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Four different numerical algorithms suitable for a linear scaling implementation of time-dependent
Hartree–Fock and Kohn–Sham self-consistent field theories are examined. We compare the
performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to
solve the random-phase approximation �RPA� �non-Hermitian� and Tamm–Dancoff approximation
�TDA� �Hermitian� eigenvalue equations in the molecular orbital-free framework. Semiempirical
Hamiltonian models are used to numerically benchmark algorithms for the computation of excited
states of realistic molecular systems �conjugated polymers and carbon nanotubes�. Convergence
behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling
conditions. The results single out the most suitable procedures for linear scaling large-scale
time-dependent perturbation theory calculations of electronic excitations. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3068658�

I. INTRODUCTION

Quantum mechanical treatment of molecular ground
states involving numerical solution of the Schrödinger equa-
tion is a well-developed problem. Typical methods include
Hartree–Fock �HF�, density functional theory �DFT�, and
many sophisticated post-HF correlated wave function meth-
ods. Each method approaches the many-electron problem
with a very specific technique.1–3 These techniques provide
important information about molecular geometry, chemical
energy, distribution of the electronic density, etc. The bottle-
neck for quantum-mechanical methods in their application to
large molecules is the scaling of the numerical cost with
molecular size. Formally, HF and DFT Kohn–Sham self-
consistent field �SCF� methods scale as O�N4�, where N is
related to the number of basis functions, assumed to be pro-
portional to molecular size. Substantial effort has been de-
voted toward the development of numerically efficient algo-
rithms providing reduced computational cost. Linear O�N�
scaling has been achieved for ground state HF and DFT
calculations.4–13 Recently, a linear scaling solution of the
coupled-perturbed SCF equations was formulated and was
extended to the computation of higher-order static response
properties14–18 based on linear scaling density matrix pertur-
bation theory.19

Another important area of molecular modeling is simu-
lation of electronic excitations and the resonant frequency-
dependent response. When a molecule is subjected to an ex-
ternal electromagnetic field, such as laser light, its electronic

density becomes time-dependent with dynamics involving
excited electronic states. These excited state calculations are
more involved compared to the ground state calculations due
to many-body interactions �electronic correlations�. A num-
ber of computational methodologies have been developed to
deal with these issues, including the sophisticated multiple-
determinant configuration interaction �CI� and coupled clus-
ter schemes, equations of motion, and other many-body ap-
proaches such as Green’s function approaches via the
solution of the Bethe–Salpeter equation.1,3,20 Among these
approaches, simple and practical techniques such as the CI
singles �CIS� and the time-dependent HF �TD-HF� theory,
have been widely applied to molecular modeling. For ex-
ample, coupled with simplified semiempirical Hamiltonian
models �e.g., Pariser–Par–Pople or Zerner’s intermediate ne-
glect of differential overlap�, these methods have been rou-
tinely used to calculate electronic excitations of large mo-
lecular systems for many years.21–23 More then a decade ago,
the TD-HF technique was extended to the more general hy-
brid HF/DFT models, and the time-dependent SCF �TD-
SCF� method, which spans the range between adiabatic time-
dependent DFT �TD-DFT� and TD-HF limits, has
emerged.24–27 This approach deals only with the one-electron
density matrix, and has become a workhorse for the compu-
tation of excited state properties in nanosized materials.28–32

Advances in the development of new density functionals has,
so far, continuously improved accuracy in the computation of
electronic excitations in molecular materials.

Solution of the TD-SCF equations in the frequency do-
main leads to the random-phase approximation �RPA� eigen-
value problem;33–36 in this article, we focus on efficient nu-
merical solution of this problem. Formally, the numerical
cost of diagonalizing the TD-SCF equations scales as O�N6�,
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since the dimension of the RPA matrix is tetradic �N2�N2�
due to inclusion of Coulomb matrix elements necessary to
account for electron-electron interactions. Over the years, a
number of effective Krylov subspace algorithms and iterative
techniques have been developed �e.g., Davidson
algorithm�.23,37–41 Using direct methods for building the
Fock �or Kohn–Sham� operator, these approaches are able to
efficiently calculate the portion of the eigenspectrum of the
RPA matrix necessary for modeling electronic excitations
and optical response. Such diagonalizers became common in
nearly all modern quantum-chemical codes, generally reach-
ing O�N3�−O�N4� complexity for excited state calculations.
Utilizing sparse algebra techniques and modern direct Fock
�or Kohn–Sham� operator builders, O�N� scaling computa-
tional complexity for excited state calculations is feasible.
However, for O�N� scaling, all calculations should be done
in the local atomic orbital �AO� representation, since the nu-
merical expense for the molecular orbital �MO� representa-
tion, convenient for standard solution of the RPA problem,
scales as O�N3�. Furthermore, the method should be appli-
cable to the J-symmetric non-Hermitian structure of the RPA
eigenproblem33,35,36 and demonstrate convergence and stabil-
ity with respect to the numerical noise resulting from the
incomplete linear algebra employed to achieve O�N�
scaling.4–13 A number of recent efforts have been devoted to
the development of linear scaling orbital-free algorithms for
calculation of excited states and dynamic �hyper�
polarizabilities.42–48 Even though there have been many re-
cent developments of DFT-based approached for solids uti-
lizing plane wave �PW� basis,49–51 O�N� calculations remain
challenging and require localized Wannier functions for
ground state calculations. Moreover, computation of corre-
lated excited states in PW framework remains problematic
due to long-range exchange effects.20,52

In this article we test four different iterative algorithms
for solution of the TD-SCF equations formulated in the
orbital-free representation: modified Lanczos, Arnoldi,
Davidson, and Rayleigh quotient iteration �RQI� procedures.
Reference 53 represents the initial attempt by the present
authors, where only the Rayleigh quotient method was at-
tempted in the model system. The present work goes beyond
the RQI method and compares its performance with three
other Krylov subspace methods for several realistic mol-
ecules of different sizes. Semiempirical Hamiltonian models
are chosen as a model chemistry. To simulate inexact algebra
conditions inherent in the sparse matrix linear scaling ap-
proaches, we benchmark these algorithms under imposed nu-
merical noise and analyze in detail their comparative perfor-
mance. Section II introduces the underlying TD-SCF
theoretical formalism, Sec. III presents the orbital-free algo-
rithms considered, and Sec. IV analyzes the results of our
numerical tests. Finally we discuss the trends that emerge
and summarize our results in Sec. V.

II. THEORETICAL METHODOLOGY

A. TD-SCF framework

To introduce the time-dependent SCF theory spanning
TD-HF �Refs. 33, 35, and 36� and adiabatic TD-DFT �Refs.

25 and 26� approaches, we start from a von-Neumann-type
equation of motion of a single-electron density matrix P�t�
=P+�P�t�:54

i
�P
�t

= �F,P� + �R�t�,P� , �1�

where F�P� is the effective single-particle Hamiltonian, i.e.,
the Fockian �or the Kohn–Sham Hamiltonian in DFT�, P is
the ground state density matrix, and R�t� is an external per-
turbation �e.g., induced by an external optical field�. Square
brackets denote the usual commutator, �F ,P�=FP−PF. For
brevity, here and everywhere, we assume an orthogonal rep-
resentation, i.e., an orthogonal AO basis is defined, for in-
stance, by Löwdin decomposition of the overlap matrix S.1

Looking at the first-order response to perturbation R�t�
under variation of the density matrix �P�t�, which contains
the sought-out information about observables, such as
frequency-dependent responses, we find that

i
��P

�t
= L��P� + �R�t�,P� , �2�

where

L�x� � �F,x� + �G�x�,P� �3�

is a tetradic Liouville superoperator,23,54 and G�x� is the
Coulomb-exchange operator. Consequently, time-dependent
evolution of P�t� can be expanded via eigensolutions of L in
the limit of weak perturbations R�t�. This is typical for
quantum-chemical modeling dealing with finite molecular
systems. Alternatively, P�t� can be obtained by propagating
Eq. �2� directly in real time,55–58 which is a common ap-
proach in solid-state physics or in the limit of strong
fields.28,31,59

In the general framework applicable to TD-HF, adiabatic
TD-DFT techniques or their hybrid mixture,3,24 the matrix
elements of the Fock �or Kohn–Sham� operator F�P� are
given by

Fij��P� = tij� + Jij��P� − Kij��P� + vij�
xc �P� , �4�

where the Coulomb and HF exchange terms are represented
as

Jij��P� − Kij��P� = �
kl��

�ij��kl���Pkl��

− cx�ik��jl���Pkl�����. �5�

Here indices i, j, k, l, and � refer to the spatial orbitals and
the spin space, respectively. tij� are one-electron integrals
accounting for the kinetic energy and nuclear attraction of an
electron, and �ij� �kl��� are conventional two-electron inte-
grals representing Coulombic interactions. The exchange-
correlation potential vxc, given by a functional derivative of
the exchange-correlation action Axc in the DFT
approach,25–27 vanishes in HF theory. The hybrid mixing pa-
rameter cx accounts for the amount of HF exchange in F�P�.
This parameter allows interpolation between pure DFT �cx

=0� and HF �cx=1 and Axc=0� theories. The total Coulomb-
exchange term is defined as
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Gij��x� = Jij��x� − Kij��x� + �
kl��

f ij�,kl��
xc xkl��, �6�

where the fxc kernel is a functional derivative of the
exchange-correlation potential vxc in the DFT approach.
Note that in Eqs. �4�–�6� the indices i , j ,k , l ,� run over all
basis functions ���r�	 irrespectively of representation. In a
representation-free approach, the action of L onto x in Eq.
�3� can be computed in the O�N� regime using previously
developed efficient Fock build procedures.4–9

B. RPA eigenproblem

The eigenspectrum of the Liouville operator L in Eq. �3�
is given by the N2�N2 eigenvalue problem

Lv� = �v� , �7�

where the vector v� is dyadic, corresponding to the unrolled
N�N matrix v, i.e., vN�N⇔v�N2�1, where the double-headed
arrow denotes both equivalence and a tensorial mapping.60

Traditionally, MOs provide a convenient representation
allowing trivial decomposition of all possible transitions
among occupied �hole, h� and virtual �particle, p� orbitals. A
complete eigenspectrum of L in Eq. �7� thus includes two
distinct classes �i.e., interband �ph,hp� and intraband �pp,hh��
of transitions. Only “through-gap” electronic excitations re-
lated to the interband transitions are of interest for modeling
spectroscopic observables.23 Consequently, Eq. �7� is fre-
quently recast in the MO representation as


 A B

− B − A
�
X�

Y�
� = �
X�

Y�
� , �8�

which is known as the RPA eigenvalue equation.61–64 The
eigenvalues of Eq. �8� represent vertical transition energies
from the ground state to the excited states, entering as the
poles of the linear response function of the system �see Eq.
�2��. The submatrices A and B are fourth-order tensors, i.e.,
they have a superoperator structure defined on the Liouville
space �NoccNvirt�� �NoccNvirt�. Here Nocc and Nvirt denote the
Hilbert spaces of occupied and virtual molecular orbitals,
respectively, with N=Nocc+Nvirt. The tetradic elements of
these matrices can always be chosen to be real and are given
in the canonical MO basis as26,32,41

Aia�,jb�� = ��a� − �i���ij�ab���� + �ia��jb��� + f ia�,jb��

− cx�ab��ij������, �9�

Bia�,jb�� = �ia��jb��� + f ia�,jb�� − cx�ja��ib������, �10�

where indices i , j �a ,b� run over occupied �virtual� molecular
orbitals, �a and �i denote energies of molecular orbitals
�Fockian eigenenergies�, and the other quantities have been
introduced in Eqs. �5� and �6�.

In Eq. �8� the matrix A is Hermitian and identical to the
CISs matrix. Neglecting the Hermitian matrix B results in
the diagonalization of the A operator, which gives the CIS
excitation energies for a HF Hamiltonian, and is known as
the Tamm-Dancoff �TDA�61,65,66 when a DFT Hamiltonian is
used. In this work, we examine algorithms for solving both

the RPA eigenproblem, and the corresponding B=0 problem,
which we will denote as the TDA. A is a diagonally domi-
nant matrix for typical molecules. This provides efficient
preconditioning schemes for various MO space algorithms.
The first term of A in Eq. �9�, which is equivalent to the first
term for the Liouville operator in Eq. �3�, gives a “zero or-
der” approximation to the excitation energies. If only this
part is included in L, the eigenvalues of Eq. �7� are simply
the energy differences between the Fockian eigenvalues, i.e.,
the single-particle excitation energies corresponding to
Koopmans theorem. The rest of the elements of A and B
�i.e., the second term for the Liouville operator in Eq. �3��
include additional Coulomb and exchange-correlation
screening of the excitation process.

Eigensolutions of Eq. �8� have a paired structure due to
the J-symmetry of L in the interband subspace:

Lv��
+ = ��v��

+, Lv��
− = − ��v��

− , �11�

where �=1, . . . ,Nocc�Nvirt and the matrix transpose relates
positive and negative transition density matrices �eigenvec-
tors� v�

− = �v�
+�T, which can always be chosen as real values.

These paired eigensolutions of Eq. �8� �or Eq. �7� in the
interband ph,hp subspace� correspond to excitation and de-
excitation processes across the gap, which may be optically
activated. The X and Y components of the eigenvector v�+

=� X�

Y�
� �v�−=� Y�

X�
�� in the MO representation are, respectively,

the particle-hole �ph� and hole-particle �hp� components. For

a majority of molecules, the X� component dominates �i.e.,

�X� �� �Y� ��, because elements of supermatrix B represent
higher-order electronic correlations and their magnitudes are
small compared to those of matrix A. Consequently, the TDA

�B=0, Y� =0� is considered as a good approximation and is
widely used for the original RPA problem.

C. Representation independent formalism

Conventional orbital based algorithms for solving the
TD-SCF equations restrict the solution subspace to ph-hp
symmetry by construction. In an orbital independent formu-
lation, this ph-hp symmetry can be imposed using the occu-
pied subspace projector P �the idempotent ground state den-
sity matrix� and its compliment, Q=I−P, with the projection
scheme1,67–71

xP = PxQ + QxP. �12�

or equivalently

xP = ��x,P�,P� . �13�

The first and the second terms in Eq. �12� provide projection
into ph and hp subspaces, respectively. For large and sparse
problems, it is possible to construct these projectors in O�N�
using recursive purification methods.67,72,73

The unitary matrix N= � I 0
0 −I

�, implicitly present in Eq.
�8�, is a metric tensor defining the indefinite inner product
associated with the Liouville space.74 In a general represen-
tation this metric can be applied implicitly through the pro-
jection
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x�N = Nx� ⇔ �P − Q�xP, �14�

which is valid only in the ph-hp subspace. We note that for
the real matrices encountered in quantum chemistry x†=xT,
which in an orbital representation is equivalent to the transfer

operation � X�

Y�
�→� Y�

X�
�. The corresponding indefinite inner

product between arbitrary vectors x� and y� in the Liouville
space is then given as23,36,74

x�,y�� = Tr�xT�P − Q�y	 �15a�

=Tr�xT�y,P�	 , �15b�

an equivalence that holds only within the ph-hp subspace. To
avoid confusion, hereafter we will only consider vectors and
matrices belonging to the ph-hp space, assuming that they
result from the projection given by Eq. �12�, and the sub-
script P is dropped henceforth.

The scalar product �15� can be used to introduce the
orthogonality relation between eigenvectors v�� and v�	 as

v��,v�	� = Tr�v�
T�P − Q�v		 = ��	. �16�

This scalar product is antisymmetric with respect to ex-
change of v��

+ for v��
−: v��

+ �v��
+�=−v��

− �v��
−�. In an orbital repre-

sentation, Eq. �16� is equivalent to the familiar expression

X� � ·X� 	−Y� � ·Y� 	=��	. It reduces to the usual dot product be-

tween vectors X� � and X� 	 in the TDA approximation
�v� = � X�

0
��.

As shown by Thouless74 in 1961, eigensolutions of the
RPA Eq. �8� can be found variationally. Given the above
definitions, the Thouless functional can be written as

��x�� =
x�,Lx��
�x�,x���

. �17�

In the TDA, this functional reduces to the usual Ritz func-
tional for Hermitian operators ��x��=x� ·Ax� /x� ·x�. Both Thou-
less and Ritz functionals can be optimized in variational al-
gorithms to find eigensolutions.

D. Coordinate-momentum representation

We note that Eq. �2� can be envisioned as an equation of
motion for coupled harmonic oscillators. In particular, the
TD-SCF approximation is usually considered as a classical
limit of the original many-electron system.23,75 Each oscilla-
tor ���=1, . . . ,Nocc�Nvirt� is described by two conjugate

modes v��
+ = � X� �

Y� �
� and v��

− = � Y� �

X� �
�. It is frequently advantageous

to consider transformation to the coordinate-momentum vari-
ables �q ,p	 as

q�� = X� � + Y� � and p�� = X� � − Y� �. �18�

The orthonormalization relation �16� then reduces to the
usual dot product between eigenvectors p�� and q�	

p�� · q�	 = ��	. �19�

The RPA eigenvalue problem �Eq. �11�� in these variables is
given as

�A − B�p�� = ��q��, �A + B�q�� = ��p��. �20�

That is,


0 K

T 0
�
p�

q�
� = �
p�

q�
� . �21�

Here the Hermitian superoperators K=A+B and T=A−B
are the stiffness and kinetic energy matrices, respectively.
Notably, both matrices K and T are diagonally dominant.
Furthermore, Eq. �20� can be rewritten in two forms:

TKq�� = ��
2q�� or KTp�� = ��

2 p��, �22�

and

T1/2KT1/2q��� = ��
2q��� or K1/2TK1/2p��� = ��

2 p��� �23�

where q��� =T−1/2q��� and p��� =K−1/2p��� . Both Eqs. �22� and �23�
are Nocc�Nvirt Hermitian problems, which have been utilized
in the Davidson solver for RPA problem.

The action of operators K and T on an arbitrary ph vec-

tor x� = � X�

0
� can be computed directly using Eqs. �3� and �12�

as

�A + B�x = Kx = PLxQ − �QLxP�T, �24�

�A − B�x = Tx = PLxQ + �QLxP�T, �25�

where the resulting vectors belong to the ph subspace as
well. These relations can be easily rationalized from Lx�

=L� X�

0 �= � AX�

−BX�
�.

Optimization of the Thouless functional Eq. �17� in q
−p variables corresponds to finding the lowest frequency of a
harmonic Hamiltonian system over all phase-space configu-
rations �q ,p	, normalized by p� ·q� =1:76,77

��p� ,q�� = min
p� ·q�=1

� p� · Tp�

2
+

q� · Kq�

2
� . �26�

III. ORBITAL-FREE ALGORITHMS

With the above developments, we now formulate several
representation-independent algorithms. The first three algo-
rithms outlined here—Lanczos, Arnoldi, and Davidson-
belong to a family of so-called Krylov subspace iterative
methods. A Krylov subspace is spanned by the iterates of
simple power methods.78–80 These three algorithms are
among the most successful methods for extracting a partial
eigenspectrum of large �frequently sparse� matrices. The RQI
technique involves unconstrained nonlinear optimization fol-
lowing the gradient of the excitation energy. All four algo-
rithms differ from the original parent procedures78–80 be-
cause of the requirements of the J-symmetry of L �Eq. �8��
and the Thouless variational principle �Eq. �17��.74 Reduction
in the RPA problem into a simpler Hermitian TDA approxi-
mation, subject to the Ritz variational principle, is achieved
by constraining all calculations to the ph subspace only �i.e.,
to the first term in Eq. �12��.

For simplicity, all algorithms target the first positive ei-
genvalue and corresponding eigenvector in Eq. �7�. Gener-
ally, it is numerically advantageous to iterate several eigen-
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states at once �block iterations�. We illustrate this approach
in an example of the Davidson algorithm in Sec. IV. Such
extensions are possible for other procedures as well.78 Nota-
bly, if too many states are obtained simultaneously, effi-
ciency degrades due to enhanced memory and I/O require-
ments. Consequently, eigenstates may be found one by one
or in small batches of optimal size. Finding subsequent
eigenstates requires that lower lying eigenvectors are either
projected out or shifted away, so that they are not rediscov-
ered by minimization. Here, we consider the symmetric
Wilkinson shift81 of the calculated interior eigenvalues to the
new values � j +� j, which are outside the region of interest,
written as the shifted Lx�:

Lshx� = Lx� + �
j

k


 j�v jv� j,x�� + v� j
Tv� j

T,x��	 , �27�

where �v� j	 �j=1, . . . ,k� are previously determined eigenstate
transition densities. In Eq. �27�, the first and second terms in
the square parentheses symmetrically shift up and down the
positive and negative eigenvalues � j in the spectrum of the
Liouville operator L by an amount of 
 j. For practical pur-
poses, the latter values are chosen to be 
 j =�k−�1+
,
where empirical parameter 
 should exceed the density of
electronic states in the spectrum of a given molecule.

Finally, we note that the initial guesses for the eigenvec-
tors are very important in every algorithm considered. One
of the benefits of MO space is that it provides convenient and
relatively accurate initial trial vectors for the transition den-
sity matrices as transitions between molecular orbitals, a so-
called Koopmans’s guess �for instance, the highest occupied
molecular orbital �HOMO�-lowest unoccupied molecular or-
bital �LUMO� transition for the lowest excitation eigenvec-
tor�. These guesses, however, are not readily available in an
orbital-free algorithm. A simple random guess projected onto
the total interband ph+hp subspace �x0=PxQ+QxP� is

vastly inefficient. Since the X� component dominates the Y�

part of the eigenvector v� =� X�

Y�
�, a random guess projected

onto only the ph subspace �x=PxQ� is substantially advan-
tageous in terms of both stability and convergence. This can
be further improved by accounting for spatial �diagonal� lo-
cality of the matrices v, i.e., by considering only diagonally
dominant random guesses x with subsequent projection onto
the ph subspace. Finally, induced density matrices for higher-
order static responses may provide more accurate initial
guesses. These higher-order response terms P�i� in the expan-
sion P=P+P�1�+P�2�+¯, can be calculated
efficiently,14–16,82 using linear scaling density matrix pertur-
bation theory.19,83 It was shown how the density matrix re-
sponse can be calculated to any order �to 10th order in an
exmaple in Ref. 19�. Again, these quantities need to be pro-
jected onto the ph subspace to obtain the initial guesses. The
effect of these initial guesses on the algorithm convergence
and stability is tested in Sec. IV.

A. Lanczos and Arnoldi algorithms

The Lanczos algorithm for a Hermitian eigenvalue prob-
lem is among the most common approaches for sparse

eigenproblems.78 A simple recursive procedure builds a set
of orthogonal vectors spanning the Krylov subspace. Finding
each new vector only requires the two previous vectors.80,84

In search of efficient algorithms for the J-symmetric RPA
problem, the symplectic Lanczos algorithm was suggested
by Mei85 and improved by Benner and Fassbender.86 The
oblique Lanczos algorithm for general non-Hermitian
matrices78 was applied to the TDHF problem in Ref. 87 and
further improved in Refs. 76 and 77. The latter algorithm,
which utilizes the Thouless variational principle �Eq. �26�� is
described below.

Scheme 1 summarizes the Lanczos algorithm for the
RPA problem �Eq. �8��,76,77 which finds a few lowest eigen-
values of the Liouville matrix L. The numerical procedure
starts with two arbitrary vectors p�0 and q�0 �lines �2�–�4�� and
constructs linear combinations of vectors �A+B�m�A
−B�mp�0, and �A−B�m�A+B�mq�0, m=0,1 , . . .M forming the
Krylov subspace �lines �5�–�25��. The coefficients in this lin-
ear combination are found using the Thouless variational
procedure which guarantees the best approximation to the

(1) for k = 1 to K do

(2) Generate trial vector, �x,

(3) p0 = q0 = P x Q

(4) if restart p0 = pi , q0 = qi fi

(5) for i = 0, until convergence or restart do

(6) �s = L
sh �pi , �t = L

sh �qi

(7) qi+1 = P sQ − (Q s P )T , pi+1 = P t Q + (Q t P )T

(8) �qi+1 = �qi+1 − βi�qi−1 , �pi+1 = �pi+1 − δi�pi−1

(9) K̃i,i = αi = �pi+1 · �qi , T̃i,i = γi = �qi+1 · �pi

(10) �qi+1 = �qi+1 − αi�qi , �pi+1 = �pi+1 − γi�pi

(11) f = �pi+1 · �qi+1

(12) K̃i,i+1 = K̃i+1,i = βi+1 =
√
|f |

(13) T̃i,i+1 = T̃i+1,i = δi+1 = sgn{f}βi

(14) �qi+1 =
�qi+1

βi+1
, �pi+1 =

�pi+1

δi+1

(15) solve T̃ �d = ω�c , K̃�c = ω�d

(16) Ω = min
ωi>0

{ωi}

(17) �p =
i∑

0

di�pi , �q =
i∑

0

ci�qi

(18) p = P p Q , q = P q Q

(19) v = 0.5(q + p + (q − p)T )

(20) �v =
�v√|〈�v,�v〉|

(21) �w = L
sh �v

(22) w = P w Q + Q w P

(23) ε =
N2∑

n=1

(Ω�vn − �wn)2

(24) if ε < η, Ωk = Ω, �vk = �v, exit, fi

(25) end

(26) end

SCHEME 1. Modified Lanczos algorithm.
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lowest eigenvalue of L that belongs to a Krylov subspace.
Specifically, the minimum of Eq. �26� can be found using the
generalized Lanczos recursion76,77

q�m+1 = 	m+1
−1 �Tshp�m − �mq�m − 	mq�m−1� , �28�

p�m+1 = �m+1
−1 �Kshq�m − �mp�m − �mp�m−1�, m = 1, . . . ,M ,

�29�

which generates configuration space vectors �q�m , p�m	 that
span the Krylov subspace of Eq. �26�. This subspace �KM�
approximates an invariant subspace of L with increasing ac-
curacy as the number of vectors is increased. The action of
operators Tsh and Ksh on vectors pm and qm can be computed
directly using Eqs. �24�, �25�, and �27�, see lines �6� and �7�
in Scheme 1. Coefficients �m, 	m, �m, and �m are chosen at
each step m to ensure orthogonality q�m+1 · p�m=q�m+1 · p�m−1

=q�m−1 · pm=q�m−1 · p�m+1=0 according to the recursive relations
�28� and �29� �lines �8�, �10�, �11�, and �14��. The vectors p�m

and q�m thus form a biorthogonal basis, q�n · p�m=�mn, and the

matrices K̃ij =q� i ·Kq� j and T̃ij = p� i ·Tp� j are symmetric tridiago-

nal, with the only nonzero matrix elements K̃ii=�i, K̃i,i−1

= K̃i−1,i=	i, T̃ii=�i, and T̃i,i−1= T̃i−1,i=�i �lines �9�, �12�, and
�13��. Expanding q� =�m=1

M cmq�m and p� =�m=1
M dmp�m �line �17��,

we obtain a 2M �2M eigenvalue equation in the KM sub-
space �line �15�� which has the same structure as the original
eigenproblem Eq. �20� but in a space of much lower dimen-
sionality M. The lowest positive eigenvalue �min of the re-
duced eigenproblem gives an approximation to the true RPA
eigenfrequency �line �16��. The respective approximate RPA
eigenvector is formed using eigenvectors of the reduced
problem �lines �17�–�20��. Ideally, the accuracy increases ex-
ponentially with expanding Krylov space dimensionality and
the iteration stops when the desired accuracy threshold is
achieved �lines �21�–�24��. The projection to the interband
subspace needs to be adhered to throughout the entire proce-
dure �lines �3�, �7�, �18�, and �22��. Finally we note that in
the TDA framework, Eqs. �28� and �29� become identical
�i.e., Tsh=Ksh=Ash� and the described generalized iterations
reduce to the usual Lanczos algorithm.80,84

Similar to the Hermitian Lanczos method, the general-
ized Lanczos recursive iterations described above need to
retain only the three latest pairs �pm ,qm	 of expansion vec-
tors, which ensures minimal memory requirements for this
procedure. However, for practical quantum-chemical appli-
cations, it is necessary to compute the RPA eigenvectors �line
�17� in Scheme 1�. Consequently, all expansion vectors
�pm ,qm	 need to be stored. Moreover, a significant drawback
of Lanczos recursion is loss of orthogonality among the ex-
pansion vectors, which is a well-studied problem.79,88 This
issue becomes particularly severe in inexact algebra condi-
tions due to propagation of numerical errors, as explored in
Sec. IV. A simple solution is imposing an explicit orthogo-
nalization of the expansion vectors, leading to the Arnoldi
iterations. In the case of exact arithmetic, commonly used
Hermitian Lanczos and Arnoldi procedures are identical.78,79

Scheme 2 summarizes the generalized Arnoldi algorithm
for the RPA problem corresponding to the generalized Lanc-
zos recursion described in Sec. II. Compared to Scheme 1,

instead of recursions �28� and �29�, the expansion vectors are
explicitly orthogonalized utilizing a Gram–Schmidt algo-

rithm �line �10��. Moreover, reduced matrices K̃ij and T̃ij are
no longer symmetric tridiagonal in inexact arithmetic condi-
tions �line �9��. This, of course, slightly increases numerical
expense but avoids the severe loss of orthogonality that takes
place in the Lanczos algorithm for inexact algebra.

B. Davidson algorithm

Davidson’s algorithm, originally formulated for the Her-
mitian TDA problem, extensively utilizes the fact that the
TDA supermatrix A is diagonally dominant.37 The resulting
Davidson’s preconditioning is particularly simple in the MO
representation. With such preconditioning the algorithm re-
quires fewer iterations compared to similar methods. Similar
to Lanczos and Arnoldi’s methods for solving the RPA prob-
lem, Davidson’s algorithm needs to be modified to take into
account the block paired structure of Eq. �8� and the scalar
product of Eq. �16�. The first RPA algorithm was developed
by Rettrup38 and later improved by Olsen et al.39 The method
has been further refined and combined with the TDDFT tech-

(1) for k = 1 to K do

(2) Generate trial vector, �x,

(3) p0 = q0 = P x Q

(4) if restart p0 = pi , q0 = qi fi

(5) for i = 0, until convergence or restart do

(6) �s = L
sh �pi , �t = L

sh �qi

(7) qi+1 = P sQ − (Q s P )T , pi+1 = P t Q + (Q t P )T

(8) for j = 0 to i do

(9) T̃i,j = �qi+1 · �pj , K̃i,j = �pi+1 · �qj

(10) �qi+1 = �qi+1 − T̃i,j�qj , �pi+1 = �pi+1 − K̃i,j�pj

(11) end

(12) f = �pi+1 · �qi+1

(13) �qi+1 =
�qi+1√|f | , �pi+1 =

�pi+1 sgn{f}√|f |
(14) solve T̃ �d = ω�c , K̃�c = ω�d

(15) Ω = min
ωi>0

{ωi}

(16) �p =
i∑

0

di�pi , �q =
i∑

0

ci�qi

(17) p = P p Q , q = P q Q

(18) v = 0.5(q + p + (q − p)T )

(19) �v =
�v√|〈�v,�v〉|

(20) �w = L
sh �v

(21) w = P w Q + Q w P

(22) ε =
N2∑

n=1

(Ω�vn − �wn)2

(23) if ε < η, Ωk = Ω, �vk = �v, exit, fi

(24) end

(25) end

SCHEME 2. Modified Arnoldi algorithm.
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nique in Ref. 41. Here we describe a variation of the David-
son method working with a block of vectors following
Ref. 41.

Scheme 3 summarizes the Davidson algorithm for the
RPA problem. To find K excited states simultaneously, the
algorithm first generates 2K trial vectors �line �1�� or utilizes
guesses from the previous iterations as trial vectors �line �2��.
These trial vectors are further projected onto the ph subspace
�line �3�� and orthonormalized using a standard dot product
�line �6��. For the ph subspace, the dot product coincides
with the RPA scalar product Eq. �16�. The Krylov configu-
ration space �AB�x�k is generated next �lines �8� and �9��
using Eqs. �24�, �25�, and �27�, which is the most CPU in-
tensive step. Consequently, line 12 computes the reduced

analogs �K̃ and T̃� of stiffness K=A+B and kinetic energy
T=A−B matrices for a given Krylov subspace dimension.
These quantities, in turn, lead to the reduced RPA eigenprob-
lem analogous to Eq. �23� �lines �14� and �15��. Its eigenval-
ues provide approximations to the true RPA eigenfrequencies
�line �18��, and the respective eigenvectors allow calculation

of L̃ and R̃ �line �16��, which are reduced analogs of the RPA

eigenvectors q and p in Eq. �20�. L̃ and R̃ are thus expansion
coefficients for the approximate q and p through the trial
vectors �line �19��. Approximate q and p eigenvectors ob-
tained after projection �line �20�� and normalization �line
�21�� to satisfy Eq. �19�, are then used to calculate the ap-
proximation to the transition density �line �26��, residual vec-
tors �lines �22�–�24�� and respective residual norms �line
�25��. These residual vectors are further used to augment the
trial vector subspace �line �28��. Similar to previously de-
scribed algorithms, the accuracy increases exponentially with
expanding Krylov space dimensionality and the iteration
stops when the desired accuracy threshold is achieved �line
�27��.

Note that, unlike in the original algorithm, we are not
using preconditioning for the residual vectors ��k

−L�1��−1�r�k� to expand the trial vector subspace, where L�1� is
a diagonal superoperator corresponding to the leading part of
A �first term in Eq. �9��. The explicit form of the precondi-
tioner is simply expressed through the energies of occupied
�i and valence �a molecular orbitals �i.e., ���k

−L�1��−1�aa�ii�=1 / ��k−�a+�i��aa��ii��. However, the inver-
sion of the superoperator L�1� is no longer a simple task in an
arbitrary representation. An alternative preconditioner form
has been explored in Ref. 46. Designing an optimal precon-
ditioning approach in MO-free representation is a subject for
future studies. Our numerical tests in Sec. IV show that, even
without preconditioning, the Davidson algorithm shows su-
perior convergence and stability properties in inexact algebra
compared to the other methodologies considered here.

C. Rayleigh quotient optimization

We lastly outline the RQI algorithm following Ref. 53
which directly minimizes the Thouless functional �Eq. �17��
and involves unconstrained nonlinear optimization.89 This
approach belongs to a family of nonlinear conjugate gradient
algorithms, which have the ability to reset and to proceed
downhill in response to functional nonlinearities, and also

small irregularities, such as those associated with an incom-
plete sparse linear algebra. In this respect, it is worth noting
the related but rather formal work of Simoncini and Elden90

and Notay91 on the inexact RQI.
Scheme 3 summarizes the RQI approach which employs

a conventional Polak–Ribiére92 nonlinear conjugate gradient
algorithm93 and an analytic line search. Compared to the
related Hermitian TDA problem, the RPA eigenstructure re-
quests that the conventional dot product and the Ritz func-
tional need to be replaced with the indefinite inner product
�Eq. �15�� and the Thouless functional �Eq. �17��, respec-
tively. The algorithm starts with the trial vector x� �line �2��
converging to the true eigenvector in the course of iteration.
The action of the Liouville operator onto x� �line �6�� is the
most CPU consuming step in the algorithm. Consequently,
the value of the Thouless functional is calculated in line �8�

(1) Generate 2K trial vectors, �x1, . . . , �x2K

(2) if restart x2k−1 = vk + vT
k , x2k = vk − vT

k , k = 1, . . . , K fi

(3) xk = P xk Q , k = 1, . . . , 2K

(4) Mi−1 = 0, Mi = 2K

(5) for i = 0, until convergence or restart do

(6) orthonormalize vectors : �xm · �xm′ = δm,m′ , m, m′ = 1, . . . , Mi

(7) for m = Mi−1 + 1 to Mi do

(8) �sm = L
sh �xm

(9) tq
m = P s Q + (Q s P )T , tp

m = P s Q − (Q s P )T

(10) end

(11) for m,m′ = 1 to Mi do

(12) T̃m,m′ = �t p
m · �xm′ , K̃m,m′ = �t q

m · �xm′

(13) end

(14) D̃ = T̃ 1/2K̃T̃ 1/2

(15) solve D̃�u = ω�u ,

(16) R̃ = T̃ 1/2U , L̃ = K̃R̃ , Mi−1 = Mi

(17) for k = 1 to K do

(18) Ωk =
√

ωk

(19) �qk =
Mi∑

j

R̃j,k�xk , �pk =
Mi∑

j

L̃j,k

Ωk
�xk

(20) pk = P pk Q , qk = P qk Q

(21) �pk =
�pk√|�pk · �qk|

, �qk =
�qk sgn{�pk · �qk}√|�pk · �qk|

(22) �s p
k = L

sh �pk , �s q
k = L

sh �qk

(23) sp
k = P sp

k Q − (Q sp
k P )T , sq

k = P sq
k Q + (Q sq

k P )T

(24) �r q
k = �s p

k − Ωk�qk , �r p
k = �s q

k − Ωk�pk

(25) εk =
N2∑

n=1

(�r q
k)

2
n + (�r p

k)
2
n

(26) vk = 0.5(qk + pk + (qk − pk)T )

(27) if εk < η , vk is converged vector

(28) else �xMi+1 = �r q
k , �xMi+2 = �r p

k , Mi = Mi + 2 fi

(29) end

(30) end

SCHEME 3. Modified Davidson algorithm.
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and the residual norm is evaluated in line �9�. Line �10�
checks if the convergence criteria have been fulfilled. The
algorithm further generates the gradient g� �line �11�� and
projects it to the interband subspace �line �12��. The conju-
gate gradient p� is calculated in lines �13� and �14�, and the
corresponding intermediate t� is evaluated in line �15�, fol-
lowed by analytic line search �line �17�� to determine the
optimal step size �, as described below. Finally, the approxi-
mate eigenvector x� is updated in line �18� and is projected on
to the interband subspace �line �19��.

The optimal value of the line search parameter � is ob-
tained from the extremum of ��x� =x� +�p��. Setting the first
derivative to zero and solving for � leads to the quadratic
equation with solutions

� =
− b  �b2 − 4ac

2ac
, �30�

where

a = p� ,t���p� ,x�� + x�,p��� − p� ,p���p� ,s�� + x�,t��� , �31�

b = 2p� ,t��x�,x�� − 2x�,s��p� ,p�� , �32�

c = x�,x���p� ,s�� + x�,t��� − x�,s���p� ,x�� + x�,p��� . �33�

We note that �+ is the minimizer, which is the solution used
in line �18�.

IV. NUMERICAL TESTS

For numerical tests of the four outlined algorithms we
use a semiempirical TD-HF technique,23,94–96 which allows
us to consider realistic large molecular systems and to
closely mimic numerical conditions of those encountered
with large-scale first principles codes. All numerical tests are
based on the collective electronic oscillator �CEO�
code.23,94–96 This package combines commonly used semi-

empirical models �such as AM1, PM3, intermediate neglect
of differential overlap/spectroscopy �INDO/S� with RPA and
TDA formalisms. Conventional MO-based implementation
of Davidson’s algorithm makes CEO computation of an ex-
cited state manifold not substantially more numerically de-
manding than ground state calculations. Consequently, ex-
cited state calculations of molecular systems up to thousands
of atoms are routinely possible. The CEO modeling of elec-
tronic spectra has been successfully applied in the past to
calculate optical properties of a variety of conjugated chro-
mophores such as polymers �also with donors and acceptors�,
dendrimers, biological light-harvesting complexes, and car-
bon nanotubes.23,94–98

The three molecular systems shown in Fig. 1 have been
used to test the excited state algorithms, namely, phenylene-
vinylene oligomers with two and ten repeat units �PPV2 and
PPV10�, and a finite segment of a �6,2� single-walled carbon
nanotube �SWCNT�. These are conjugated molecular sys-
tems, in which all low-energy excited states are delocalized
�−�� electronic excitations strongly susceptible to external
electric field perturbations such as laser light �for detailed
CEO studies of similar molecules, see, for instance, Refs. 23
and 95–97�. The ground state geometries of all molecules are
optimized using the semiempirical Austin model 1 �AM1�
Hamiltonian,99 which adequately reproduces the molecular
ground state geometries, particularly in hydrocarbon com-
pounds. In this article, for all CEO calculations of excited

9

2

4

6

8

10

20

30

40

50

60

70

Koop TDA RPAKoop TDA RPAKoop TDA RPA

(6,2) SWNT 826bfPPV10 372bf

E
(e

V
)

PPV2 68bf

FIG. 1. �Color� Characteristic DOS in representative molecules, PPV2,
PPV10, and �6,2� SWCNT, which have increasing numbers of basis func-
tions, i.e., 68, 372, and 826 basis functions, respectively. The insets show the
respective molecular structures.

(1) for k = 1 to K do

(2) Generate trial vector, �x,

(3) x = P x Q

(4) for i = 0, until convergence do

(5) �x =
�x√|〈�x, �x〉|

(6) �s = L
sh �x

(7) s = P s Q + Q s P

(8) Ω =
〈�x,�s〉
|〈�x, �x〉|

(9) ε =
N2∑
n=1

(Ω�xn − �sn)2

(10) if ε < η, Ωk = Ω, �vk = �x, exit, fi

(11) �gi = 2(�s − Ω �x)

(12) gi = P gi Q + Q gi P

(13) β = max
{

0,
〈�gi − �gi−1, �gi〉
〈�gi−1, �gi−1〉

}

(14) �pi = �gi + β �pi−1

(15) �t = L
sh �pi

(16) t = P tQ + Q t P

(17) λi = arg min
λ

Ω[�x + λ �pi]

(18) �x = �x + λi �pi

(19) x = PxQ + QxP

(20) end

(21) end

SCHEME 4. Asymmetric Rayleigh Quotient Iteration �RQI�.

054111-8 Tretiak et al. J. Chem. Phys. 130, 054111 �2009�

Downloaded 30 Jul 2009 to 192.12.184.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



states we use Zerner’s INDO/S model100–102 specifically pa-
rametrized to reproduce spectroscopic observables. We focus
solely on the properties of singlet excited states built by RPA
or TDA approaches from the reference singlet ground state.
The outlined terminology also allows calculation of triplet
excitations by accounting for proper spin indices �e.g., see,
Eqs. �4�–�6��. More complex approaches, such as spin-flip
techniques, consider various spin multiplicities in the ground
and excited states.103,104

The density of states �DOS� of test molecules is shown
in Fig. 1. The Koopmans transition energies typically lying
in the range of 2–70 eV represent all possible single-electron
transitions from occupied to valence molecular orbitals. We
also calculate the first 100 excited states in all molecules
using a conventional MO algorithm in the CEO code for TDA
and RPA methods. As expected, inclusion of electronic cor-
relations shifts the Koopmans transition energies to the red

substantially. In contrast, the difference between TDA and
RPA excitation energies is minimal. For reference, the calcu-
lated first excited state transition energy and averaged DOS
among the first 100 excited states in the RPA approach are
3.62 eV and 70 meV in PPV2, 2.71 eV and 33 meV in
PPV10, and 1.64 eV and 12 meV in �6,2� SWCNT. Very
similar values are obtained in the TDA method. Such a de-
crease in the optical gap and increase of DOS with increasing
molecular size augment the numerical complexity of ap-
proximate diagonalization of the Liouville superoperator.

We coded all four algorithms described in Schemes 1–4
into the CEO package by deliberately choosing the default
orthogonal atomic basis set for all numerical operations, i.e.,
completely bypassing the MO representation. This imple-
mentation still uses dense linear algebra and a conventional
O�N3� approach to HF theory. To simulate inexact algebra
conditions we further impose an artificial numerical noise on
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FIG. 2. �Color� Convergence rates � of the first excited state in the absence of numerical noise in the RPA and TDA methods. The same random guess is used
in all calculations. The horizontal axis �number of Liouville builds� shows the associated numerical expense. For all four algorithms, the plot shows
near-exponential convergence � as a function of numerical expense in the quasiexact algebra condition �i.e., standard double precision accuracy�. However,
the rates of convergence are not the same for different methods.
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the matrix elements of Liouville builds �Eq. �27�� as

�Lshx��n
noise = �Lshx��n + �nmax

n
��Lshx��n�, n = 1, . . . ,N2,

�34�

where randomly generated numbers �n do not exceed the
chosen noise threshold �. Finally, for all numerical bench-
marks we limit the expansion subspace for trial vectors to
200 vectors in Lanczos, Arnoldi, and Davidson algorithms.
Once the maximum expansion is reached, the calculations
restart using the updated initial guesses of eigenvectors. This
should simulate actual conditions by preserving memory and
capping I/O. Unless specified otherwise, random guesses for
trial vectors have been used in all simulations.

Convergence rates �i.e., the respective residual norms ��
of the first excited state in three molecules are illustrated in
Fig. 2. As expected, larger molecules with denser spectra
require more iterations �compare panels A–C and D–F in
Fig. 2�. Even though Lanczos and Arnoldi iterations should

coincide in the limit of exact algebra, in practice, their con-
vergence rates become notably different for n�50 iterations
�i.e., about 100 Liouville builds�. Compared to the RPA
framework �left column in Fig. 2�, the convergence is much
faster in the TDA approach �right column in Fig. 2� due to
Hermitian virtues. Interestingly, all algorithms exhibit a very
similar convergence rate for TDA for all three molecules,
where Davidson’s approach shows slightly faster conver-
gence. The situation is different in RPA. Here Davidson’s
approach displays much faster convergence, whereas the
other three algorithms show quite similar and disproportion-
ately slower �compared to their performance in TDA� con-
vergence. To rationalize this trend we recall that Arnoldi,
Lanczos, and RQI algorithms deal with the original non-
Hermitian RPA eigenproblem given by Eq. �8� or Eq. �20�,
whereas the Davidson method works with the corresponding
Hermitian representation written in the form of Eq. �22� or
Eq. �23�. Consequently, the numerical penalty when going
from TDA to RPA is relatively small �factors of 1.5–2� in the

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

0 100 200 300 400 500 600

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

0 50 100 150 200 250 300

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

A

P
P

V
2

RPA
D

Lanczos
Arnoldi
Davidson
RQI

TDA

B

P
P

V
10

E

Number of Liouville builds

C

(6
,2

)
S

W
N

T

Number of Liouville builds

F

FIG. 3. �Color� Same as Fig. 2 but for the tenth excited state.
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Davidson algorithm due to augmentation of the vector space
with hp transitions. The situation is much worse for other
algorithms. However, it is possible to reformulate each tech-
nique using the respective Hermitian framework outlined in
Sec. II D, which potentially should improve their perfor-
mance for the RPA problem.

The same trends are observed for convergence for the
higher excited states in exact algebra conditions. For ex-
ample, Fig. 3 shows convergence rates obtained for the tenth
eigenvector. As expected, the numerical expense is moder-
ately increased since the algorithms deal with denser
eigenspectra. We also observe nonmonotonic convergence.
The flat plateaus in the plots �e.g., panels B and E in Fig. 3�
appear because the algorithm frequently quasiconverges to
the higher-energy excited state eigenvector and can get stuck
there for several iterations. In our experience, a Wilkinson
shift works very well and does not introduce any numerical

problems or instabilities in both exact and inexact algebra.
Indeed, the 100 excited states shown in Fig. 1 have been
calculated using a Wilkinson shift in batches of ten states
each in the conventional MO implementation. We previously
reported calculations of up to 300 excited states in carbon
nanotube segments97 confirming the robustness of this
approach.

We next examine the effect of imposed numerical noise,
which is an inevitable complication arising in all linear scal-
ing algorithms. Here we focus only on the lowest state. The
trends for the higher excited states are found to be the same.
Figures 4 and 5 show the convergence rates for TDA and
RPA approaches, respectively. We notice that the Lanczos
approach becomes extremely unstable and frequently breaks
down with subsequent spontaneous restart �panels A–C in
Figs. 4 and 5�. Sometimes calculations do not converge. As
was pointed out in previous studies,79,88 this occurs because

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

0 100 200 300 400 500 600

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

0 100 200 300 400 500 6000 100 200 300 400 500 600

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

Noise

0 10-5

10-4 10-3

L
an

cz
o

s

PPV2
A

PPV10
B C

(6,2) SWNT

D

A
rn

o
ld

i

E F

D
av

id
so

n

G I J

Number of Liouville builds

K

R
Q

I

Number of Liouville builds

L

Number of Liouville builds

M

FIG. 4. �Color� Convergence rates � of the first excited state in the presence of numerical noise in the TDA method. The same random guess is used in all
calculations. The horizontal axis �number of Liouville builds� shows the associated numerical expense. We apply random noise at �=0, 10−5, 10−4, and 10−3
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floor defined by the numerical noise and should stay nearly constant at this value for a number of iterations.
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the numerical error accumulates due to the specific Lanczos
recursion relations �28� and �29�. This accumulation of the
error breaks down the orthogonality in the chain of Lanczos
vectors, which in turn breaks the algorithm. This problem
virtually prevents practical utilization of the Lanczos algo-
rithm in inexact algebra conditions. Even though the numeri-
cal error accumulates in Arnoldi’s method as well, the ex-
plicit orthogonalization of the vectors helps stabilize the
algorithm. Consequently, we observe only infrequent sponta-
neous restarts of the Arnoldi algorithm in the TDA frame-
work �see panels D–F in Fig. 4�. However, the same problem
is again noticeable for Arnoldi in the RPA at high noise lev-
els �see panels D–F Fig. 5�. In contrast, both Davidson’s and
RQI algorithms display near ideal behavior with respect to
the numerical noise in TDA as shown Fig. 4, panels G–M.
These methods exhibit slightly less smooth behavior in the
RPA �see panels G–M in Fig. 5�. Here slow convergence of
RQI for large molecules becomes particularly problematic
�panel M in Fig. 5�.

In Fig. 6 we summarize the relative amount of net nu-
merical expense required to calculate several excited states.
This plot clearly illustrates that numerical expense scales ap-
proximately linearly with the number of calculated excited
states in all algorithms. It also confirms our previous obser-
vation that the Davidson algorithm that finds states one by
one is significantly faster than both Arnoldi and RQI ap-
proaches in the RPA �left column in Fig. 6�. This advantage
becomes less pronounced the TDA �right column in Fig. 6�.
Moreover, the Davidson algorithm that finds all states simul-
taneously shows the fastest convergence for both the RPA
and TDA. The higher-lying excited states are “sampled” dur-
ing the eigenvector iterations, and this information remains
built into the vector expansion space, which accelerates over-
all convergence of several states that are iterated together.

We lastly investigate the dependence of the convergence
rates on the initial guess for the trial vectors. The results for
different guesses obtained with Davidson’s algorithm are il-
lustrated in Fig. 7. Currently Koopmans transitions between
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occupied-virtual MOs are commonly used initial approxima-
tions in a variety of codes. We first discuss this approach
combined with Davidson’s preconditioning available in the
MO representation as a reference point. Indeed this combi-
nation guarantees the fastest convergence rates in all mol-
ecules �see Fig. 7�. Such accelerated convergence rates are
typical for modern MO-based codes, which linear scaling
techniques need to match. Removing Davidson’s precondi-
tioning slows down the convergence rates by factors of 2–3
�see Fig. 7�. As expected, the simplest random guess for the
orbital-free representation ensures the slowest convergence
in the pack. More intelligent �but still readily available� di-
agonally dominant guesses work better. Here, as an initial
guess we use matrices xij =�ijPij, where �ij is a random num-
ber spanning �−1,1� and Pij is the respective matrix element
of the ground state density matrix. This guess roughly has
the same off-diagonal spatial extent as the ground state den-
sity matrix, which is readily available from the HF calcula-
tions. Indeed, compared to the completely random guess this

approximation provides universally faster convergence
across the board and is closer to the Koopmans guess con-
vergence. Finally we use density matrices P�1� �linear re-
sponse�. Such quantities up to third order in the field recently
became available for calculations14–16,82 in the linear scaling
regime.19,83 We observe that such a guess provides very fast
convergence, notably, even faster than the HOMO-LUMO
guess �see Fig. 7�. However, we note that such guesses may
not be very efficient for high-energy optically inactive elec-
tronic transitions.

V. SUMMARY

Computation of TD-SCF electronic excitations within
the linear scaling regime necessarily demands an orbital-free
representation. This poses new requirements and challenges
for numerical algorithms. Even though the formalism utiliz-
ing advanced projection techniques and the J-symmetric sca-
lar product �see Sec. II� allows calculation in orbital indepen-
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dent representations, much study needs to be done on the
iterative algorithms. For example, an algorithm’s perfor-
mance and stability in inexact algebra conditions becomes
critical to achieving linear scaling. In this study we directly
compare the performance of several different approaches
commonly utilized in sparse algebra and related quantum
chemistry methodologies. Even though benchmarking is
done using conventional dense matrix algebra, we use an
orbital-free representation and simulate typical numerically
noisy conditions of linear scaling techniques. Utilization of a
semiempirical TD-SCF framework allows testing the itera-
tive techniques on realistic molecules of various sizes with
different spectral densities.

We found that accumulation of numerical errors due to
noise in the recursive Krylov subspace procedures is a severe
issue. Consequently, the Lanczos algorithm becomes un-
stable due to fast loss of orthogonality in the expansion vec-

tors. Similar problems exist to a lesser extent for the Arnoldi
technique. RQI does not accumulate numerical error and
shows reasonably fast convergence and stability for Hermit-
ian TDA case. In contrast, RQI minimization of the Thouless
functional �Eq. �17�� in the RPA case proved to be problem-
atic with slow and unreliable convergence. Likely, reformu-
lation of the algorithm in the coordinate-momentum vari-
ables �Sec. II D� and using Hermitian analogs of the RPA
problem �Eq. �22� or Eq. �23�� could help. Even without
preconditioning, Davidson’s algorithm in the orbital-free rep-
resentation proved to be the fastest approach; it shows excel-
lent stability with respect to noise and does not accumulate
numerical errors �in contrast to the Arnoldi and Lanczos
techniques, the Davidson method does not build a nested
Krylov subspace�. Using the Davidson algorithm to compute
several states at once �block method� reduced numerical ex-
pense even further. We also found that the quality of the
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initial guess for the excitation vector �transition density ma-
trix� is critical for improved convergence and stability.
Simple random diagonally dominant guesses, which roughly
imitate the spatial extent of the ground state density matrix,
are efficient and work well. Electric field-induced density
matrices from response theory are even better guesses. Fi-
nally, we expect that the Wilkinson shift81 will be a robust
approach allowing computation of higher-energy excited
states if blocklike calculations are prohibitive due to memory
and I/O requirements.
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