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ABSTRACT: We present a versatile new code released for open community use, the nonadiabatic
excited state molecular dynamics (NEXMD) package. This software aims to simulate nonadiabatic
excited state molecular dynamics using several semiempirical Hamiltonian models. To model such
dynamics of a molecular system, the NEXMD uses the fewest-switches surface hopping algorithm,
where the probability of transition from one state to another depends on the strength of the derivative
nonadiabatic coupling. In addition, there are a number of algorithmic improvements such as empirical
decoherence corrections and tracking trivial crossings of electronic states. While the primary intent
behind the NEXMD was to simulate nonadiabatic molecular dynamics, the code can also perform
geometry optimizations, adiabatic excited state dynamics, and single-point calculations all in vacuum or in a simulated solvent. In this
report, first, we lay out the basic theoretical framework underlying the code. Then we present the code’s structure and workflow. To
demonstrate the functionality of NEXMD in detail, we analyze the photoexcited dynamics of a polyphenylene ethynylene dendrimer
(PPE, C30H18) in vacuum and in a continuum solvent. Furthermore, the PPE molecule example serves to highlight the utility of the
getexcited.py helper script to form a streamlined workflow. This script, provided with the package, can both set up NEXMD
calculations and analyze the results, including, but not limited to, collecting populations, generating an average optical spectrum, and
restarting unfinished calculations.

■ INTRODUCTION

The fast-paced modern technological landscape increasingly
demands the design of new materials with desired function-
alities. In particular, photoactive functional materials are of
interest in organic light-emitting diodes,1 photovoltaics,2−6

field-effect transistors,7,8 sensors,9−12 and photocatalysts,13 to
name a few. For this purpose, organic conjugated materials
(OCMs), such as polymers, small molecules, molecular
crystals, and donor−acceptor systems, are commonly used as
photoactive semiconductor materials.14,15 Delocalized and
polarizable π-electrons endow these materials with desirable
electronic properties and allow for mobile charge carriers.16 As
revealed by optical experiments, OCMs exhibit complex
excited state electronic structure due to their low dimension-
ality and strong electronic correlations.17 Similar properties are
common for many other molecular electronic materials such as
biological chromophores (retinals, fluorescent proteins, chlor-
ophylls, and carotenoids) underpinning many natural
processes, for example, vision, bioluminescence, and photo-
synthesis.12,18−22 In all these materials, the dynamics of
electronic excitations is dominated by significant nonadiabatic
(NA) couplings through a breakdown of the Born−
Oppenheimer (BO) approximation. Following photoexcita-
tion, various nonradiative intraband relaxation pathways can
lead to a number of complex photoinduced processes such as
internal conversion, energy transfer, charge separation, and

spatial localization of excitons,23−25 as well as photochemical
reactions or isomerization.26,27 Computational simulation of
nonadiabatic molecular dynamics (NAMD) is an indispensable
tool for understanding and controlling optoelectronic proper-
ties and photoinduced pathways. Thus, nonadiabatic processes
play a central role in many technological applications,
atmospheric,28 environmental,29 and biological chemis-
try,20,30,31 among others. As such, many software packages
implement various approaches for NAMD.32−39

Adiabatic or BO molecular dynamics (BOMD), in which
trajectories are propagated along a single molecular potential
energy surface (PES) of a ground40 or excited state,41,42 are
valuable for modeling the ultrafast dynamics of excited
electron-vibrational states on femtosecond to nanosecond
timescales in large organic molecules (nanometer length
scales).43,44 When dynamics becomes nonadiabatic, electronic
and nuclear motions can no longer be separated and the BO
approximation fails.45 Nonadiabatic processes occur when
excited state PESs become energetically close or cross.46 In this
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regime, one must go beyond the BO approximation using fully
quantum,47,48 semiclassical,49−57 or mixed quantum-classical
(MQC)58−61 approaches to describe NAMD. While the fully
quantum and semiclassical methods provide high accuracy
results, they are generally too expensive to apply to extended
molecular systems that often contain hundreds of atoms and
involve large densities of excited states participating in the
photoinduced dynamics. Alternatively, the molecular dynamics
with quantum transitions (MDQT) method, particularly the
fewest-switches surface hopping (FSSH) approach,62 is one of
the most widely used MQC methods for NAMD simulations.
Our group has developed the nonadiabatic excited state

molecular dynamics (NEXMD) software package, which
utilizes the semiempirical quantum mechanics (SQM) package
from AmberTools63 to implement an efficient framework to
describe photoinduced phenomena in extended conjugated
molecular systems. The NEXMD code can perform both
BOMD and NAMD simulations. For the latter, we use the
FSSH algorithm within an adiabatic basis to treat quantum
transitions among multiple excited states. The time-dependent
Hartree−Fock (TD-HF)64−66 or the configuration interaction
singles (CIS)65,67 level of theory can be combined with a
semiempirical Hamiltonian to provide a sufficiently fast and
accurate description of the excited state manifold in relatively
large molecular systems. Analytical techniques remove the
computational barrier to computing the complete set of NA
couplings68,69 and allow excited state gradients70−72 to be
computed on-the-fly. This allows for dynamical propagation on
the native excited state PES, going beyond the classical path
approximation (CPA).73 Furthermore, solvation effects arising
from electrostatic screening can be incorporated via implicit
continuum solvent models.74 Finally, well-known deficiencies
of the FSSH algorithm are overcome by correcting for trivial
unavoided crossings and decoherence.75−77 Thus, the NEXMD
code offers a variety of functionalities for both BOMD and
NAMD simulations in realistically large (hundreds of atoms)
molecular systems propagated on timescales up to tens of
picoseconds.
The utility and accuracy of the NEXMD development

version were exemplified by its application to a variety of
systems including oligomers and polymers,78−89 den-
drimers,90−94 light harvesting complexes (LHCs),18,19,95

energetic materials,96−98 and others.99 Additionally, our
previous publications documented the development of
theoretical methodology, algorithms, and analyses featured in
NEXMD.75−77,81,100−104 In this article, we outline the various
functionalities of the NEXMD package derived from the
development version and released for open public use and the
associated getexcited.py python support package. The getexci-
ted.py scripts contain tools for generating initial conditions,
computing optical spectra, populating initial excited states, and
performing data analysis. We then demonstrate the features of
NEXMD and various analyses available in the getexcited.py
package with application to modeling photoexcited energy
transfer dynamics in a model polyphenylene ethynylene (PPE)
dendrimer.105 The paper is organized as follows: Section 2
covers the theoretical methodology employed in the NEXMD
software and highlights different dynamics capabilities
currently available. In Section 3, we discuss the code structure
and workflow for setting up and running a typical simulation.
Section 4 exemplifies the NEXMD simulations of photoexcited
dynamics in a model PPE dendrimer with emphasis on various

developed analysis techniques. Finally, our conclusions are
presented in Section 5.

■ THEORETICAL METHODOLOGY
Electronic Structure Calculations. For the ground state

electronic structure description, NEXMD ultizes the Hartree−
Fock (HF) method. The software package interfaces with the
SQM quantum chemistry program106 in AmberTools, which
provides a variety of semiempirical Hamiltonians such as
Austin Model 1 (AM1),107 Parameterized Model number 3
(PM3),108 MNDO/d,109 and Parameterized Model number 6
(PM6),110 among others. At each self-consistent field (SCF)
iteration, the initial guess to subsequent SCF steps is calculated
using combinations of ground state configurations from
previous SCF steps. The ground state convergence criteria
specify the minimum energy difference between two SCF steps
before convergence is achieved following the SQM imple-
mentation.106

Excited states can be calculated using either configuration
interaction singles (CIS) or time-dependent Hartree−Fock
(TD-HF), also known as the first-order random phase
approximation (RPA). Both methods rely on the collective
electron oscillator (CEO) approach111,112 to solve the TD-HF
equation of motion67 for the single electron density matrix.113

We define the single electron density matrices for the adiabatic
electronic eigenstates |ϕ⟩ of the system (solutions of the time-
independent electronic Schrödinger equation) labeled by α
and β as

ρ ϕ ϕ= ⟨ | | ⟩αβ α β
†c c( )mn m n (1)

where n and m denote the atomic orbital (AO) basis functions
and cm

† and cm are electronic creation and annihilation
operators, respectively. Here and throughout, we use the
following notations: ground and excited states of a molecule
are well-defined, and their energies/many-body wave functions
depend parametrically on the set of nuclear coordinates R (e.g.,
E0(R)/ϕ0(R) and Eα(R)/ϕα(R) for the ground and excited
states, respectively). Then, the eigenfunctions of the tetradic
Liouville operator L72,112

ξ ξ= Ωα α αL (2)

correspond to the transition density matrices ξα = ρ0α, which
describe the change in density induced by the ground to
excited state transitions |0⟩ → | α⟩. The eigenvalues Ωα are the
respective electronic transition energies such that the excited
state energy of state α is given by the ground state SCF energy
plus the transition energy as Eα = E0 + Ωα. Equation 2 can be
written in matrix form in the molecular orbital (MO) basis as72

− −
= ΩA B
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which is the RPA eigenvalue equation.67 The transition density

matrix ξ = X
Y

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ consists of X and Y components corresponding

to the particle-hole and hole-particle subparts,72,112 respec-
tively. The CIS approximation neglects B in eq 3114 resulting in

= ΩAX X (4)

where the Hermitian matrix A is the CIS matrix. The TD-HF
(RPA) approach includes the de-excitation operator (matrix B)
in eq 3, but the method is more computationally expensive.
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The Davidson diagonalization algorithm114−117 is used to
solve eq 3 (TD-HF) or 4 (CIS) for the excitation energies Ωα

at approximately O(N3) cost, where N is the number of AO
orbitals considered in the system. For NS requested excited
states, the Davidson algorithm implemented in NEXMD solves
for NS + 1 eigenstates in order to improve the accuracy of the
highest value transition (NS).

118

Geometry Optimization and Gradients. Calculation of
forces (or energy gradients) on each atom for a given potential
energy surface performed using the Hellmann−Feynman
theorem119,120 underpins all geometry optimizations, as well
as BOMD and NAMD simulations described below. Both
ground and excited state energy gradients

∂
∂

=
∂

∂
+

∂Ω
∂

α αR
R

R
R

R
R

E E( ) ( ) ( )0
(5)

are computed analytically, which is a superior approach to
numerical derivatives. We refer the reader to refs 70, 72 and
100 for a more detailed description.
Geometry optimization then uses the basic steepest descent

(or gradient descent) procedure that relaxes the structure
iteratively by moving the atoms down the energy gradient until
a sufficiently low average gradient (force) is obtained. Both the
force criterion (minimization is converged when forces are
smaller than a specified value) and a maximum number of
geometry optimization cycles can be specified. In the current
NEXMD release version, all atomic coordinates are included in
the minimization routine, and no vibrational degrees of
freedom can be frozen. For any specific nuclear configuration,
a single point calculation of the electronic structure can be
performed to obtain various ground or excited state properties.
Table 1 provides an overview of the different types of
calculations/dynamics available in the NEXMD and various
features that are supported within each category.
Solvent Models. The interaction of the system (solute)

with the environment (solvent) can significantly alter the
optical properties and influence the photoinduced dynam-
ics.121 While the solute is treated quantum-mechanically, one
can treat the solvent either explicitly using molecular
mechanics (a family of so-called QM/MM methods)122 or
implicitly using a range of continuum solvation models.74 The
latter avoids explicit treatment of solvent degrees of freedom
and maintains a minimal system size. However, these methods
do account for long-range electrostatic interactions contribu-
ting to many solvation effects and include the effect of
electronic polarization of the solute.74 In NEXMD, we use the
implicit self-consistent reaction field (SCRF) models.123 Here,
the continuum solvent generates a reaction field (i.e., solvent
potential) that depends on the electron density of the solute
and is therefore iterated self-consistently during the wave
function convergence. The available potentials include either
the Onsager model124,125 or the conductor-like screening
model (COSMO).126 For the Onsager model, the solvent is
modeled as a polarizable medium with a continuous dielectric
constant, ε, and the solute is placed inside a spherical solvent
cavity with a specified radius. COSMO is a more sophisticated
model where a refined molecule-shaped cavity is used.
The effective solvent potential describes the electrostatic

interaction between the charge densities of the solute and
solvent. For excited states, several methods for describing the
mutual polarization involving the excited state density have
been developed over the years. In the linear response (LR)
method,127−129 the transition density polarizes the solvent,

which allows for the sequantial solution of the ground state
SCF equation followed by the solution of the RPA eigenvalue
equation. However, the LR model is limited to cases where the
excited state has a substantial transition dipole moment and a
permanent dipole moment similar to the ground state. The
absence of interactions with excited state charge density in LR
precludes description of states with dissimilar permanent
dipole moments such as charge-transfer transitions. The state-
specific (SS) solvation model130,131 addresses this deficiency by
including excited state polarization, where the electronic
density of a specific state polarizes the solvent potential.
However, this requires an iterative solution of both SCF and
RPA equations and is numerically expensive. A third option,
the vertical excitation (VE) model,132 provides an approximate
solution to the SS model and can be solved by a self-consistent
iteration with only a single RPA diagonalization.
For more details about the implementation of these models

in NEXMD, we refer to our previous publications.102,103

Importantly, only LR and VE models allow formulation of
excited state analytic gradients. The LR model permits all
calculations listed in Table 1. The VE model is available only
for excited state single-point calculations and geometry
optimizations, as well as excited state BOMD. Finally, the

Table 1. NEXMD Functionalities, Represented by Columns,
and the Different Features Available for Each Functionality,
Represented by Rowsa

geometry
optimization
(GS or ES)

single
point (GS
or ES)

adiabatic
BOMD (GS

or ES) NAMD

total molecular
dipole

X* X* X

transition dipole
(GS to ES)

X* X* X* X

transition dipole
(ES to ES)

X*

difference dipole
relaxed/
unrelaxed

X* X* X

Mulliken charges X X X X
CIS X X X X
RPA (TD-HF) X X X X
restart Davidson
from previous
guess

X* X* X

LR solvent model X X X X
VE solvent model X* X* X*
SS solvent model X*
COSMO
potential

X X X X

Onsager potential X X X X
electric field X X X X
instantaneous
decoherence

X

trivial crossing X
Newtonian
dynamics
(NVE)

X X

Langevin
dynamics
(NVT)

X X

analytical
gradients

X X

analytical NAC X
aX denotes an available option. * denotes an option that is available
only for the excited state calculations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00248
J. Chem. Theory Comput. 2020, 16, 5771−5783

5773

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00248?ref=pdf


full SS model can be used only for excited state single-point
calculations owing to the absence of gradients. Moreover, a
static external electric field can also be applied for any type of
calculation listed in Table 1.
Nuclear Propagation, Thermostat, and Adiabatic

Molecular Dynamics. For both BOMD and NAMD
simulations, nuclei are treated classically and propagated
using a numerical velocity Verlet (VV) finite difference
algorithm.133,134 MD can be performed via the constant
energy microcanonical ensemble (NVE) or constant temper-
ature canonical ensemble (NVT). For NVE simulations, the
Newtonian equation of motion is integrated for the nuclei

̈ = −∇ αR RM t E t( ) ( ( ))i i (6)

whereMi, R̈i, and Ri give the mass, acceleration, and position of
the ith nucleus, respectively. Instead, for NVT simulations, the
constant temperature Langevin equation of motion is used

ζ̈ = −∇ − ̇ +αR R R AM t E t M t t( ) ( ( )) ( ) ( )i i i i (7)

Here, Ṙi(t) is the velocity of the ith nucleus, and ζ (ps−1) is
the friction coefficient. A is the stochastic force related to the
bath temperature T through the fluctuation−dissipation
relation135 ⟨Ai(t) · Ai(t + Δt)⟩ = 2MiζkBTδ(Δt)δij, where kB
is the Boltzmann constant, δ(Δt) is the Dirac delta function, δij
is the Kronecker delta function, and ⟨⟩ signifies the equilibrium
time average. Langevin dynamics is implemented using an
algorithm consistent with VV integration136 and uses a random
number generator137 for the stochastic force.
Nonadiabatic Molecular Dynamics (NAMD). The

Fewest-Switches Surface Hopping Algorithm. NAMD
simulations go beyond the BO approximation by allowing
quantum transitions between coupled excited states. To
achieve this, NEXMD implements the FSSH approach.62 In
this method, an ensemble of M independent trajectories is
propagated. Within each trajectory, the electronic degrees of
freedom are treated quantum mechanically while the nuclear
coordinates are propagated classically according to the forces
from a single adiabatic PES, and the trajectory can transition
(hop) to a different electronic state depending on the strength
of the nonadiabatic (NA) coupling. In practice, NVT (eq 7) is
typically used for ground state adiabatic dynamics to sample
the conformational space and generate initial geometries and
momenta used for subsequent NAMD simulations performed
using NVE (eq 6) dynamics. While the nuclear trajectory
evolves on the current adiabatic state labeled α, the electronic
wave function is expressed as a mixture of adiabatic basis
functions ϕi (eigenstates of the adiabatic Hamiltonian)

∑ ϕΨ =R Rt c t r( , ) ( ) ( ; )
i

i i
(8)

where r is the electronic degree of freedom and ci(t) are the
time-dependent adiabatic expansion coefficients. These co-
efficients contain a parametric dependence on R. The equation
of motion for these coefficients follows the time-dependent
Schrödinger equation to give

∑ℏ
∂

∂
= − ℏ ̇·R R di

c t
t

c t E i c t
( )

( ) ( ) ( )i
i i

j
j ij

(9)

where dij is the NA coupling vector (NACR) defined as dij =
⟨ϕi | ∇ ϕj⟩ for i ≠ j, dii = 0, and dij = - dji. The time-dependent

scalar product (NACT) is given by ϕ̇· = ⟨ | ⟩
ϕ∂

∂R dij i t
j . NACR and

NACT are computed analytically68,69 as

ρ
=

Ω − Ω
≠d

Tr F
i j

( )
,ij

R
ij

i j

( )

(10)

ρ
̇ · =

Ω − Ω
R d

Tr F( )
ij

t
ij

i j

( )

(11)

where superscripts (R) and (t) denote the respective
derivatives of the Fock matrix elements.
The coefficients ci(t) define the time-dependent density

matrix with elements given by aij(t) = ci*(t)cj(t). The
probability that a hop from the current adiabatic state α to
another state β will occur during the time interval Δt is given
by

= Δαβ
βα

αα
g t

b t

a t

( )

( ) (12)

where bβα(t) = − 2 Re (aαβ* Ṙ · dij), gαβ = − gβα, and gαα = 0. The
hopping probability gαβ is calculated at each nuclear integration
timestep Δt and is evaluated stochastically by comparing to a
random number 0 < χ < 1. The hop is performed if

∑ ∑χ< <
γ

β

αγ
γ

β

αγ
= =

+

g g
1 1

1

(13)

where states are assumed to be ordered with increasing
transition energy. If ∑γ = 1

NS gαγ < χ < 1 (where NS is the number
of states), then the system remains in state α. If gαβ < 0, then
the hop is unphysical and the probability is set to zero.62

Finally, if a hop to a higher energy state is predicted, then there
must be sufficient nuclear kinetic energy in the direction of
NACR; otherwise, the hop is rejected (frustrated). After a
successful hop, the total electron-nuclear energy is conserved
by rescaling the nuclear velocity in the direction of the NACR
according to the procedure described in refs 138, 139.
Here, we briefly describe several algorithmic improvements

we implemented in NEXMD that reduce numerical cost,
improve the accuracy of the FSSH algorithm, and allow
numerical instability to be avoided.

Numerical Propagators. NACT and ci(t) are highly varying
quantities that require evaluation at smaller quantum time-
steps, δt, than standard nuclear timesteps, Δt (i.e., δt < Δt).
The chosen value of δt must be small enough to resolve
strongly localized peaks in NACT in order to avoid
underestimating transition probabilities.101 In NEXMD, eq 9
is solved numerically by separating the real and imaginary parts
of ci(t) leading to coupled equations of motion described in
detail in ref 100. The equations for the evolution of the
quantum coefficients are solved at δt using the Runge−Kutta−
Verner fifth- and sixth-order method140,141 simultaneously with
velocity Verlet propagation of eq 6 or 7 for the nuclei at Δt.
Importantly, the transition density matrices ξα may rarely

change sign between two trajectory points (ξα(t) ∼ − ξα(t +
δt)) yielding incorrect NACR and NACT values computed
according to eqs 10 and 11. In order to avoid the sign change,
NEXMD tracks the relative phase of the transition density
matrices at each timestep. Since ξα(t) and ξα(t + δt) are
eigenvectors of eq 2, they obey the normalization condition ⟨ξα
| ξβ⟩ = Tr(ρ00[ξα

†ξβ]) = δαβ, where δαβ is the Kronecker delta.
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Therefore, if ⟨ξα(t) | ξα(t + δt)⟩ < 0, then the sign of ξα(t + δt)
is changed: ξα(t + δt) → − ξα(t + δt).
Trivial Unavoided Crossings. During NAMD simulations, it

is important to treat trivial unavoided crossings (i.e., special
cases of unavoided crossings142) that occur between two
noninteracting states occupying the same energy range. For
example, in extended polyatomic molecules composed of
weakly coupled chromophores, these states are often spatially
localized on separated chromophore units. At such crossing
points, NACT becomes infinite and, within the FSSH
algorithm, should produce a hop. However, the use of finite
timestep numerical propagators for nuclear motion can cause
such crossing points to be missed, causing adiabatic states to
be misidentified, leading to artifacts in adiabatic state
populations.76,77 To overcome this technical challenge, we
implemented a Min-Cost algorithm guiding the reassignment
of the adiabatic states at the current timestep in terms of old
states at the previous timestep.76 The trivial crossing routine is
a default NAMD procedure applied for all neighboring pairs of
states. Finally, there are other algorithms that have been
successfully applied to deal with the trivial crossing problem
reported in refs 143−147 including some that were tested in
the development NEXMD version.148

Decoherence Corrections. Introducing decoherence cor-
rection schemes149−155 into surface hopping algorithms such as
FSSH is critical148 since the classical treatment of nuclei
prohibits any dissipation of electronic coherence.156 Moreover,
the lack of such algorithms produces an internal inconsistency
at the ensemble level manifested as the disagreement between
the fraction of classical trajectories evolving on a given state
N t

M
( )i and the ensemble average quantum population for that

state ⟨|ci(t)|
2⟩. NEXMD implements an instantaneous

decoherence approach75 by reinitializing the quantum
amplitude of the current state after every attempted hop
(including forbidden hops). This provides qualitative improve-
ment in the agreement between classical and quantum systems
with no increase in computational cost.75 Other empirical
decoherence schemes implemented in NEXMD rely on the
total kinetic energy or energy gaps.157 These include methods
such as the energy-based decoherence correction (EDC) and
coherent switching with decay of mixing (CSDM) method.158

Computational Efficiency. In general, the computational
efficiency of iterative algorithms is highly dependent on a good
initial guess for the ground state (SCF procedure) and
transition (Davidson algorithm) density matrices. Therefore,
these quantities are stored from the previous trajectory point
and reused as initial guesses in order to improve computational
efficiency by nearly an order of magnitude. Notably, this may
lead to a spurious energy drift particularly for NVE BOMD
simulations. To offset this problem, the NEXMD implements
an extended Lagrangian framework for excited state molecular
dynamics.159 Further, the propagation of electronic coefficients
requires excited state energies Ei(R) and NACTs to be
evaluated at each quantum timestep. While this approach
seems computationally expensive, linear interpolations take
place only within each quantum timestep according to the
requirements of the Runge−Kutta−Verner method. Therefore,
the computational demand of obtaining Ei(R) and NACTs at
each quantum step can be offset by the use of a larger classical
timestep without sacrificing precision in the quantum
propagation. Larger classical timesteps reduce the computa-
tional cost in the calculation of the nuclear forces. Typically,

values of 3−5 quantum steps combined with a classical
timestep of 0.1−0.2 fs provide sufficient accuracy.101 In
addition, using analytical NACR and NACT allow these
quantities to be computed separately, and the costly NACR is
only computed at hopping instances to determine frustrated
hops and for velocity rescaling.

■ CODE STRUCTURE AND WORKFLOW
Input and Output Files. For any type of calculation, there

is a single NEXMD input file (input.ceon) containing all
system specifications and parameters. The input file is read in
two main namelists (&qmmm and &moldyn). Within the
appropriate namespace, variable inputs can be set in any order,
and the default values are assumed if left unspecified. The
&qmmm namelist contains parameters largely used by the
AMBER subroutines pertaining to geometry optimization,
ground state and excited state calculations, convergence
criteria, output options, solvent models, and external electric
field. The &moldyn namelist is primarily utilized by NEXMD
routines and contains parameters pertaining to molecular
dynamics including nonadiabatic and thermostat specifications
and output and log printing options. In addition, the nuclear
coordinates [&coord: atom type (Z) and cartesian coordinates
(x, y, z)] and velocities (&veloc: x, y, and z components
corresponding to the atom order listed in coordinates) as well
as the electronic state probabilities and phases (&coeff) must
be specified in order to fully define the initial conditions of the
system.
A detailed description of each output file generated by

NEXMD for various functionalities is described in the manual.
Here, we briefly touch on the more important NAMD-related
files and under what conditions each is generated. In general,
data is written to output files at user-specified intervals of the
propagation timestep. Additionally, the verbosity tag in the
input file controls the level of printing for the NAMD-related
output. A summary of the additional output files generated at
different verbosity levels for various types of NEXMD
calculations is provided in Table S1 of the Supporting
Information, and Table S2 lists the data printed in each
output file at each verbosity level.

General Workflow and getexcited.py Package. We
now turn our attention to the practical aspects of using the
NEXMD code. Figure 1 schematically illustrates the general
workflow for performing NAMD simulations. Here, each box
represents a step in the workflow with connecting arrows to
denote the direction. Above the arrows are the essential
outputs passed between steps. First, the ground state of the
system is determined and a ground state BOMD trajectory is
run. From the thermally equilibrated ground state trajectory,
geometries and their corresponding momenta are sampled to
provide the initial conditions for the ensemble of NAMD (or
BOMD) trajectories. For each configuration, a single-point
calculation of energy and oscillator strengths is performed in
order to produce an average optical spectrum. For each
NAMD trajectory, the initial excited state is chosen based on
the calculated excited state energies and oscillator strengths,
and a different random seed is assigned. Note that the single-
point calculations and optical spectrum steps can be bypassed
if BOMD or NAMD is being performed starting from the same
adiabatic state for each trajectory. Independent trajectories are
then run in a trivially parallelizable fashion (1 processor = 1
trajectory) to save real time. Finally, post-processing of results
is performed.
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In order to deal with the ensemble of trajectories, NEXMD
includes the python package getexcited.py. The filled red boxes
in Figure 1 indicate steps where the package can be used:
automate the generation of input files for the swarm of
trajectories by sampling initial configurations, calculating
optical spectra, and populating the initial excitation and seed
for the random number generator. Several standard analyses
are also included in this package. The capabilities of this
package are outlined in the following sections.
Sampling Initial Conditions. A swarm of excited state

trajectories is propagated in the FSSH approach, each
beginning from a different point in the phase space of initial
coordinates and momenta. Sampling of initial conditions
(snapshots of the molecular geometry R with their respective
nuclear velocities Ṙ) is the first step in NAMD simulations.
One common approach, employed in the getexcited.py package,
is to sample the phase space from classical MD trajectories
under the assumption that the system is in thermal equilibrium
with its environment. Sampling the ground state conforma-
tional space should be adequate to represent the thermally
equilibrated ensemble of molecules.101 This requires comput-
ing a long (hundreds of ps) ground state BOMD trajectory
using NVT propagation (eq 7) with parameters (temperature
T and friction coefficient ζ) being consistent with future
excited state simulations. Snapshots from the ground state
BOMD trajectory give the initial postions and velocities for
future excited state calculations. These snapshots are taken
every 1−10 ps after the molecule has been equilibrated in the
ground state for 10−50 ps, and an input file is generated for
each configuration. The swarm of M trajectories provides a
statistical average of results and is needed to perform
population analysis and calculate relaxation rates, branching
ratios, and quantum yields. The number of independent
trajectories required to reach a statistical convergence can vary
from system to system depending on the accessible conforma-
tional space. Several hundred trajectories are needed for
realistic molecular materials.101 Alternative procedures can be
followed to achieve different conformational samplings but
have not been implemented into our code release. For

example, the Wigner distribution (quantum sampling)160

requires calculation of vibrational normal modes and assumes
that the molecule is at its zero-point energy level.

Optical Spectra. The next step is a single-point calculation
for each configuration to generate excited state energies and
transition dipole moments/oscillator strengths. These calcu-
lated values are used to produce an average optical spectrum
(absorbance spectrum). The contribution to the total spectrum
from each excited state α is modeled using either a Gaussian
lineshape

σ π σ
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α α α
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E E
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or a Lorentzian lineshape

π
=

Γ +
α α α

−
Γ

α

A E f E( ) ( )
1 1

1 E E0 ( ) 2Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ (15)

Here, Γ and σ are spectral broadening related to the full
width at half-maximum (FWHM) as σ=FWHM 2 2ln 2 and
FWHM = 2Γ. Eα and f 0α(Eα) are the energy and oscillator
strength of state α, respectively. The individual contributions
are summed to obtain the total spectrum, which are then
averaged over the M configurations.

Initial Excitation. Populating initial excited states requires
the initial values of the quantum coefficients to be set
according to a laser excitation wavelength, a laser pulse width,
and excited state transition dipole moments/oscillator
strengths. The total number of propagated excited states NS
should be large enough to include possible hops to the higher-
energy states. All excited state trajectories are initialized in a
pure state, i.e., cα(t = 0) = 1 and cβ ≠ α(t = 0) = 0, and all phase
factors are initialized to zero. For each configuration, the
probability of populating a given excited state α is calculated
using a Gaussian-shaped Franck−Condon window centered at
a specified energy, EFC, according to
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where σ defines the spectral broadening. The probabilities are
normalized Pα′ = Pα/(∑j = 1

NS Pj) such that∑j = 1
NS Pj′ = 1. A random

number 0 < χ ≤ 1 is generated, and state α is populated if

∑ ∑χ′ < ≤ ′
α α

=
−

=

P P
j

j
j

j
1

1
1 (17)

where P0′ = 0 and adiabatic states are ordered with increasing
energy. Due to thermal fluctuations and the stochastic
determination of initial states in eq 17, the adiabatic state
number for a given Franck−Condon window generally varies
among all the configurations. In this step, the random seed for
the number generator is also assigned. A different random seed
must be assigned to each trajectory to avoid trajectory
synchronization.101,161

■ PHOTOEXCITED DYNAMICS IN THE MODEL PPE
DENDRIMER

In order to exemplify a typical simulation and analysis of
results using NEXMD, we present the simulation of photo-
excited dynamics in a model PPE dendrimer. The relevant
input files for simulations presented in this section can be

Figure 1. Schematic representation of the NAMD workflow using
NEXMD. Filled red boxes indicate steps where the getexcited.py
package can assist with generating input files for the swarm of
trajectories and analysis. Arrows denote the direction of the workflow.
Above the arrows are the required outputs from the previous step
required for the next step.
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found in the Supporting Information. All of the analyses
presented here are available in the getexcited.py package. The
PPE dendrimer, whose chemical structure is displayed in
Figure 2a, is composed of meta-substituted linear PPE
segments of 2- and 3-rings (2,3-PPE). The analysis of the
state transition densities at the optimized ground state
configuration indicates that S1 is localized mainly on the 3-
ring segment (Figure 2b; top), whereas S2 is localized mainly
on the 2-ring segment (Figure 2b; bottom). Because of this
energy gradient, it is expected that spatial energy transfer will
occur from the 2-ring to the 3-ring segment following
excitation to the higher energy S2 state.

162

Simulation Details. For all simulations presented here, the
AM1/CIS level of theory has been used. We started by running
a 1.3 ps ground-state MD trajectory of PPE in vacuum using
Langevin propagation at 300 K with a timestep of 0.1 fs and
friction coefficient of 20 ps−1. From the equilibrated ground-
state trajectory, 650 snapshots of nuclear geometries and
velocities were sampled to provide initial conditions for excited
state dynamics. The excited state dynamics were then
investigated using BOMD in vacuum, NAMD in vacuum,
and NAMD with solvent. For both BOMD and NAMD, all
excited state trajectories were initialized in S2 and propagated
for 200 fs using Langevin dynamics (300 K, 20 ps−1) with a
classical timestep of 0.1 fs. For NAMD, a quantum timestep of
0.025 fs was used and 4 excited states were included in the
simulations to allow for possible transitions to higher energy.
The instantaneous decoherence correction was used, and
trivial unavoided crossings were tracked by reducing the
quantum timestep by a factor of 40. NAMD was also simulated
in solvent using the same protocol as the vacuum NAMD
simulations and applying the LR solvation model with the
COSMO potential with a dielectric constant of 30,
representing a polar solvent. Adiabatic simulations resulted in
501 trajectories that ran to completion, and NAMD
simulations yielded 492 and 501 trajectories in vacuum and
in solvent, respectively, that ran to completion.
Optical Spectra. The absorption spectrum of the branched

PPE molecule in Figure 2a is calculated using the thermally
equilibrated ground state conformational sampling at 300 K
with a Gaussian lineshape and FWHM of 0.36 eV. The
spectrum, shown in Figure 2c, includes the contributions of the

11 lowest-energy excited states. S1 and S2 are strongly
absorbing with high oscillator strength, while higher-energy
states are optically forbidden. The spectrum calculated in the
presence of solvent is red-shifted by ∼0.1 eV compared to its
vacuum counterpart (solvatochromic shift).85

Analysis of Electronic Dynamics. During nonadiabatic
dynamics, the overall relaxation from the initially excited
electronic state (S2) to the lowest-energy excited state (S1) can
be monitored by tracking the evolution of the adiabatic state
populations. Populations can be calculated within a classical or
quantum framework. The classical description of state
populations in surface hopping simulations is calculated as
the fraction of independent trajectories evolving on a given

state at any time N t
M
( )i . State populations can also be calculated

quantum-mechanically from the time-dependent adiabatic
expansion coefficients to give the average quantum population
⟨|ci(t)|

2⟩. Figure 3 shows the classical and quantum adiabatic
state populations during NAMD simulations of the PPE
dendrimer in vacuum (panel a) and in solvent (panel b). The
population analysis reveals that the population initially in S2
decays while the population of the lowest-energy state S1 rises
on a sub-100 fs timesale. Higher-energy states S3 and S4 do not
gain any significant population. Finally, it is important to note
that the quantum populations (dotted lines) agree qualitatively
with the classical fraction of trajectories (solid lines) due to the
use of the instantaneous decoherence correction. In order to
understand the difference in relaxation rates in vacuum and
solvent, the PES and energy gaps during NAMD can be further
investigated.85

Finally, the spatial energy transfer can be monitored by
following the time-dependent localization of the electronic
transition density ρ0α (eq 1). The orbital representation of the
diagonal elements (ρ0α)nn in AO basis functions n provides a
convenient measure of the spatial location of the excited state
wave function. By partitioning the molecule into moieties and/
or chromophore units, the fraction of transition density,
(ρ0α(t))X

2 , localized on each unit X at any given time is
calculated by summing the contributions of the AOs from each
atom (index A) in X and half the contribution of the AOs from
atoms localized on the boundary with another unit (index B),
as printed in the output file transition-densities.out.

Figure 2. (a) Chemical structure of the model polyphenylene ehynylene (PPE) dendrimer composed of meta-linked 2-ring and 3-ring segments.
(b) Orbital plot of the transition density for the S1 and S2 electronic states at the ground state optimized geometry. (c) Absorption spectrum of PPE
at 300 K. Contributions from individual states are shown along with the total spectrum in vacuum (solid lines). The total absorption spectrum in
solvent (ϵ = 30) is shown by the dotted line.
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The evolution of the transition density localization is
illustrated in Figure 4. First, the PPE dendrimer is divided
into subunits TD1 and TD2 (Figure 4a). These correspond to
the 3-ring and 2-ring segments where the transition densities of
S1 and S2 are primarily localized, respectively (see Figure 2).
The initial excitation corresponds to S2 in both BOMD and
NAMD simulations. Because the S2 state can be localized on
the 2- or 3-ring unit due to conformational variations (as
discussed above), the initial transition density localizations are
65% in TD2 (2-ring) and 35% in TD1 (3-ring).
During BOMD simulations (Figure 4b), an initial

distribution of transition density is maintained on each unit
throughout the dynamics with no energy transfer between
them. Oscillations in localization during adiabatic dynamics on
S2 arise from changes in the molecular configurations that can
cause variations in the localization of excitations. In contrast,
during NAMD simulations (Figure 4c), the initial excitation
primarily localized in TD2 undergoes energy transfer to TD1.
The fraction of transition density localized in TD2 decays,
while the fraction of transition density in TD1 increases to
almost 80% after 50 fs. Such spatial energy transfer is
concomitant to population transfer (Figure 3), and, like the
population transfer, is faster in solvent.

■ CONCLUSIONS
We present the functionalities of the NEXMD, a versatile
software package for modeling ground and excited state

molecular dynamics. NEXMD is capable of geometry
optimizations and simulating both the Born−Oppenheimer
and nonadiabatic molecular dynamics. The latter is powered by
the FSSH algorithm that is able to model quantum transitions
between excited states and nonradiative electron−phonon
relaxation (internal conversion). The RPA (or CIS) framework
for excited state calculations coupled with semiempirical model
Hamiltonians (AM1, PM3, PM6, etc.) allows for efficient
simulations of NAMD on several picosecond timescales in
large molecular systems with hundreds of atoms and tens of
excited states using the native excited state PES. This
electronic structure approach provides reasonably accurate
ground state geometries and energies, heats of formation,
vertical excitation energies, polarizabilities, and adiabatic
excited state PESs. Numerical efficiency is also attributed to
analytic calculation of excited state gradients and nonadiabatic
couplings, as well as many other numerical algorithm
improvements. Our NAMD implementation goes beyond the
standard FSSH recipes by including identification for trivial
unavoided crossings and the decoherence correction schemes.
Along with dynamics, a wealth of molecular metrics is available
(either during dynamics or as single-point calculations)
including oscillator strengths, various dipole moments,

Figure 3. Evolution of adiabatic state populations during NAMD
simulations of the PPE dendrimer in (a) vacuum and (b) solvent (ϵ =
30). Both the classical fraction of trajectories (solid lines) and the
quantum populations (dotted lines) are plotted for the 4 lowest-
energy excited states.

Figure 4. (a) Division of the PPE dendrimer into subunits TD1 and
TD2 used for transition density analysis. (b) The evolution of the
fraction of transition density localized in each unit during adiabatic
BOMD. (c) The evolution of the fraction of transition density
localized in each unit during NAMD simulations in vacuum and
solvent.
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Mulliken charges, and transition densities. The more realistic
description of the molecular system can be achieved when
using implicit solvation models (LR, SS, VE) using COSMO
approach.
We extensively illustrated the methodology and algorithms

employed in the currently released NEXMD software and
getexcited.py package. To demonstrate these capabilities, we
presented a case study of the photoexcited dynamics of the
model PPE dendrimer, which exhibits energy transfer during
the NAMD simulations following excitation of higher-lying
excited states. Several of the analysis features available in the
getexcited.py package (such as calculations of spectra, non-
radiative relaxation rates, and transition density evolution) are
illustrated. There are many other types of analyses available
such as vibrational modes, variations of molecular conforma-
tions (bond length alternations and dihedral angles), transition
density matrices, etc.
It is important to note that many other approaches have

been developed over the years for modeling excited states and
their dynamics. We have not gone into details of these other
methods in this paper nor do we suggest that the approaches
currently implemented in NEXMD are preferable over other
methods. For a more detailed description of various NAMD
and surface hopping methods, we refer the reader to our recent
review.148 We invite the community to implement any method
of their choice into the NEXMD program or to develop any
analysis of their choice by creating a new module for the
python-based getexcited.py package. For example, we have
recently implemented in the development version of NEXMD
a more accurate NAMD framework, namely, multiconfigura-
tional Ehrenfest ab initio multiple cloning.52,163 We hope
NEXMD will further grow into a versatile, powerful, and user-
friendly software package that will prove useful for a large array
of chemical applications.
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