degrees of freedom) are

Figure 4. Time evolution of the average NACT12 calculated with
different subset R of ENM constraints selected in the decreasing order
of overlap with d12

SVD1.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00930
J. Chem. Theory Comput. 2020, 16, 7289−7298

7294

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00930/suppl_file/ct0c00930_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00930/suppl_file/ct0c00930_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00930?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00930?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00930?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00930?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00930?ref=pdf


necessary to achieve a reasonable qualitative agreement with
the full-dimension simulations.

4. CONCLUSIONS
The new FrozeNM algorithm has been developed to include
normal-mode constraints in AIMD simulations. The method
extends the RATTLE30 algorithm and can be straightforwardly
applied to the velocity Verlet propagator that integrates the
equations of motions in Cartesian coordinates. FrozeNM
guarantees that a selected set of collective coordinates, that is,
normal modes, satisfy the required constraints at each time
step.
The utility of the presented algorithm has been shown by

analyzing the impact of normal-mode constraints on the
ultrafast energy transfer and electronic relaxation after
photoexcitation of a model molecular system composed of
PPE dendrimer building blocks. Our results demonstrate that
the relaxation rates can be significantly reduced by freezing a
well-defined small subset of active normal modes characterized
by their contribution to the nonadiabatic coupling vector
aligned with the direction of energy transfer. This effect is not
observed for constraining a randomly selected normal-mode
subset.

The FrozeNM algorithm can be used as an efficient tool to
discover the role of certain vibrations for specific molecular
processes that are not easily identifiable by other procedures.
Once the relevant normal modes are identified, their impact on
selected aspects of molecular dynamics can be straightfor-
wardly explored by performing constraint simulations, as
shown by our application example. Moreover, FrozeNM is
useful for guiding development of reduced dimensionality
Hamiltonians that can be further used for more accurate
treatment of nonadiabatic dynamics, such as exploiting nuclear
quantum effects in the selected directions of motion.20,21

However, it is important to mention that, in its current version,
FrozeNM cannot be applied directly to photoinduced process
involving electronic excited states in which ES-ENMs cannot
be well defined, as it is the case for excited states lacking
geometric minimum or where geometric minimum is in the
direct vicinity of a conical intersection seam. Moreover, floppy
molecules with shallow PESs and multiple conformational
metastable minima may require careful definition of effective
normal modes that fully exploit effectiveness of constraints.
Overall, FrozeNM can be adapted to freeze an arbitrary set of
collective vibrational coordinates, for instance, defined by a
principal component analysis, among others.
The FrozeNM method can be easily implemented into

arbitrary molecular dynamics computational packages, as
demonstrated by its integration into a freely distributed
NEXMD package. We believe that this tool is suitable for
elucidating the role of vibrational motions and structural
distortions in a dynamical process of interest and thus can be a
helpful tool for in silico design of new materials or biosystems
with tunable properties and desired functions.
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Seńeca under project 20789/PI/18.

■ REFERENCES
(1) Brooks, III, C.; Karplus, M.; Pettitt, B. M. Proteins: A Theoretical
Perspective of Dynamics, Structure, and Thermodynamics, Advances I.;
Prigogine, I., Rice, S. A., Eds.; John Wiley & Sons Ltd, 1987.
(2) Nishikawa, T.; Go̅, N. Normal Modes of Vibration in Bovine
Pancreatic Trypsin Inhibitor and Its Mechanical Property. Proteins:
Struct., Funct., Genet. 1987, 2, 308−329.
(3) Brooks, B.; Karplus, M. Harmonic Dynamics of Proteins:
Normal Modes and Fluctuations in Bovine Pancreatic Trypsin
Inhibitor. Proc. Natl. Acad. Sci. U.S.A. 1983, 80, 6571−6575.
(4) Andrew McCammon, J.; Harvey, S. C. Dynamics of Proteins and
Nucleic Acids; Cambridge University Press, 1987.
(5) Brooks, C. L.; Karplus, M.; Pettitt, B. M. Proteins: A theoretical
perspective of dynamics, structure, and thermodynamics. Adv. Chem.
Phys. 1988, 71, 1−259.
(6) Hill, J. R.; Ziegler, C. J.; Suslick, K. S.; Dlott, D. D.; Rella, C. W.;
Fayer, M. D. Tuning the Vibrational Relaxation of Co Bound to
Heme and Metalloporphyrin Complexes. J. Phys. Chem. 1996, 100,
18023−18032.

(7) Peterson, K. a.; Rella, C. W.; Engholm, J. R.; Schwettman, H. a.
Ultrafast Vibrational Dynamics of the Myoglobin Amide I Band. J.
Phys. Chem. B 1999, 103, 557−561.
(8) Dlott, D. D. Vibrational energy redistribution in polyatomic
liquids: 3D infrared-Raman spectroscopy. Chem. Phys. 2001, 266,
149−166.
(9) Fayer, M. Ultrafast Infrared and Raman Spectroscopy; Marcel
Dekker Inc.: New York, 2001.
(10) Iwaki, L.; Dlott, D. Vibrational Energy Transfer in Condensed
Phases. In Encyclopedia of Chemical Physics and Physical Chemistry;
Moore, J., Spencer, N., Eds.; Taylor & Francis: Bristol, 2001; p 2717.
(11) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Molecular
Vibrations, Infrared, and Raman Activity. Group Theory; Springer:
Berlin, Heidelberg, 2008; pp 147−178.
(12) Hashimoto, K.; Badarla, V. R.; Kawai, A.; Ideguchi, T.
Complementary Vibrational Spectroscopy. Nat. Commun. 2019, 10,
4411.
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Farag, M. H.; Zuñ́iga, J.; Requena, A. Vibrational Dynamics of
Polyatomic Molecules in Solution: Assignment, Time Evolution and
Mixing of Instantaneous Normal Modes. Theor. Chem. Acc. 2011, 128,
769−782.
(14) Zgierski, M. Z. On Mode Mixing Effects in Absorption-
Emission Spectra and Resonance Raman Excitation Profiles. Chem.
Phys. 1986, 108, 61−68.
(15) Normal Mode Analysis. Theory and Applications to Biological and
Chemical Systems; Cui, Q., Bahar, I., Eds.; Chapman & Hall/CRC:
London, U.K., 2006.
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