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We have developed a computational approach that yields anharmonic vibrational couplings in molecular
crystals. The approach is based on anharmonic vibrational potential-energy surface reconstruction starting from
a normal-mode vibrational basis. The method was implemented for semiempirical Hamiltonians with periodic
boundary conditions, with applications to crystalline naphthalene and pentaerythritol tetranitrate. For each
material, we predicted infrared and Raman linewidths, and vibrational anharmonic couplings associated with
up- and down-conversions, as well as pure-dephasing processes. Comparison is made to experimental data for
Raman linewidths and averaged anharmonic couplings; reasonable agreement is obtained, suggesting that
implementation of the method within a first-principles electronic structure framework is warranted.
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I. INTRODUCTION

Optical spectroscopies are among the primary tools for
investigating the dynamics of vibrational energy transfer and
chemical reactions.1 Techniques such as infrared �IR� absorp-
tion, temperature-dependent Raman spectroscopy, and IR
pump and anti-Stokes probe can be used to probe directly the
vibrational cooling processes in neat liquids, solvated mol-
ecules, and solids.2–7 These processes are mediated by anhar-
monic couplings among the vibrational modes. Average an-
harmonic couplings can be obtained from an analysis of line
broadening and gas-to-crystal-phase line shifts. Temperature
variation controls the population of low-frequency modes
and as a result, in a temperature-dependent experiment, one
can determine which among those modes participate in the
energy transfer by observing the time evolution of the asso-
ciated spectral features.

Relaxation and transfer of vibrational energy in molecular
crystals are determined by anharmonic couplings between
the high-energy intramolecular vibrational modes and low-
frequency phonons. Two physically related, albeit opposite in
effect, processes can occur. First is relaxation �down-
conversion� of the energy initially deposited into the higher-
frequency vibrational modes, for example, using IR excita-
tion due to electronic transitions; the second is up-pumping
of the phonon energy into the high-energy modes, as in the
case of shock wave loading.3,8–11 Both processes have sig-
nificant effects on the chemical reaction dynamics. The up-
pumping process is widely thought to be one of the initial
events in the initiation of shock-induced detonation.3,8–11

The spectroscopies mentioned above cannot provide se-
lective information about the couplings among specific
modes but rather provide only averaged information. This
limits our insight into the energy flow pathways whose com-
plete determination requires knowledge of all anharmonic
couplings among all normal modes in the system.12 These
can, in principle, be obtained from computer simulations; the
results of which can be compared to experimental observ-

ables after appropriate averaging. Good agreement between
experiment and theory provides indirect validation of the
theoretical method, which can then be used to draw conclu-
sions about the underlying dynamics. Also, once validated,
the theory can predict the time-dependent energy transfer for
any given initial condition, which will not be possible ex-
perimentally.

Previous simulations of delocalized intermolecular modes
�phonons� and localized intramolecular vibrational modes
�vibrons� in molecular crystals have been performed using
various degrees of approximation for the inter- and intramo-
lecular force fields. The approaches used in the earliest stud-
ies treated only phonons within a rigid-molecule framework,
and were based on empirical form intermolecular potentials
with parameters fitted to experiment, or assumed an averaged
anharmonic coupling between the phonons and vibrons
whose value was also fitted to experiment.2,13–15 More ad-
vanced techniques have been developed, for example, re-
placement of the empirical form potential with “first-
principles” methods such as density-functional theory
�DFT�.16–18 While these methods allow more-or-less routine
electronic structure-based predictions of the vibrational nor-
mal modes, they have not been used to predict anharmonic
couplings in condensed-phase materials. Our ultimate goal is
to develop a computational methodology for determining the
anharmonic couplings in polyatomic materials with periodic
boundary conditions using recent advances in electronic
structure calculations. Such an approach would eliminate the
need for specification and parametrization of empirical force
fields and, once validated, would be applicable to a wide
variety of materials.

In this paper, we use a semiclassical approach based on an
anharmonic expansion of the potential energy in terms of the
vibrational normal modes of a molecular crystal. For devel-
opment purposes, we employ simple semiempirical elec-
tronic structure models19–21 �AM1 and PM3� to obtain the
crystal normal modes and the cubic and quartic coupling
constants among them. The approach provides phonon-
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phonon, phonon-vibron, and vibron-vibron couplings. We
apply the method to study the anharmonic couplings in crys-
talline naphthalene and pentaerythritol tetranitrate �PETN, an
important energetic material�, both of which are well studied
experimentally. Comparison to experiment is made by calcu-
lating IR and Raman linewidths and averaged values for the
phonon-phonon, phonon-vibron, and vibron-vibron cou-
plings among selected modes. The method is described in
Sec. II, results and discussion are presented in Sec. III, and
concluding remarks are given in Sec. IV.

II. DESCRIPTION OF THE COMPUTATIONAL METHOD

In this section, we present a computational approach used
to determine the cubic and quartic anharmonic couplings
among the normal modes in a periodic molecular structure.
We also provide expressions for calculating spectroscopic
observables such as IR and Raman linewidth and effective
anharmonic couplings that can be obtained from linear opti-
cal spectroscopies.

As input to the calculations, we use published unit-cell
atomic coordinates for naphthalene and PETN obtained from
x-ray scattering experiments. Using the MOPAC 2000 compu-
tational package,22 which implements the semiempirical
electronic structure models with periodic boundary condi-
tions, we optimize the unit-cell geometries and perform a
normal-mode analysis. The normal-mode eigenenergies and
eigenvectors calculated by MOPAC 2000 are limited to the �
point �k=0� of the Brillouin zone only. Thus, in calculating
experimental observables, we are not able to account for the
acoustic phonons and will only account for the optical-
phonon dispersion �dependence on k� phenomenologically.
Identification of the normal modes is made by comparison of
computed and measured IR and Raman spectra. Mode iden-
tification was further facilitated by direct visualization of the
modal atomic motions using the MOLDEN visualization
package.23

In order to evaluate sets of the effective cubic �Bijk
�3�� and

quartic �Bijkl
�4� � anharmonic couplings derived in the Appen-

dix, we implemented, at the level of parallel shell script calls
to MOPAC 2000 and additional homemade codes, the following
computational protocol. We begin with a general expansion
of the unit-cell anharmonic potential energy in mass-
weighted normal modes ��i�

Vanh��� = �
i,j,k=1

M

Bijk
�3��i� j�k + �

i,j,k,l=1

M

Bijkl
�4� �i� j�k�l, �1�

where M =3N−3 is the total number of the normal modes
associated with the unit cell, and N is the number of atoms in
a unit cell. The Taylor expansion in Eq. �1� assumes weak
anharmonic corrections induced by small nuclei displace-
ments from the equilibrium positions. Such displacements
can be initiated by an optical excitation or a small mechani-
cal compression. The expansion has been truncated at the
fourth-order terms, which represent the lowest-order contri-
butions to processes of intermode energy transfer �cubic an-
harmoncity� and pure dephasing �quartic term�.

First, we select a normal mode i=n whose couplings with
the pairs of the others �j ,k=1,2 , . . . ,M� are to be studied.

Then, taking into account the index permutation symmetries
of the coupling coefficients in Eq. �1�, we sample the M�M
+1� /2 possible combinations of mode n with the others. For
each combination, the atomic coordinates are displaced from
the equilibrium �optimized geometry� positions along the
mass-weighted normal-mode eigenvectors. Each displace-
ment is made Nd times each in the positive and negative
directions. As a result, we generate �2Nd+1�3 reference
points for vibrational potential-energy surface reconstruction.
Since the potential-energy surface curvature �eigenenergy�
can differ significantly from one mode to the next, we con-
trol the amplitudes of the displacement steps ��i by express-
ing them in units of the harmonic vibrational quanta �Nq� as
��i=���i�2Nq+1�. Converged single-point energies are cal-
culated for each of the �2Nd+1�3 reference points, and the
resulting energy grid is fitted to Eq. �1�, which requires that
Nd�2 due to the degree of the fitting polynomial. This pro-
cedure yields values of Bnjk

�3� and Bnnjk
�4� . Note that the quartic

anharmonic constant which we calculate this way depends
on only three independent indices. Below, we show that this
is sufficient to calculate the observable linewidths.

The linewidth calculations were performed using many-
body perturbation theory.13,14,24–26 According to this theory,
the total linewidth is a sum of three components

�th��n� = �d��n� + �u��n� + �*��n� . �2�

The approximations involved in the derivation of the explicit
expressions for these components are given in the Appendix.
The first term is due to vibrational down-conversion, where
the lowest-order process involves annihilation of one higher-
energy ���n� vibrational quantum and creation of two quanta
with the lower energies ��� j +��k=��n�. The detailed line-
width expression for this process depends on the cubic an-
harmonic couplings

�d��n� = 18�−1�
jk

�Bnjk
�3� �2� jk

d ��n� . �3�

The second term in Eq. �2� results from vibrational up-
conversion, and the lowest-order contribution corresponds to
annihilation of two vibrational quanta ���n and �� j� and
creation of one higher-energy quantum ���k=��n+�� j�. As
above, this component of the linewidth also depends on the
cubic anharmonicity

�u��n� = 36�−1�
jk

�Bnjk
�3� �2� jk

u ��n� . �4�

In contrast to the processes considered above, the last com-
ponent in Eq. �2�, pure dephasing, arises from elastic vibra-
tional scattering, and the corresponding expression depends
on the quartic anharmonic couplings among three modes

�*��n� = 288�−2�
jk

�Bnnjk
�4� �2� jk

* . �5�

The thermally weighted joint vibrational densities of states
�TJ-DOS� entering Eqs. �3�–�5� are

� jk
d ��� =

1

	

�n̄j + n̄k + 1��
 j + 
k�
�� − � j − �k�2 + �
 j + 
k�2 , �6�
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� jk
u ��� =

1

	

�n̄j − n̄k��
 j + 
k�
�� + � j − �k�2 + �
 j + 
k�2 , �7�

� jk
* =

1

	

n̄j�n̄k + 1��
 j + 
k�
�� j − �k�2 + �
 j + 
k�2 . �8�

Here and below, n̄k= �exp���k /kBT�+1� is the vibrational
level occupation number, where kB is the Boltzmann constant
and T is the temperature.

The TJ-DOS functions project out limited subsets of the
vibrational states which are coupled through the anharmo-
nicities that contribute to the linewidths. Experimental mea-
surements of linewidth, for example, in a temperature-
dependent Raman experiment, carry only information about
the anharmonic couplings between the relevant subsets of
states. To compare the calculations with experiment, it is
convenient to introduce the following effective down-
conversion, up-conversion, and pure-dephasing anharmonic
constants, respectively:

�Bd
2��n�	 =

�
jk

�Bnjk
�3� �2� jk

d ��n�

�
jk

� jk
d ��n�

, �9�

�Bu
2��n�	 =

�
jk

�Bnjk
�3� �2� jk

u ��n�

�
jk

� jk
u ��n�

, �10�

�Bp
2��n�	 =

�
jk

�Bnnjk
�4� �2� jk

*

�
jk

� jk
*

. �11�

The normal-mode and the anharmonic coupling calcula-
tions are performed in the coordinate space of a single unit
cell where the self-consistent approximation for the local
fields is due to the periodic boundary conditions. This limits
our ability to calculate the TJ-DOS explicitly as well as to
account for the optical-phonon and -vibron dispersions. The
vibrons are highly localized, and their densities of states are
narrowly distributed around the central frequencies.13 There-
fore, for the vibrons, the dispersion effects can be safely
neglected. In contrast, the optical-phonon modes are delocal-
ized and have much broader energy dispersion. In the present
work, we account for the energy dispersion in the TJ-DOS by
choosing an adequately large value of 
 in Eqs. �6�–�8�.

III. RESULTS AND DISCUSSION

An x-ray determination of the naphthalene crystal
structure27 was used as input to MOPAC 2000. The arrange-
ment of the two molecules in the monoclinic unit cell is
depicted in Fig. 1. All the calculations for the naphthalene
unit cell were performed using the AM1 semiempirical
model with periodic boundary conditions. Lattice vectors for
naphthalene were fixed at experimental values, since an at-

tempt at an unconstrained optimization of the crystal failed
to converge.

The PETN unit-cell geometry shown in Fig. 1�b� was
taken from an x-ray determination.28 The unit cell in this
case contains two molecules and forms a body-centered-
tetragonal structure. In our calculations on the PETN unit
cell, we used the PM3 semiempirical model20,21 instead of
the AM1 model19 adopted for naphthalene. The former
model is calibrated to better reproduce heat of formation of
energetic materials.29,30 Periodic crystal optimizations for
both constrained and unconstrained lattice lengths were per-
formed with fixed lattice angles of 90° in each case. The
differences between the normal modes for the two optimized
structures thus obtained were insignificant. All subsequent
calculations were performed using the experimental unit-cell
parameters.

The naphthalene unit cell �36 atoms� has 105 nonzero
normal-mode eigenenergies and eigenvectors. Among them,
the 9 lowest-frequency modes are optical phonons, while the
remaining 96 are vibrons. The constrained unit-cell optimi-
zation led to a small but negative value of the lowest normal-
mode energy; this mode was ignored. The calculated IR-
absorption spectrum is shown in Fig. 2�a�. Its comparison
with the experimentally measured Raman spectrum7 assisted
us with the normal-mode identification. We selected three
normal modes, n=8, 14, and 81 for further analysis; among
them, mode 8 is a delocalized libration �optical phonon�, and
modes 14 and 81 are localized skeletal vibrations �vibrons�.
The mode positions are marked with arrows in Fig. 2�a�, and
their eigenenergies ��n

th� are given in Table I�A�. Based on
Fig. 2�a�, these modes have weak IR oscillator strength; they
are, however, well resolved in the Raman spectrum,7 and the
measured frequencies at T=298 K ��n

ex� included in Table I
compare reasonably well with the calculated ones.

The PETN unit cell �58 atoms� has 171 nonzero normal
modes. As with naphthalene, the first nine modes are associ-
ated with the optical phonons, and the rest with vibrons. The
calculated IR-absorption spectrum is shown in Fig. 2�b�. We
have compared the calculated spectrum to experimental IR
and Raman results7,18 and identified their main features. It is
clear �and expected based on prior studies� that the semi-
empirical PM3 model significantly overestimates NO2
stretching mode energies.22 Measured symmetric and anti-

FIG. 1. �Color online� Unit-cell geometry of �a� naphthalene and
�b� PETN used in the simulations. Atomic groups present in the
corners of the PETN unit cell are fragments of the molecule cen-
tered at the unit-cell corners.
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symmetric NO2 stretches are found at around 1300 and
1650 cm−1, respectively. By contrast, these modes appear in
Fig. 2�b� as two intense IR features around 1500 and
2000 cm−1, respectively. Although DFT calculations of gas-
phase PETN at the B3LYP/6-31G* level have been shown
to compare favorably to experiment,18 the large number of
three-dimensional periodic calculations required was re-
garded as too large to warrant using such an expensive model
chemistry in the present work, which is directed toward the
development of a general methodology. Thus, we note the
discrepancy and continue with the semiempirical model,
which we think is sufficient for the purposes of method de-
velopment which form the main emphasis in the present
study. For PETN, we selected three normal modes n=8, 83,
and 144 �Table I�B��. The first of these is a collective unit-
cell motion whose experimental counterpart was hard to
identify. Mode 83 is an ONO2 umbrella motion and mode
144 is a NO2 symmetric stretch. Comparison to experiment
in Table I indicates that the value of the ONO2 umbrella
mode is underestimated by about 100 cm−1. According to
Fig. 2�b�, phonon mode 8 has weak IR oscillator strength,
while the considered ONO2 umbrella and NO2 stretching
modes are both IR active.

The main focus of this study is the determination of the
cubic and quartic anharmonic couplings based on an anhar-
monic expansion of the crystal potential energy in a normal-
mode basis �Eq. �1��. For reconstruction of the potential-
energy surfaces, displacements along each coupled normal
mode were set to be equivalent to Nq=5 vibrational quanta.
The number of displacements was Nd=2, providing a grid of
125 values of the potential energy to be fitted to Eq. �1�. The
IR and Raman linewidth calculations were performed ac-
cording to Eqs. �3�–�5�, where the TJ-DOS expressions were
approximated by Eqs. �6�–�8�. In this expression, the width
was set to 
=50 cm−1 if low-energy modes �phonons,
�200 cm−1� are present in the argument and 
=5 cm−1 for
the vibrons ��200 cm−1�. This parametrization was chosen
to simulate qualitatively the broad density of states of the
phonon mode energies and narrow density of states of the
vibrons.

Figure 3 shows the results of the linewidth calculations.
The total linewidth values �2�th��n�� agree with experiment
to within an order of magnitude, and the general trends for
the temperature dependence are also reproduced. The contri-

FIG. 2. Calculated IR-absorption spectra of �a� naphthalene and
�b� PETN. The inset shows low- and high-frequency features of the
PETN spectrum. All spectral lines have Lorentzian line shape with
the central frequencies set to the normal-mode eigenenergies �no
scaling applied� and the average widths to 3.0 cm−1. Arrows mark
the modes selected for the anharmonic coupling and linewidth
calculations.

TABLE I. Comparison between calculated �th� and measured �ex� normal-mode eigenenergies ��n� and
effective anharmonic couplings Bd and Bu in units of cm−1. See text for definitions.

n �n
th �n

ex Bd
th Bd

ex Bu
th Bu

ex

�A� Naphthalene

8 96 90 0.22 0.27 0.28 0.67

14 348 389 0.13 0.25 0.23 0.20

81 1621 1630 0.08 0.82 0.15 0.12

�B� PETN

8 82 0.15 0.32

83 652 755 0.16 0.14 0.19 1.09

144 1521 1292 0.09 0.6 0.28 0.39
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butions of the linewidth components �Eqs. �2�–�5�� associ-
ated with phonon down-conversion ��d��n��, up-conversion
��u��n��, and pure dephasing ��*��n�� are also shown in the
plot. At low temperatures, the down-conversion processes
�black line� are the only ones present. Increasing temperature
leads to increased contributions from up-conversion pro-
cesses �red lines�. For example, for mode 14 of naphthalene
at room temperature, up-conversion and down-conversion
contributions to the linewidth become comparable. The ef-
fect of pure dephasing �green lines� only becomes significant
for mode 14 of naphthalene and, even then, only for tem-
peratures higher than 100 K.

Given that the dephasing contribution is negligible, the
calculated �measured� temperature-dependent linewidth
curves can be fitted by a sum of modified Eqs. �3� and �4�.
Specifically, in these expressions, the sum over the mode
indices should be dropped, and Bnjk

�3� replaced with Bd
th �Bd

ex� in
Eq. �3� and with Bu

th Bu
ex in Eq. �4�. This fit provides highly

averaged “effective” up- and down-conversion anharmonic
couplings directly available from the temperature-dependent
Raman experiment.7 The resulting values for the effective
anharmonicities thus obtained from the curves in Fig. 3 are
listed in Table I. �Usually, the prefactor 18 �36� appearing in
Eq. �3� �Eq. �4�� is included into Bd

ex �Bu
ex�. Here, to make an

adequate comparison with the theory, we keep these prefac-
tors in the expressions.�

A general trend which is expected for the averaged theo-
retically calculated anharmonicities is that their values de-

crease with the increasing mode energy. This reflects a no-
tion that the phonons and low-frequency vibrons are “softer”
and more anharmonic compared to the higher-frequency vi-
brons. This trend is clearly observed in Table I for the up-
conversion anharmonicities of naphthalene. For PETN, esti-
mated value of Bu

th for the phonon mode is slightly higher
than corresponding values for the vibrons. The trend is also
observed for Bu

ex and Bd
ex measured in PETN. Overall, aver-

aged theoretical and experimental effective couplings are in
better than order-of-magnitude agreement for nearly all
modes considered, with the exceptions of the down-
conversion anharmonicity of mode 81 in naphthalene and
mode 144 in PETN. By looking at the experimental anhar-
monicity values of the latter modes, we notice that their val-
ues rise �not decrease� as the mode energies increase. In this
case, a possible source of the discrepancy is the adopted
approximation for the TJ-DOS. We attribute the same cause
to the result for PETN mode 83, whose experimental up-
conversion anharmonicity is approximately a factor of 6
larger that its calculated value.

To minimize the contribution of the line overlap causing
an error in the linewidth measurements, an average of the
up-conversion anharmonicities for a set of experimentally
well-resolved modes was reported;7 we compare the values
in that reference to an average over the theoretical ones in
Table I. The theoretical and/or experimental comparison for

naphthalene is B̄d
th=0.14 cm−1 and B̄d

ex=0.09 cm−1 and for

PETN, B̄d
th=0.13 cm−1 and B̄d

ex=0.23 cm−1. This leads to the

FIG. 3. �Color online� Temperature-dependent linewidth of selected �a� naphthalene and �b� PETN unit-cell modes. Shown are the
calculated total linewidth �solid blue line� and its components due to phonon and/or vibron down-conversion �black line�, up-conversion �red
line�, and pure-dephasing �green line� effects. For comparison, the experimental values �Ref. 7� are plotted �blue circles� and fitted �dashed
blue line� to determine the effective anharmonic couplings Bd

ex and Bu
ex listed in Table I along with Bd

th and Bu
th �which were obtained by fitting

the theoretical linewidths �solid blue line��.
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same conclusion as the comparison of the temperature de-
pendent behavior, namely, that the theoretical and/or compu-
tational protocol is sufficient to reproduce the dominant
qualitative features of the anharmonic couplings, and sug-
gests that it can be used meaningfully to study the dynamics
of energy transport in complicated molecular crystals.

Our ability to calculate the anharmonic couplings allows
us to estimate averaged strengths of phonon-phonon,
phonon-vibron, and vibron-vibron interactions in naphtha-
lene and PETN. For energetic materials, these quantities
carry information on the vibrational energy transport to
and/or from the reaction centers. However, before turning
our attention to the calculated numbers, we once again note
that, according to Eqs. �3�–�5�, the TJ-DOS factors �Eqs.
�6�–�8�� select a limited subset of the vibrational states that
will be coupled through anharmonic interactions. To evaluate
which states participate in these processes and, therefore,
which anharmonicity couplings have to be determined, we
present in Figs. 4�a� and 4�b� plots of down-conversion
�� jk

d ��n�� given by Eq. �6� and up-conversion �� jk
u ��n�� given

by Eq. �7�, respectively, for naphthalene at T=300 K as a
function of the normal-mode numbers �j ,k�. The same quan-
tities for PETN are presented in Figs. 4�c� and 4�d�.

According to Fig. 4�a�, the room-temperature linewidth of
mode 8 in naphthalene is due entirely to anharmonic cou-

plings within the manifold of phonon states �1
 j ,k�10�.
Accordingly, averaged down-conversion anharmonic cou-
pling of mode 8 should provide information restricted to
phonon-phonon interactions. By contrast, the up-conversion
TJ-DOS of the same mode involves a small amount of low-
frequency vibrons �j ,k
15,20�, and the phonon-vibron
contribution to the corresponding averaged anharmonicity
should be higher. The vibron modes participating in the
down-conversion processes can be seen to interact with
states such that �n��i+� j, thereby forming a set of “diag-
onal” peaks in Figs. 4�a� and 4�c�. The widths of the diagonal
in Fig. 4 are determined by the adopted values for 
 in Eqs.
�6�–�8�, that is, by the phonon and vibron densities of states.
The up-conversion processes, �n�� j −�k or �n��k−� j, in
naphthalene and PETN involve phonons and low-energy vi-
brons �j ,k
20,40� as Figs. 4�b� and 4�d� show. Equations
�9�–�11� used to calculate the average anharmonic couplings
naturally account for the TJ-DOS limitations. By further par-
titioning the summations in the numerators of these equa-
tions over �j ,k� indices into the sums over the phonon-
phonon, phonon-vibron, and vibron-vibron mode numbers,
we extract the values of each component of the interaction.

Table II summarizes the calculated values of down-
conversion ��Bd

2	1/2�, up-conversion ��Bu
2	1/2�, and pure-

dephasing ��Bp
2	1/2� anharmonic constants at T=300 K. For

FIG. 4. Thermally weighted joint densities of states for modes j and k �TJ-DOS�, determining the ��a� and �c�� energy down-conversion
process �Eq. �6�� �n→�i+� j and the ��b� and �d�� energy up-conversion processes �Eq. �7�� �n+� j→�k and �n+�k→� j induced by the
cubic anharmonic couplings Bnjk

�3� ; calculated at a temperature of 300 K for ��a� and �b�� naphthalene and ��c� and �d�� PETN.
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naphthalene, our calculations show that, on average, the
phonon-phonon interaction �mode 8� is stronger than the
other components. The vibrons �modes 14 and 81� interact
with phonons and with other vibrons with comparable
strengths. In contrast, for PETN, the calculated anharmonic
couplings of the higher-energy modes �83, 144� are mainly
due to vibron-vibron interactions. As expected, the pure-
dephasing effects are negligibly weak. It is noteworthy that
the total averaged anharmonic couplings in Table II and the
same effective anharmonicities obtained by fitting the calcu-
lated linewidth in Fig. 3 are consistent with one another for
naphthalene. For PETN, the fitting provides higher values
than the TJ-DOS weighted averaging, demonstrating that the
former procedure provides a crude estimate of the anhar-
monic couplings.

In the following, we give a brief discussion on the pos-
sible sources of the discrepancies between theory and experi-
ment. First, to make the computations time efficient, we used
inexpensive semiempirical electronic structure models. This
leads to particularly large estimates of the mode energies of
the symmetric and antisymmetric NO2 stretches in PETN. As
suggested above, replacement of these simple models by
DFT should improve accuracy in the normal-mode determi-
nation and accordingly in the calculations of anharmonic
couplings, albeit at considerable increase in computational
expense. Another issue is the use of the third- and fourth-
order perturbation theory expressions for linewidth calcula-
tions �Eqs. �3�–�5�� adopted in this study. The higher-order
terms which we omitted here can, in principle, provide sig-
nificant contributions and might become quite important if
strongly driven energy up-pumping processes such as shock
initiation in PETN are considered. Finally, the energy surface
calculations have been performed in the � point of the Bril-
louin zone. As such, we have not accounted accurately for
the mode eigenenergies and anharmonicity dispersion rela-
tions; instead, we have made phenomenological assignments
of widths to the vibrational states. While this improves the
calculations, the acoustic phonons are still neglected. One
way to improve this issue would be to consider “supercells”
comprised of multiples of the crystallographic unit cells con-
sidered here. While this would be feasible for the semiempir-

ical methods used in the present work, such an approach
would be near the edge of practical feasibility using more
accurate model chemistries.

IV. CONCLUSIONS

We have developed a computational approach that yields
anharmonic vibrational couplings in molecular crystalline
materials. We have implemented it for semiempirical elec-
tronic structure methods with periodic boundary conditions.
The technique was applied to naphthalene and PETN crys-
tals, allowing us to evaluate the vibrational anharmonic cou-
plings. Experimental observables such as IR and Raman line-
widths and averaged anharmonic constants have been
calculated. These, and temperature-dependent Raman spec-
tra, were compared to experiment, and reasonable agreement
was obtained. From these comparisons, we conclude that the
method presented here is suitable for qualitative analysis of
the cubic and quartic anharmonicities in periodic molecular
structures and can be applied productively to the study of
certain processes of interest, for example, up- and down-
conversions in shock loaded energetic materials. However,
we stress that the proposed approach is general and can be
used to study other kinds of systems such as molecular ag-
gregates, �bio�polymers, and nanomaterials, for instance, car-
bon nanotubes.31 Finally, the method can be extended to in-
vestigate the anharmonic vibrational couplings in
photoexcited electronic states.

Further improvements in accuracy can be obtained by re-
placement of the approximate electronic structure theory
used here by first-principles electronic structure calculations
such as DFT, and modifications in either k space or real
space that lead to better inclusion of the phonon and/or
vibron-dispersion relations that are currently treated phe-
nomenologically. While the validation obtained here by com-
parisons between theoretical and experimental IR and Raman
linewidths is limited due to a large amount of averaging in
the experiments to which we compared, a far greater degree
of mode subjectivity should be attainable using nonlinear
techniques such as IR and Raman multidimensional
spectroscopies.1,32–34 Confrontation with those kinds of de-

TABLE II. Averaged down-conversion ��Bd
2	1/2�, up-conversion ��Bu

2	1/2�, and pure-dephasing ��Bp
2	1/2� anharmonicities calculated at T

=300 K. Their components �see text for definitions� due to the phonon-phonon �p-p�, phonon-vibron �p-v�, and vibron-vibron �v-v� inter-
actions are also listed. The quantities are given in cm−1 units.

�Bd
2	1/2 �Bu

2	1/2 �Bp
2	1/2

Mode n p-p p-v v-v Total p-p p-v v-v Total p-p p-v v-v Total

�A� Naphthalene

8 0.46 0.03 0.49 0.25 0.10 0.35 0.010 0.001 0.011

14 0.09 0.05 0.14 0.07 0.05 0.12 0.015 0.0 0.015

81 0.01 0.04 0.05 0.02 0.02 0.04 0.003 0.0 0.003

�B� PETN

8 0.01 0.04 0.05 0.004 0.046 0.05 0.0 0.0

83 0.00 0.06 0.06 0.01 0.05 0.06 0.0 0.0 0.0

144 0.00 0.06 0.06 0.01 0.05 0.06 0.0 0.0 0.0
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tailed data would provide a significantly greater validation
challenge to the present theoretical approach.
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APPENDIX: APPROXIMATE EXPRESSIONS FOR
LINE-SHAPE FUNCTIONS

It is often convenient to calculate physical quantities for a
periodic crystalline structure using a k-space representation.
In k space, the dispersion of the energy as a function of k is
due to interunit-cell interactions. Since our ability to perform
the normal-mode analysis and anharmonic coupling evalua-
tions is limited to the coordinate space representation of a
single unit cell interacting with its periodic replicas, it is
convenient to use an approximate coordinate space represen-
tation for the line-shape functions that effectively accounts
for the periodic structure of the crystal. The energy disper-
sion in this case is phenomenologically accounted for
through the functional form adopted for the vibrational den-
sities of states. Below, we outline, highlighting the approxi-
mations, our derivation of Eqs. �3�–�8� used for the line-
shape simulations.

We start with a generic vibrational potential-energy anhar-
monic expansion for a molecular crystal containing L unit
cells, each having M atoms which form molecules

Vanh��� = �
�,�,�=0

L

�
i,j,k=1

M

B i j k
�3�����i

�� j
��k

�

+ �
�,�,�,�=0

L

�
i,j,k,l=1

M

B i j k l
�4������i

�� j
��k

��l
�, �A1�

where �i
� is the ith normal-mode displacement calculated for

a unit cell �, and Bijk
�3���� and Bijkl

�4����� are related anharmonic
constants. Using the perturbation expansion for the Raman
and IR line shape, the following third-order coordinate space
expression associated with the energy down-conversion pro-
cess can be obtained in a straightforward way13,14,24–26:

�d��n� = 18L�−1 �
�,�=0

L

�
jk=1

M

�B n j k
�3�0�� �2�n̄j + n̄k + 1�

����n − � j
� − �k

�� , �A2�

where we have also accounted for the fact that the interac-
tions depend on the differences of the unit-cell coordinates �
and �. Here and below, n̄k= �exp���k /kBT�+1� is the vibra-
tional level occupation number, where kB is the Boltzmann
constant and T is the temperature. Next, we introduce the
vibrational density of states �DOS�

� j��� = �
�=0

L

��� − � j − �� j
�� , �A3�

where � j �� j
�=0 and �� j

�=� j
�−� j, and transform Eq. �A2�

into the quasicontinuous energy representation

�d��n� = 18L�−1 �
jk=1

M 
 d��
 d���B�3���n,��,����2

��n̄���� + n̄���� + 1�� j�����k�������n − �� − ��� .

�A4�

Integration over d�� and change of variable ��=� j +� sim-
plify this expression to the form

�d��n� = 18L�−1 �
jk=1

M 
 d�

��B�3���n,� j + �,�n − � j − ���2

��n̄�� j + �� + n̄��n − � j − �� + 1�

�� j�� j + ���k��n − � j − �� . �A5�

The first approximation, applied at this point, is to expand
the population factors n̄�� j +�� and n̄��n−� j −�� in power
series of � and retain only the zero-order terms

�d��n� = 18L�−1 �
jk=1

M 
 d�

���B�3���n,� j + �,�n − � j − ���2

�� j�� j + ���k��n − � j − ���

��n̄�� j� + n̄��n − � j� + 1� . �A6�

Our next, central approximation is to introduce effective, that
is, averaged over the energy spectrum weighted by the DOS,
anharmonicity couplings. These quantities are available from
our simulations, since the averaging is similar to accounting
for the intercell interaction associated with the periodic
boundary condition

Bijk
�3� � L−3
 d��B�3���n,� j + �,�n − � j − ���2

�� j�� j + ���k��n − � j − �� , �A7�

where the prefactor L−3 originates from the normalization per
integrals over DOS �i.e., L=�d�� j����. As a result, the line-
shape component in Eq. �A6� can now be represented in the
following form:

�d��n� = 18�−1 �
jk=1

M

�Bnjk
�3� �2�n̄�� j� + n̄��n − � j� + 1�

�L−2
 d�� j�� j + ���k��n − � j − �� . �A8�

At this point, we partition the summation argument in Eq.
�A8� into the product of the effective anharmonic coupling
�Bnjk

�3� �2 and thermally weighted joint vibrational density of
states �TJ-DOS�

� jk
d ��n� � �n̄j + n̄k + 1�L−2
 d�� j�� j + ���k��n − � j − �� .

�A9�

Note that in contrast to DOS, this quantity is normalized per
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unity. The TJ-DOS can be calculated if the form of the DOS
�Eq. �A3�� is known. We interpolate to obtain the latter from
the Lorentzian function

� j��� =
1

	


 j

�� − � j�2 + 
 j
2 , �A10�

whose width 
 j is the width of a whole vibron or optical-
phonon band centered at the jth normal-mode energy � j. By

evaluating the integral in Eq. �A9�, which contains a convo-
lution of the Lorentzian functions, we arrive at the final ex-
pression for the TJ-DOS given by Eq. �6�. This expression
together with Eq. �A8� leads to Eq. �3� used in our simula-
tions. Equations �4� and �5� along with Eqs. �7� and �8�,
describing the line-shape components associated with the en-
ergy up-conversion and pure dephasing, respectively, can be
derived in the same way as outlined above.
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