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ABSTRACT: A new open-source high-performance implementation of Born Oppen-
heimer molecular dynamics based on semiempirical quantum mechanics models using
PyTorch called PYSEQM is presented. PYSEQM was designed to provide researchers in
computational chemistry with an open-source, efficient, scalable, and stable quantum-
based molecular dynamics engine. In particular, PYSEQM enables computation on
modern graphics processing unit hardware and, through the use of automatic
differentiation, supplies interfaces for model parameterization with machine learning
techniques to perform multiobjective training and prediction. The implemented
semiempirical quantum mechanical methods (MNDO, AM1, and PM3) are described. Additional algorithms include a recursive
Fermi-operator expansion scheme (SP2) and extended Lagrangian Born Oppenheimer molecular dynamics allowing for rapid
simulations. Finally, benchmark testing on the nanostar dendrimer and a series of polyethylene molecules provides a baseline of code
efficiency, time cost, and scaling and stability of energy conservation, verifying that PYSEQM provides fast and accurate
computations.

1. INTRODUCTION

Semiempirical quantum mechanics (SEQM) models are widely
used to efficiently study ground- and excited-state electronic
properties of chemical systems and materials.1,2 Although high-
level methods such as configuration interaction (CI), coupled
cluster (CC), and density functional theory (DFT) can have a
higher accuracy than SEQM, the former techniques scale
cubically to exponential with the system size and have a large
computational overhead, typically limiting them to systems
with 10−100 atoms.3,4 SEQM models utilize very minimal
basis sets and parameterize various integrals in the electronic
Hamiltonian with experimental or ab initio references,5−9

resulting in methods that are much faster than traditional wave
function or DFT frameworks while maintaining a reasonable
level of accuracy. The increased speed of SEQM techniques
allows them to be applied to systems traditionally outside the
reach of quantum mechanical methods such as proteins,2

nanotubes,10 and many noncovalent complexes.11,12 However,
despite the many decades of research into SEQM meth-
ods,1,5,6,8,9,13,14 the limitations of the functional form for the
underlining reduced electronic Hamiltonian models leave
much room for improvement in their accuracy.8,14

Over the last several decades, several distinct groups of
semiempirical methods have been developed, including
modified neglect of diatomic overlap (MNDO),5 Austin
model 1 (AM1),6 MNDO/d,13 Parametric model 6 (PM6),8

and PM7.14 These approaches were developed in series to
improve the description of core−core interactions and to

produce more accurate parameter schemes. To accurately
describe noncovalent bond interaction, Hobza and co-workers
extended PM6 with models such as PM6-DH,15 PM-DH2,16

and PM-DH+.17 Moreover, a series of recently developed
orthogonalization-corrected methods (OMx) reach higher
accuracy and have better descriptions of noncovalent bonds
by taking into account repulsive orthogonalization, attractive
penetration effects, and repulsive core−valence and dispersion
interactions.9 Although these developments have resulted in
significant improvements in effective Hamiltonian models, they
still lack the accuracy and generality compared to conventional
high-level quantum methods.18,19 This poses a need for further
improvements of SEQM using modern data science
approaches as was demonstrated for the parameterization of
reduced density functional tight-binding (DFTB) models.20

In the last couple of decades, graphics processing units
(GPUs) have demonstrated their ability to accelerate numeri-
cally intense computations. The matrix operations that
comprise many parts of SEQM methods can strongly benefit
from such GPU offloading.1 For example, the most time-
consuming component of SEQM for mean-field ground-state
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calculations, the self-consistent field (SCF) procedure, can be
sped up significantly through the use of novel numerical
methods, such as the single-particle density matrix expansion
algorithm with second-order spectral projection polynomials
(SP2).21 GPU implementations of these approaches, which
used to require highly specialized knowledge of the layout and
structure of GPUs, have become much simpler through the use
of high-level packages such as PyTorch,22 a package originally
designed for machine learning (ML) applications. Further-
more, the incorporation of reverse-mode automatic differ-
entiation,22 which can compute the gradient of a quantity with
respect to all parameters at the same computational cost as
computing the quantity itself, has facilitated the solution of
complex optimization problems. All of these developments
have contributed to the rising popularity of ML in many areas
including but not limited to physics, chemistry, and material
science. Applications in these fields range from predicting
various properties including atomic partial charge,23 molecular
dipoles,24 atomization energy,25 generating fast and highly
accurate potential energy surfaces and forces,26 modeling
chemical reactions,27 and discovering new materials.28

Unfortunately, many of these applications suffer from the
“black box” problem, where a deep neural network (DNN)
makes an accurate prediction but provides essentially no
explanation as to why that prediction was made. A possible
solution to this transparency problem is to build quantum
mechanical models on top of a DNN for modeling molecular
systems. Yaron et al.20 demonstrated a DNN linked with a self-
consistent DFTB layer and successfully reduced the error in
DFTB by 40−60% when predicting total molecular energy and
electronic dipole moment. Zubatyuk and co-workers linked a
simple extended Hückel model with HIPNN29 to dynamically
generate parameters for the semiempirical model which
facilitated electronic structure predictions comparable to
DFT calculations.30 Future work similar to these developments
would tremendously benefit from a general software platform
combining an efficient implementation of model Hamiltonians
in a programming platform which also natively supports ML
techniques; SEQM aims to fill this role.
In this article, we present an implementation of various

SEQM methods utilizing PyTorch (PYSEQM) in an open-
source software package.31 PYSEQM supports a variety of
SEQM Hamiltonians including MNDO, AM1, PM3, PM6, and
extended Hückel theory.22 Additionally, it contains a simple
molecular dynamics (MD) driver to facilitate the simulation of
dynamic properties and nonequilibrium configurations for
molecular systems. Furthermore, PYSEQM is capable of
processing multiple molecules simultaneously on a GPU (i.e.,
run multiple MD trajectories in parallel) to get energy and
gradient information, which may be of use in future ML
applications or in various theoretical methodologies requiring
ensemble averaging of a swarm of trajectories.32 Because
PyTorch supports a wide range of execution options on GPUs,
PYSEQM can easily be deployed on a wide range of GPU
devices to achieve high performance. Finally, we have
implemented extended Lagrangian Born Oppenheimer molec-
ular dynamics (XL-BOMD)33−37 for accelerated MD simu-
lations that avoid the costly SCF algorithm and the recursive
Fermi-operator density matrix expansion algorithm (SP2) for a
rapid SCF convergence utilizing GPU devices.21,38−40 The
largest limitations of PYSEQM are that it currently only works
for closed shelled systems and that it only supports s and p
orbitals, although an extension to d orbitals is currently under

development. Additionally, the SP2 scheme currently imple-
mented in PYSEQM will fail with bond breaking; adding
newer versions of the scheme would address this short-
coming.41

We detail the implementations of these semiempirical
models as well as XL-BOMD and SP2 in Section 2. In Section
3, we show the performance of PYSEQM on two groups of
systems: the nanostar dendrimer42 and various lengths of
polyethylene chains. The testing on the nanostar demonstrates
the performance of PYSEQM on large systems in addition to
the enforcement of energy conservation with the XL-BOMD
scheme. The second test set with polyethylenes shows the
scaling of this code with system size and demonstrates
situations where PYSEQM outperforms conventional semi-
empirical codes. Finally, we summarize the results and
conclude in Section 4.

2. METHODS
In this section, we detail the features of the PYSEQM package.
First, we examine the form of the three unique semiempirical
methods implemented in PYSEQM: MNDO, AM1, and PM3
for elements from H to Cl covering organic molecular systems.
Although not explored in this paper, PM6 with d orbitals is
also under development. These effective Hamiltonians are
constructed with a set of empirical parameters fit to
experimental data to compensate for the neglect of electron-
correlation inherent in all single reference (mean-field)
methods. Second, we detail the SP2 method for rapid density
matrix determination directly from a Hamiltonian matrix,
bypassing matrix diagonalization. SP2 expands the density
matrix in terms of the Hamiltonian Operator with an iterative
scheme, which is much more efficient on modern GPU
architectures than traditional diagonalization and density
matrix construction procedures.21 Finally, we outline the stable
and time-reversible XL-BOMD algorithm, which ensures
energy conservation and dissipates numerical error while
simultaneously avoiding the overhead of an iterative SCF
optimization required in regular BOMD.34

2.1. Semiempirical Quantum Chemistry Methods. All
semiempirical methods implemented in PYSEQM use atomic
orbitals (AOs, ϕμ(r)) as basis functions, with most elemental
basis sets only containing valence shell AOs. Slater-type AOs
are used by all of these methods and are detailed here

R r y( ) ( , )nlm nl lmϕ θ ϕ= (1)

R r n r( ) (2 ) (2 ) enl nl
n n r1/2 1/2 1 nlζ= [ !] ζ+ − − −

(2)

where n, l, and m are the quantum numbers for ϕμ(r), Rnl(r) is
the radial function with the orbital exponent ζnl, and ylm(θ,ϕ) is
the real spherical harmonic function.
The molecular orbitals (MOs, ψi(r)) are expressed as a

linear combination of AOs

r C r( ) ( )i i∑ψ ϕ=
μ

μ μ
(3)

The expansion coefficients Ciμ are obtained by solving the
Roothaan−Hall equation43

FC SCE= (4)

where F is the Fock Matrix, C is the matrix of Ciμ, E is the
diagonal matrix with MO energies, and S is the overlap matrix.
These semiempirical methods make the zero-differential
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overlap (ZDO) approximation,1 setting S = I and reducing the
equation to

FC CE= (5)

F is composed of one-electron (h) and two-electron (G) parts,
which for closed shell systems are expressed as

F D h G D( ) ( )= + (6)

h Z
R

1
2

1

A
A

A

2 ∑μ ν μ ν= − ∇ −μν
(7)
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( , )
1
2

( , )

( , ) ( ) ( )
1

( ) ( )d d2
1 1

12
2 2 1 2∫ ∫

∑

ϕ ϕ ϕ ϕ

= μν λσ − μλ νσ

μν λσ = μ ν λ σ

μν
λσ

λσ

(8)

where ZA is the effective charge for nuclei A with core shell
electrons, 1/RA is the one-electron potential energy operator,
and 1

2
2− ∇ is the kinetic energy operator. The density matrix

Dλσ can be computed from the molecular orbital coefficients of
the occupied states in the following way

D C C2
i

i i∑= λ σλσ
(9)

The MNDO, AM1, and PM3 methods utilize the neglect of
differential-diatomic overlap (NDDO) approximation, where
integrals ϕμ(r)ϕν(r)dr are not vanishing only if ϕμ(r) and
ϕν(r) are centered on the same atom. With NDDO, all three-
and four-center integrals in G are ignored, reducing the total
number of integrals from O(N4) in G to O(N2), where N is the
total number of atoms.
With the NDDO approximation in the MNDO-based

model, the one-electron matrix h is further approximated as

l

m

ooooooooooooo

n

ooooooooooooo

h

U Z s s

Z s s

S

( , )

( , ) ,
centered on atom A

( )

2
otherwise

B A
B B B

B A
B B B

∑

∑

μ ν

μ ν

β
β β

=

− μμ =

− μν

=
+μ ν

μν

μμ
≠

≠

μυ μν

(10)

where |sB⟩ is the s orbital of the valence shell for atom B and
the two-center one-electron integral from the interaction with
the core shell of atom B is evaluated as ⟨μ|1/RB|ν⟩ = (μν, sBsB)
if μ andν are centered on the same atom. Uμμ = ⟨μ|−∇2/2|μ⟩ −
ZA⟨μ|1/RA|μ⟩ is the onsite energy for orbital ϕμ on atom A and
is parameterized for each element. The resonance integrals βμυ
are approximated as the average of each orbital’s β parameter
multiplied by the corresponding term in the overlap matrix.
With NDDO, the two-electron integral (μν, λσ) in G (eq 8)

is not to be ignored only if both pairs of orbitals (ϕμ, ϕν) and
(ϕλ, ϕσ) are located on the same atoms, respectively. For
evaluating (μν, λσ), a classical approximation is used. (μν, λσ)
describes the electron interaction energy between charge
distribution eϕμϕν on atom A and eϕλϕσ on atom B. eϕμϕν is
represented by a set of multipoles {Mlm

A }, and each multipole is
represented by a configuration of a set of point charges with

net charge e and multipole Mlm
A .44 The integrals are evaluated

as

M M
e

f R( , ) ,
2

( )
l l m

l m
A

l m
B

l l
i j

ij

2

1

2

1

2l l

1 2

1 2 1 2

1 2

∑ ∑ ∑ ∑ ∑μν λσ = [ ] = +
= =

(11)

where l is the multipole order, m is the multipole tensor index,
and f(R) is the Coulomb interaction between each unit point
charge. To satisfy the asymptotic behavior with R → 0+, +∞,
Dewar−Sabelli−Klopman (DSK) approximation5,44 is used

f R R( ) ( )ij ij l
A

l
B2 2 1/2

1 2
ρ ρ= [ + + ]−

(12)

where ρl
A is the additive term for atom A with the multipole

order l. The value of ρl
A is derived for each atomic species in

the limit R→ 0+ for the same type of atom A and B to yield the
correct direct and exchange integrals gμν, hμν

glim ( , ) ( , )
R A A B B A A A A

0AB

μ μ ν ν μ μ ν ν= =
→ μν+ (13)

hlim ( , ) ( , )
R A A B B A A A A

0AB

μ ν μ ν μ ν μ ν= =
→

μν+ (14)

here gμν and hμν are parameterized from experimental or ab
initio calculation data and they are smaller than the analytic
values as to compensate for the neglect of there- and four-
center Coulomb integrals and the exclusion of electron
correlation in HF.5,6

Apart from the parameterization in the Hamiltonian, the
only difference between MNDO, AM1, and PM3 is the
nuclear−nuclear interaction term. The nuclear energy between
atom A and B in MNDO is

E Z Z s s s s( , ) 1 e eAB
A B

A A B B R R
nuc

A AB B AB= [ + + ]α α− −
(15)

where αA and αB are atomic parameters for atom A and B,
respectively. RAB is simply the distance between the two atoms.
In contrast, AM1 and PM3 have the following nuclear−nuclear
interaction term

E Z Z s s s s F R
F R

( , ) e e ( )
( )

AB
A B

A A B B R R
A AB

B AB

nuc
A AB B AB= [ + +

+ ]

α α− −

(16)

F R K L R M( ) exp ( )A AB
i

m

A
i

A
i

AB A
i 2

A

∑= [ − ]
(17)

where KA
i , LA

i , and MA
i are sequences of atom-type-dependent

parameters for the Gaussian expansion of FA(RAB). In AM1,
there are 2−4 terms in this sum, depending on the element,
while for PM3, there are only 2. With this, the total energy of
the system is then

E E E
A B

AB
tot elec nuc∑= +

< (18)

where the electronic energy is

R D D h F DE ( , )
1
2

Tr ( ( ))elec = [ × + ]
(19)

Equation 5 is solved iteratively using an SCF loop. A trial
density matrix D0 is constructed with the valence charge of
each atom evenly distributed on its valence shell orbitals.
Other strategies of initialization D0 adopted in other packages
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include using a faster QM method first, like the Hückel model,
or even distribution of the electron density with a small noise.
During each step k, Dk−1 is used to form the Fock matrix
F(Dk−1) based on eq 6, and the density Dk is constructed
either by diagonalizing F(Dk−1) or by some expansion scheme
as discussed below. The new density for the next step Dk is
formed by linear mixing of D D D D, , , ...k k k k m1 2− − − , with the
mixing coefficients being evaluated by linear interpolation
algorithms such as adaptive mixing45 and Pulay.46 Alter-
natively, it can be constructed with algorithms such as Camp-
King47 or SOSCF.48 The loop can be stopped with a variety of
different convergence criterion, such as a small ΔEtot between
subsequent iterations, a small ΔD between subsequent
iterations, or when the density matrix and the Fock matrix
c o m m u t e t o w i t h i n s o m e t h r e s h o l d

D F D SD D F D D SF( , ( ) ( ) ( ) )k k k k k kε ε[ ] = − < .
The forces acting on the atoms are further computed as the

negative gradient of total energy with respect to the nuclear
coordinates. For BOMD, the electrons are assumed to stay in
the ground electronic state, and because of Hellmann−
Feynman theorem, the gradient on the density matrix is
assumed to be zero. Using PyTorch’s Automatic Differ-
entiation features,22 the analytic gradient is automatically
obtained as the total energy is computed. Automatic
differentiation does not rely on finite differences to compute
gradients, instead constructing a computational graph and
saving the required intermediate variables for the backward
gradient calculations, using the chain rule to calculate gradients
in an efficient manner.
2.2. SP2 Algorithm. For each SCF loop, a new density

matrix Dk must be constructed from the Fock matrix Fk.
Traditionally, this is done by diagonalizing Fk and forming Dk

using the eigenvectors based on eq 9. As an alternative
approach, we can directly form Dk from Fk without matrix
diagonalization using the property that Dk (in an orthogon-
alized matrix representation) is given by a step function of Fk

(in an orthogonalized matrix representation) with the step
formed at the chemical potential, as is described in eq 20
below. A step function expansion can then be performed using
various recursive Fermi-operator schemes that avoid any
explicit diagonalization. The simplest and possibly most
efficient scheme is based on second-order spectral projection
polynomials, known as the SP2 algorithm. The computational
kernel of the SP2 scheme that dominates the cost is a
generalized matrix−matrix multiplication, which can make
efficient use of hardware acceleration, such as GPUs.39 To
begin, Dk can be rewritten as

D I F D N( ), Trk k k
occθ μ= − [ ] = (20)

where θ(x) is the Heaviside step function and μ and Nocc are
the chemical potential and the occupation number of the
system, respectively. Generally, θ(x − μ) can be expanded and
approximated by a serial polynomial expansion, for example,
with Chebyshev polynomials, with the step centered on a
predefined μ.49 The SP2 algorithm approximates the step
function with recursive expansion based on second-order
spectral projection polynomials given in eq 23, which have the
stationary end points at 0 and 1, without requiring prior
knowledge of μ.

In the SP2 scheme, the Fock matrix Fk is first scaled so the
eigen spectrum lies on the interval [0,1]

X
I F( )

( )
N

k

N

0

1

ε
ε ε

=
−
− (21)

where ε1 and εN are the estimates of the smallest and largest
eigenvalues of F, respectively. ε1 and εN can be estimated, for
example, with Gershgorin Circle Theorem,49 which dictates
that all the eigenvalues of the Hermitian matrix F lie in the
interval on the real axis

R F R F R Fmin max( ), ( ) ,
i

i ii
i

i ii i
j i

ij∑[ − + ] = | |
≠ (22)

where Ri and Fii are the radius and center of Gershgorin Disc i,
respectively. The estimated bounds are used to replace ε1 and
εN in the scaling of F as ε1/N are not known a priori.
A quadratic form of the spectral projection (or purification)

polynomials P(a) and P(b) is defined as

X X X X XP P( ) , ( ) 2(a) 2 (b) 2= = − (23)

These projection polynomials are applied iteratively to X(0)

to generate a converging sequence of X(n) under the following
rules

l

m
oooooo

n
oooooo

X

X X
X

X

P P N
P N

P

( ), Tr ( )
Tr ( )

( ), otherwise

n

n n

n

n

b( 1)

(a) ( ) (a) ( )
occ

( ) ( )
occ

(b) ( )

=
| [ ] − |

< | [ ] − |+

(24)

In this way, the eigenvalues of X(n) converge to the step
function of H as n → ∞, while Tr(X(n)) converges to the
occupied number of orbitals Nocc. The iterative procedure is
stopped when the error in total electron count at step n and n
− 1 is smaller than 10−4. The error in the electron number at
step n is defined as

Xn Nerr( ) Tr( )n( )
occ= | − | (25)

which is used as a convergence test together with the
idempotency error that can be estimated by Tr[P(I−P)].
Typically, 20−30 iterations are required before a sufficient
convergence is achieved. Finally, the density matrix can be
formed from the converged X(n)

D X2 lim nk

n

( )=
→∞ (26)

where the factor of 2 accounts for the spin degeneracy in a
closed shell system.

2.3. Extended Lagrangian BOMD. In conventional Born
Oppenheimer molecular dynamics, the motion of the nuclei is
described by the Lagrangian

R R R Dm R U( , )
1
2

( , )
k

k k
BO 2∑̇ = ̇ −

(27)

Here, U(R, D) is the potential energy surface with the ground-
state density matrix D. For a given R, U is the total energy
defined in eq 18. In regular BOMD, an extrapolation of
ground-state density matrices from previous time steps is used
as an initial guess to the SCF optimization procedure. This
extrapolation, followed by an SCF optimization, which in
practice is never complete, breaks the time-reversibility of the
underlying propagation of the electronic degrees of freedom.
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This common form of direct BOMD simulation typically leads
to an unphysical systematic drift in the total energy and phase
space.50 The problem can be reduced or removed by
tightening the SCF convergence or by ignoring the
extrapolations and instead starting each new SCF optimization
from scratch using, for example, overlapping atomic densities
in each new time step. This may substantially increase the
computational cost. To avoid the shortcomings of regular
direct BOMD, a time-reversible formulation can be con-
structed by introducing an auxiliary electronic density matrix P
as a dynamical tensor variable that evolves in addition to the
nuclear coordinates and their velocities. This can be achieved
using XL-BOMD,33−37 which is defined through an extended
Lagrangian

R R P P R P

P

D P K K D P

m R U( , , , )
1
2

( , )

2
Tr

2
Tr ( ) ( )

k
k k

T T

XLBO 2

2

2

∑
μ

μω

̇

̇ ̇ = ̇ −

+ [ ]

− [ − − ]

(28)

Here, μ is a fictitious electron mass parameter, ω is the
frequency parameters for the electronic degree of freedom, and
KTK is a metric tensor of the harmonic well. These variables
dictate how the auxiliary electron density matrix P fluctuates
through a harmonic oscillator located around an optimized
electron density matrix D. The modified “shadow” potential
energy surface U(R,P) is defined through a constrained density
matrix minimization as

R P R P RU E E( , ) ( , ) ( )elec
(1)

nuc= + (29)

R P hD P D P P G PE ( , )
1
2

(2Tr ( ) Tr (2 ( ) ) ( ) )elec
(1) = [ ] + [ − ]

(30)

The P dependency of D(P) is dropped in most part of the
text for simplicity. It is shown by Niklasson and Cawkwell36

that the difference between D and P scales as
D P( ) ( / )2 2ω− = Ω , where Ω is the highest characteristic
frequency of nuclear motion. In an adiabatic limit where μ →
0, with μω being constant, assuming ω ≫ Ω, and with K
chosen as a superoperator given by the inverse Jacobian36 of
the residual D − P, the Euler−Lagrange equations of motion
for XLBO that govern the time evolution of P and R are given
by
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P K D P( )2ω̈ = − − (32)

where D(t) is obtained at the constrained minimization, as the
lowest stationary solution of the linearized energy expression in
eq 30. Thanks to the linearization, the minimization is
achieved in a single step and no iterative SCF optimization
is involved. In all of our calculations, we will use a scaled delta
function approximation of the kernel K, where it is replaced by
−c × I, with c in the interval [0,1]. The initial value of P(t) is
given by a full regular SCF optimization of D(0), that is, where

P(0) = D(0) with Ṗ(0) =0. The nuclear equations of motions
are integrated with a symplectic velocity Verlet scheme.51 Eq
32 shows that P oscillates on a harmonic surface centered
around the optimized density matrix D. In the adiabatic limit,
D P( ) ( / )2 2ω− = Ω . The equations of motion for the
electronic degrees of freedom, P, can be integrated using the
standard Verlet scheme51

P P P Pt t t t t t( ) 2 ( ) ( ) 2+ Δ = − − Δ + Δ ̈ (33)

As the integration is time-reversible, the SCF optimization in
eq 33 keeps the time-reversal symmetry in the evolution of
D(t). The systematic drift of total energy and in phase space
due to breaking time-reversal symmetry in BOMD can thus be
eliminated with the XL-BOMD framework. However, the time-
reversible integration of XL-BOMD introduces a problem
because of internal numerical noise from an approximate
matrix algebra based on finite floating-point operations.34 A
time-reversible integration scheme does not dissipate any
numerical noise. Numerical error therefore accumulates and
may eventually lead to a significant deviation of P from D. This
subsequently results in a drift of the potential energy surface
U(R, P) when performing MD simulations for long periods of
time. To avoid this noise accumulation, a dampening force
term is added to the Verlet integration of P(t)
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c t k t
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+ Δ = − − Δ + Δ ̈

+ − Δ
= (34)

The dissipation is introduced by the last summation term
that dampens out noise accumulation. Here, α and ck are the
parameters with their values chosen such that the error is
reduced while keeping the time-reversibility to a higher odd
order, O(Δt(2K−3)), of the integration time step. Their
optimized values can be found in ref 34 together with the
value of κ = Δt2ω2. The integration scheme dissipates
numerical errors and generates stable MD trajectories with
well-controlled long-term energy conservation.

3. RESULTS AND DISCUSSION
To test the models and algorithms implemented in the
PYSEQM package and benchmark performance, we run
conventional BOMD and XL-BOMD on two model systems.
The first system, a “nanostar” phenylene−ethynylene den-
drimer with 884 atoms,42 is used as a showcase molecule. The
second system, 8 polyethylene molecules with sizes ranging
from H-(C2H4)1-H to H-(C2H4)128-H, is used to illustrate the
scaling of the code with a system size. Benchmarks are
performed on both central processing unit (CPU) and GPU
architectures with double precision. To put these benchmarks
in perspective of conventional implementation of SEQM, the
results are compared with a standard quantum chemistry
package (ORCA).52 As PyTorch relies on an asynchronous
execution when utilizing GPU, synchronizing calls are used to
enforce accurate GPU timings, and based on the performance,
adding synchronizing slows down the performance by around
2%.

3.1. Nanostar Dendrimer. The nanostar tested here is a
dendrimer with two unique chemical environments, a core
ethynylperylene chromophore and phenylene-ethynylene ter-
minals.42 Because of potential wide applications and fruitful
experimental and theoretical studies on this type of
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dendrimer,42,53,54 the nanostar, containing 460 C and 424 H
atoms in total, makes a good benchmark system because of its
size. The structure was initially equilibrated at 300 K for 50 ps
using the AIREBO force field55 in the LAMMPS molecular
dynamics (MD) package.56 Initializing from the equilibrated
structure and randomly assigned velocities, we further run MD
for 200 steps with a 0.2 fs time step. Simulations for all
combinations of BOMD/XL-BOMD, SP2/conventional diag-
onalization, and CPU/GPU are performed to get a
comprehensive measure of code performance under a variety
of different simulation conditions. The simulations are tested
on one Intel Xeon E5-2660_v3 CPU core and one Nvidia
Tesla V100-SXM2 GPU. The convergence criteria for the SCF
procedure in BOMD are set to be 10−6 Eh (Hartree Energy).
Finally, a BOMD simulation performed with ORCA is run for
a timing comparison.
Figure 1 shows the average time cost per MD step in both

BOMD and XL-BOMD. Additionally, these timings are
reported separately for CPU and GPU execution. Modern
GPUs are capable of operating in the “single-instruction
multiple data” (SIMD) mode across thousands of cores on a
single GPU, resulting in a factor of 10−20 speed up when
operating on a GPU versus a CPU, as shown in Figure 1a,b. In
Figure 1a, we report the execution time of a BOMD simulation
performed on a CPU in both PYSEQM and ORCA software.
The PYSEQM calculation is approximately 1.5 times faster
than ORCA, even though ORCA utilizes a more sophisticated
SCF algorithm that generally requires fewer iterations to
achieve convergence than the SCF algorithm used in
PYSEQM. The improvement is mainly coming from the SCF
procedure, as computing force, Hcore, and Coulombic
integrals take approximately the same amount of time between
the two codes. This is due to implementation details: ORCA
utilizes the second-order SCF orbital optimization (SOSCF)57

algorithm, which is more numerically stable (see our discussion
in the next section) and costly. The time spent in the SCF
cycle is greatly reduced by the XL-BOMD algorithm because it
only requires a single matrix diagonalization to obtain the
correct density. This leads to approximately a 95% reduction in
computation time for CPU calculations and an 85% reduction
for GPU computations for the SCF loop. This translates to an
overall factor of 2 speedup for the full MD propagation. The
SP2 algorithm performs differently on the CPU and GPU: it is
slightly slower on the CPU but 3 times faster on the GPU. The
SP2 algorithm performs much better on GPU architectures
because the dominant operations in this algorithm are matrix−

matrix multiplications, which benefit greatly from GPU
acceleration. Overall, PYSEQM utilizing the XL-BOMD and
SP2 algorithms running on a GPU is more than 50 times faster
than ORCA running on a CPU for the nanostar system.
It is critical that quantum-based MD simulations conserve

total energy when simulating an NVE ensemble. In practice,
most of such simulations experience some drift in the total
energy over time in part because of the finite convergence of
the SCF procedure. To verify that PYSEQM is capable of
conserving energy to within normal tolerances, we performed a
0.6 ps NVE MD simulation on the nanostar system with a
variety of algorithms and both 0.1 and 0.2 fs time steps. The
total energy of these simulations is shown in Figure 2. Table 1

shows the drifting coefficient, which is an average per atom
unit of energy change per unit time, and energy fluctuation,
which is the standard deviation of total energy after removing
the drift. When restarting the SCF procedure with the density
matrix obtained from the previous MD step, a large drift in
total energy is observed as seen in the yellow trace of Figure 2.
This can be improved in BOMD simulations with

Figure 1. Stacked histogram of the average time spent computing forces (red), Hcore and integrals (green), the SCF loop (blue), and other codes
(white) per MD step with the nanostar dendrimer. This is both with and without SP2 and the XL method on an Intel Xeon E5 CPU (a) and a
Nvidia Tesla V100 (b). The left most column is a BOMD computed with ORCA on the CPU for comparison.

Figure 2. Total energy drift of the nanostar system during 0.6 ps
simulations under various simulation conditions, 0.2 ps is shown here.
The time steps (a) dt = 0.2 fs and (b) 0.1 fs are used with BOMD
(yellow star), BOMD without reusing density matrix in consecutive
MD steps (read right triangle), XL-BOMD (blue left triangle), and
BOMD on ORCA (black dot).
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sophisticated SCF algorithms such as SOSCF and57 direct
inversion in the iterative subspace (DIIS),58 which lead to
much better energy conservation, for example, in ORCA. In
PYSEQM, the drift can also be fixed through the use of the XL-
BOMD algorithm, which for this particular system, has a drift
of 2.94 × 10−3 meV/ps/atom with dt = 0.1 fs. This amount of
drift is comparable to a classical MD simulation performed
with LAMMPS using the AIREBO (not shown),55,56 which has
a drift around 1.0 × 10−3 meV/ps/atom with dt = 0.1 fs. The
energy drift in PYSEQM BOMD can also be reduced by
restarting the SCF procedure from a new guess at each time
step (Figure 2, red right triangle trace) rather than reusing the
previous time step’s converged density matrix, although this is
not used in practice for two reasons. First, starting from a guess
density at each time step greatly increases the number of SCF
iterations required at each point in the MD trajectory. Second,
the density matrix may become stuck in local minima during
the SCF procedure, resulting in a small energy jump, as shown
in Figure 2 (red right triangle trace). The flat plateau of the
curves in Figure 2 (red right triangle trace) shows that energy
conservation in BOMD simulations can be improved by not
reusing the density matrix when compared to the results in
Figure 2 (yellow star trace). In practice, a generally acceptable
drift is around 1 meV/ps/atom over long time scales, and the
discussed strategy is not adapted for efficiency.

Another issue with respect to the energy conservation is the
fluctuation of energy. This is coming from the discretization of
propagation. Under the velocity Verlet scheme, the fluctuation
is in the order of O(Δt2).59,60 Because of this, the fluctuation
can be suppressed by reducing the time step used for
propagation. However, in practice for efficiency, the time
step is frequently chosen to be 0.05−0.01 times the time scale
for the highest characteristic vibrational frequency of the
system. Generally, this guideline results in a time step of 0.1−1
fs for organic systems. Here, with reducing time step from 0.2
to 0.1 fs, the energy fluctuation is reduced by around 50% with
BOMD and more than 75% with XL-BOMD.

3.2. Polyethylene. As the simplest polymer, polyethylene
is a good system with which to check the scaling of PYSEQM
with molecular size. We create 8 polyethylene chains H-
(C2H4)n-H with n = 1, 2, 4,..., 128, with the largest having a
total of 770 atoms (256 C and 512 H). Similar to the nanostar,
these molecules are first relaxed and equilibrated at 300 K with
LAMMPS using the AIREBO force field for 50 ps. Then, we
perform simulations for 20 steps with a time step of 0.2 fs, with
all combinations of BOMD/XL-BOMD, SP2/conventional
diagonalization, and CPU (Intel Xeon E5)/GPU (Nvidia
TITAN_V) for these 8 molecules. This gives a good
benchmark to quantify the scaling of PYSEQM with system
size.

Table 1. Energy Drift and Fluctuation from Figure 2 for BOMD and XL-BOMD Done With Package PYSEQM and ORCAa

BOMD BOMD XL-BOMD XL-BOMD BOMD(ORCA)

timestep (fs) 0.2 0.1 0.2 0.1 0.2
drift (meV/ps/atom) −2.13 −2.03 −1.21 × 10−2 −2.94 × 10−3 −1.95 × 10−1

fluctuation (eV) 1.63 × 10−2 1.17 × 10−2 1.77 × 10−2 4.42 × 10−3 1.49 × 10−2

aBOMD results here are for the cases with reusing the density matrix in consecutive MD steps.

Figure 3. Average time spending per MD step on computing (a) Hcore and Coulombic Integrals, (b) Force, (c) SCF procedure, and (d) MD for
eight molecules H-(C2H4)n-H with size n = 1, 2,..., 128. The timing is done on the GPU (blue), CPU (red), CPU with ORCA (black dot) with
BOMD (no marker), and XL-BOMD (vertical marker |) with SP2 (solid line) or conventional diagonalization (dash line). Only the results with
SP2 on the CPU are shown here for clearness of figures as the difference with or without using SP2 on the CPU is small.
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Figure 3 shows the scaling of the Hcore and Coulombic
integrals, Force, SCF, and MD computations. When running
on a CPU, ORCA is faster for small molecules but it scales
worse than PYSEQM, as shown in Figure 3a−d, with ORCA’s
performance becoming equal to that of PYSEQM for
molecules n ≥32, as shown in Figure 3d. It is reasonable
that PYSEQM is slower for smaller systems because the
overhead for function calls dominate the time cost in PYSEQM
for small systems. This overhead in python is the main reason
why it is slower than other low-level programming languages
such as C/C++ used by ORCA. However, for larger systems,
where overhead takes a smaller fraction of the total time of
simulation, PYSEQM outperforms ORCA because it uses a
vectorization strategy for computing Hcore, Integrals, and
Force, as shown in Figure 3a,b. Figure 3a,b shows results from
using PYSEQM on the CPU and GPU and ORCA on the
CPU. For small molecules, ORCA performs worse than
PYSEQM in the SCF procedure, which is because ORCA uses
a systematic combination of SCF algorithms: in general, it is
more stable and robust but slower. The difference with using
SP2 or conventional diagonalization on the CPU is negligible
and the results are not shown in Figure 3. Combined with the
results on the nanostar molecule, PYSEQM is faster than
ORCA for larger molecules when using a CPU.
However, the true strength of PYSEQM is its ability to run

on a GPU. This results in a significant gain in performance
when running on large systems. For small systems, the GPU
mode is less efficient. Modern GPUs have thousands of slow
cores, which only perform well with large amounts of data
being processed by the same operations. As a result, for small
systems, the GPU hardware is not fully utilized. In turn, the
GPU mode of PYSEQM shows poor scaling for small systems,
with the total time required to perform a calculation nearly
independent of system size for small molecules, as shown in

Figure 3. However, the ability of PYSEQM to run multiple
simulations in a batch mode (discussed below) compensates
for this drawback. Once the system size is large enough to use
a significant fraction of the GPU, PYSEQM on a GPU can
easily outperform PYSEQM and ORCA on the CPU. There is
a similar trend for using the SP2 algorithm on a GPU. For
smaller systems, SP2 is slower than conventional diagonaliza-
tion, but for large systems, the matrix multiplications required
by SP2 can fully utilize GPU cores and outperform
conventional diagonalization algorithms.
Because of our desire to interface PYSEQM with ML

algorithms, it has the ability to run in the “batched mode,”
where simulations are performed simultaneously on an
ensemble of molecules to fully take advantage of the parallel
GPU architecture. In addition to being useful for ML
applications, many simulations in physics and chemistry
require ensemble averaging such as computing the decay
time of photoexcited electrons,61 or estimating quantum
yields,62 making this “batched mode” directly relevant for
applications as well. Thus, in Figure 4, we benchmark
PYSEQM in the batched mode. We run the MD simulations
with 32 molecules where trajectories were initiated with
different initial velocities and starting from the same nuclear
coordinates for each of the 8 polyethylene systems. The
simulations here are done with the same setting as for the
single-molecule mode.
Figure 4 shows the time cost per MD step per molecule

when running with batches while Figure 5 shows the relative
performance boost of the batch mode versus running the
simulations in serial. Even running MD with 32 molecules at
the same time, the occupancy on the GPU is still relatively low
for small systems and the scaling is poor, as shown in Figure 4.
However, the time cost per molecule is greatly reduced not
only with the GPU but also when running on the CPU. For

Figure 4. Average time needed per MD step per molecule with the batch mode enabled when computing (a) Hcore and Coulombic integrals, (b)
force, (c) SCF procedure, and (d) MD for each of six H-(C2H4)n-H with size n = 1, 2,..., 32. The same labeling and coloring are used here as in
Figure 3.
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small systems, the performance of PYSEQM in the batched
mode on the CPU is 10−20 times better than that in the serial
mode. As system size grows, the performance boost is quickly
degraded on the CPU because PyTorch switches to perform
operations in series for large operations such as matrix
diagonalizations or multiplications. This can be seen in the
scaling of computing forces and the SCF procedure in Figure
4b,c. The differences with SP2 and conventional diagonaliza-
tion are relatively small and thus are not shown in Figures 4
and 5.
On the GPU, the performance boost with the batch mode is

higher and degrades much slower, as shown in Figure 5. It is
around 20−30 times faster than conventional serial simulations
on the CPU. Additionally, the poor scaling for small systems
indicates that further performance gains can be achieved by
increasing the batch size to further saturate the GPU. SP2
shows its advantages for n ≥8 for our polyethylene systems
compared to conventional diagonalization. In our testing with
random symmetric matrices, SP2 is faster than direct
diagonalization almost for all sizes of the matrix. However, as
PYSEQM is implemented to be able to deal with ensembles of
systems simultaneously, preprocessing is required to use SP2,
in which the overhead slows down SP2 for small systems. For
larger systems, SP2 is around 5 times faster when compared
with using direct diagonalization, as shown in Figure 4c,
resulting in 2−3 times faster MD performance, as shown in
Figure 4d. Overall, from the results shown in Figure 4a−c,
PYSEQM on the GPU with the batch mode is systematically
faster than conventional ORCA calculations by about 20 times.

4. CONCLUSIONS
In this work, we present the PYSEQM software package, which
provides Born Oppenheimer molecular dynamics with semi-
empirical quantum mechanics methods (MNDO, AM1, PM3,
and PM6) in the PyTorch framework, enabling GPU
acceleration and a native interface with ML codes. To ensure
rapid ground-state SCF computations at each MD steps,

PYSEQM implements the SP2 density matrix expansion
algorithm. To avoid energy drift present in conventional
BOMD based on the quantum methods, PYSEQM further
implements the XL-BOMD method, which both accelerates
the calculations and enforces energy conservation because an
iterative SCF optimization that typically is only approximate is
avoided prior to the force evaluations. In particular, this allows
achieving the energy conservation 100−1000 times better than
traditional semiempirical quantum mechanical molecular
dynamics and at a significant reduction in the computational
cost. Finally, to make full use of the highly parallel GPU
architecture, PYSEQM supports a “batched mode” where
many molecules can be computed simultaneously. This batch
feature, where many independent MD trajectories are run
simultaneously, is generally absent in many packages and it is
very beneficial for simulations requiring statistical averaging.
Overall, the current PYSEQM implementation can treat
systems with more than 1000 atoms and with elements from
H to Cl, which cover all organic molecules.
We further use the nanostar dendrimer and several

polyethylene chains to document performance of the
PYSEQM code. Various PYSEQM applications to these
molecular systems are compared to the ORCA computational
package featuring conventional implementation to show for the
end user PYSEQM’s performance advantages and disadvan-
tages. When running PYSEQM on the CPU, its performance is
on par with a conventional implementation for smaller systems
and is faster for large molecules owing the use of SP2 and XL-
BOMD algorithms. Subsequently, here, the PYSEQM package
provides a valuable alternative to other conventional codes on
the CPU capable of semiempirical BOMD simulations. In
contrast, the main focus of the PYSEQM design is its ability to
efficiently utilize the GPU. We show that while it is slower to
use PYSEQM for small systems on the GPU, this can be
overcome utilizing the “batch mode”. For large molecular
systems (over 500 atoms), PYSEQM becomes very efficient on
the GPU in the serial mode as well. Altogether, we
demonstrate a factor of 50 speedup when performing
BOMD calculations on the GPU when compared to
conventional CPU calculations.
In summary, in the future, we envision multiple applications

for and further development of the PYSEQM package. First,
this software may be useful for an end user to perform effective
BOMD simulations on the GPU using tried-and-true old
semiempirical models (AM1, MNDO, PM3, and PM6),
particularly, for large systems. Second, our future work will
include extensions to other semiempirical methods (over-
viewed in the Introduction), which will both increase the
accuracy and facilitate the treatment of more systems.8 One
specific target is extension of the implementation to non-
adiabatic excited-state molecular dynamics63−65 which will
enable rapid ensemble propagation using the “batched mode”
for calculations such as fewest switches surface hopping63

(FSSH) or Multiconfigurational Ehrenfest with Ab Initio
Multiple Cloning66 (MCE-AIMC). Finally and most impor-
tantly, utilization of the PyTorch framework facilitates the
construction of interfaces to ML methods, such as HIPNN,29

ANI,26,67 or SchNet.68−70 By training such a neural network to
generate custom parameter sets for the semiempirical
Hamiltonians, the accuracy of these methods can be greatly
increased. This will allow on-demand generation of reduced
quantum-mechanical models for targeted molecular families
able to accurately describe desired properties and dynamics of

Figure 5. Performance boost when running 32 molecules
simultaneously in the batch mode compared with running in serial.
Simulations are performed on polyethylene H-(C2H4)n-H, n = 1, 2,...,
32. On the CPU (red), the difference is small, and the results with
conventional diagonalization are omitted. When computing on the
GPU (blue), speedups of a factor of 30 are possible for small
molecules.
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both ground and excited states. Of particular interest for this
method are Hamiltonians utilizing d oribitals, where we think
significant improvements in accuracy can be obtained.8,9,14

Another desirable future development is implementation of
open-shell capability to the PYSEQM package to treat, for
example, spin states and chemical reactions. Here, the SP2
scheme can easily be adapted for spin-polarized systems using
a simple generalization starting with a block-diagonal
Hamiltonian matrix with one block for the spin up and one
for the spin down channel generating the corresponding
idempotent block-diagonal single-particle density matrix.41 All
these extensions will lead to a wide application of the
implementation presented here and be beneficial to researchers
working in theoretical computation and ML in chemistry,
physics, and material science. The described PYSEQM package
is now released as open-source software and we invite the
community to participate in its further development.31
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