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We obtain the parameters of the exciton scattering �ES� model from the quantum-chemical
calculations of the electronic excitations in simple phenylacetylene-based molecules. We determine
the exciton dispersion and the frequency-dependent scattering matrices which describe scattering
properties of the molecular ends as well as of meta- and orthoconjugated links. The extracted
functions are smooth, which confirms the validity of the ES picture. We find a good agreement
between the ES and quantum-chemical results for the excitation energies in simple test
molecules. © 2008 American Institute of Physics. �DOI: 10.1063/1.3005648�

I. INTRODUCTION

In the previous paper1 of the series we have developed
the formalism of the exciton scattering �ES� approach to the
excited state electronic structure in branched conjugated
molecules.2,3 Within the ES approach a branched molecule is
described by a graph4–6 whose edges correspond to the linear
segments, whereas the vertices stand for molecular ends and
joints between segments. The parameters of the ES model,
which characterize molecular building blocks, include an ex-
citon dispersion and energy-dependent scattering matrices
for the vertices. Once the parameters are determined, the
application of the model involves quite simple calculations
that are common in the context of elementary quantum me-
chanics: a generalized “particle in a box” problem.

We could have extracted the ES parameters from
quantum-chemical results directly by invoking their
asymptotic definitions. In particular, to obtain the exciton
dispersion, one can analyze electronic spectra computed in
very long �ideally, infinite� linear chains. Alternatively and
more generally, the parameters of the dispersion curve can be
found from the exciton wave functions expressed via the
transition density matrices. Exciton scattering matrices for
each vertex can be independently retrieved from the asymp-
totics of the scattered waves far from the scattering centers.
However, the algorithms for excited state calculations in in-
finite �i.e., asymptotically large� systems with translational
symmetry are generally not available through the quantum
chemistry codes. To overcome this difficulty we develop a
strategy for extracting all ingredients of the ES model from
the quantum chemistry calculations in finite molecular frag-
ments with different lengths of linear segments.

In this manuscript we demonstrate how to extract the
exciton spectra ��k�, the scattering matrices �ij

�1���� on the

molecular ends �vertices of degree one�, and �ij
�2���� for mo-

lecular double joints �vertices of degree two�. These calcula-
tions are performed for phenylacetylene linear segments and
benzene rings as joints using a semiempirical time-dependent
Hartree–Fock �TDHF� technique7–10 as a basic model quan-
tum chemistry. There are two types of degree-two joints in
these compounds: a metaconjugation which is known to be
almost fully reflecting,10–13 and an orthoconjugation which
has recently been shown to cause very weak reflection.3,14

Our results quantify these qualitative statements. More com-
plicated cases of higher-degree branching will be considered
in future studies.

Subsequently, the tabulated ingredients of the ES model
allow computation of the excited electronic states in arbitrary
phenylacetylene molecules that involve branching of
the order not higher than two. In the third manuscript15

of the series we illustrate such simulations and validate the
obtained results versus the direct quantum-chemical
calculations.

II. HOW TO RETRIEVE THE ES MODEL INGREDIENTS
FROM THE QUANTUM CHEMISTRY DATA

Before the ES approach can be applied to compute the
excitation energies in large molecules, we need to character-
ize the molecular building blocks. In this section we describe
the procedure that allows us to obtain the parameters of the
ES theory from quantum-chemical computations in simple
molecular fragments.

A. Quantum-chemical calculations

We demonstrate the application of the ES model using
an example of phenylacetylene polymers without extraneous
vertices. These molecular structures are building blocks of
macromolecules, such as dendrimers, with many potential
optical applications.11,14 To retrieve the ES parameters of lin-
ear segments, molecular termini, and double joints, we per-
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form quantum-chemical calculations in several types of
phenylacetylene-based molecules: linear, meta-, and
orthoconjugated molecules of different lengths �see Fig. 1�.
The ground state geometries of all molecules are optimized
using the semiempirical Austin model 1 Hamiltonian,16

which adequately reproduces the molecular ground state
geometries, particularly in hydrocarbon compounds.
GAUSSIAN 03 package17 is used to perform the ground state
optimizations.

The collective electronic oscillator �CEO� code7–10 is
then applied to calculate energies, transition dipoles and tran-
sition density matrices of the first 40 excited states in all
molecules. This technique combines semiempirical Hamilto-
nians with a TDHF formalism, and makes computation of an
excited state manifold not substantially more numerically de-
manding than ground state calculations. For CEO calcula-
tions we use Zerner’s intermediate neglect of differential
overlap/spectroscopy model18–20 specifically parametrized to
reproduce spectroscopic observables. Such CEO modeling
has been successfully applied in the past to calculate optical
properties of a variety of conjugated chromophores such as
polymers �also with donors and acceptors�, dendrimers, and
biological light-harvesting complexes.7–10 The convergence
criterion used in our CEO computations ensured that numeri-
cal errors of the CEO implementation are typically less than
0.01 meV for all excited state energies.

We computed excited state properties for molecules of
length from 2 to 55 repeat units. By inspecting the corre-
sponding transition density matrices �see Fig. 2�, we selected
the lowest exciton band for a detailed analysis. This band
corresponds to the dipole-allowed delocalized exciton, re-
sponsible for optical absorption and emission properties of
phenylacetylene molecules,10 referred to as a light exciton.
Inside the light-exciton band with the width of about 1 eV,
there is a narrower band whose width is around 0.1 eV. These
excitons will be naturally referred to as heavy excitons. The
higher energy weakly allowed band of more spatially local-
ized heavy excitons is associated with the triple bond exci-
tation. The analysis presented below can be performed for
any exciton band.

To determine the ingredients of the ES model, we further
analyze the calculated electronic spectra. Such an approach,
referred to as the energy method, is based on the premise that
the properties of the molecular building blocks depend on the
energy only and are independent of the molecular size. Then,
to determine the parameters of the ES model from the

quantum chemistry, in addition to the molecular spectra, we
need only limited data from the transition density matrices
such as the number of nodes in the standing waves. This
technique is best suited for treatment of simple and symmet-
ric scattering centers, such as the ones considered in this
work �see Fig. 1�. We extract the parameters of the ES model
in two steps. First, we consider excited states in the linear
molecules of different lengths to extract the exciton disper-
sion and the scattering amplitude at the ends. We further use
these ingredients to retrieve the scattering matrices at the
meta- and orthojoints from quantum-chemical calculations in
two-segment molecules.

B. Use of the symmetries

Extraction of the ES model parameters can be substan-
tially simplified by using all available symmetries of the
problem. The most universal symmetry is the unitarity of the
scattering matrices which reflects the probability conserva-
tion �unitarity� in quantum mechanics. Another symmetry in-
volved in our case is the time-reversal symmetry, since there
are no external magnetic fields. In particular, the time-
reversal symmetry that changes the momentum sign implies
the symmetric shape ��−k�=��k� of the exciton spectrum.
Such implications follow from the linear relation between
the multielectron state and the exciton wave function.1

For arbitrary n�n scattering matrices �ij
�n����, the uni-

tarity and the time-reversal symmetry assume

�†������� = I, ��������� = I, �T��� = ���� , �1�

where I is the unit matrix. Here the third relation �which
states that the scattering matrix is symmetric� obviously fol-
lows from the first two.

In the case of the molecular end �n=1�, the unitarity
implies a parametrization ��1����=exp�i�T���� by a single
frequency-dependent phase �T���, hereafter referred to as
the scattering phase.

For the double joints �e.g., meta- or orthosubstituted
linkages between two linear segments, as shown in Fig. 1�,
the unitarity means that the 2�2 matrices belong to the
group U�2�, and, therefore, can be represented as �ij

�2����
=exp�i������̄ij

�2����, where �̄ij
�2���� belongs to the group

SU�2� of unitary 2�2 matrices with the unit determinant.
These matrices are determined by three parameters:
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FIG. 2. �Color online� Examples of transition density matrices for the light
�a� and heavy �b� excitons in the linear molecule P10 of ten repeat units.
Joint electron-hole motion is similar in these modes: both excitations are the
second states in the respective excitonic bands, and their standing waves
have one node.

n
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FIG. 1. Phenylacetylene-based molecules studied: �a� linear chains, �b�
meta- and �c� orthosubstituted two-segment molecules denoted by Pn,
Mm-n, and Om-n, respectively; �d� definition of one repeat unit.

174112-2 Wu et al. J. Chem. Phys. 129, 174112 �2008�

Downloaded 30 Jul 2009 to 192.12.184.2. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�̄�2���� = � a b

− b� a� �, �a�2 + �b�2 = 1, b� = − b , �2�

where the third equation follows from the third condition in
Eq. �1�. Equation �2� suggests the following parametrization
of the scattering matrices that describe the properties of any
double joint:

��2���� = �sin � exp�i� + i�� i cos � exp�i��
i cos � exp�i�� sin � exp�i� − i��

� . �3�

Finally, the mirror symmetry of the meta- or orthojoints en-
tails ����=0, and we arrive at the general parametrization

��2���� = � sin � exp�i�� i cos � exp�i��
i cos � exp�i�� sin � exp�i��

� �4�

of the scattering matrices for the symmetric joints of degree
two in terms of two frequency-dependent phases. In particu-
lar, the reflection r��� and transmission t��� amplitudes are
expressed as

r��� = sin ����exp�i����� ,

�5�
t��� = i cos ����exp�i����� ,

which means that ���� and ���� describe the scattering
probabilities and phases, respectively.

C. Numerical procedure and results

We start our analysis with the simplest case of finite
linear �P� molecules �Fig. 1�. The only scattering processes
occur at the ends and are described by a unitary 1�1 matrix,
i.e., a unimodular complex number determined by its phase:
��1����=exp�i�T����. The exciton wave function far from
the scattering centers is represented by a linear superposition
of two-plane waves with opposite wavevectors k�0 and −k

��x� = a exp�ikx� + b exp�− ikx� . �6�

The amplitudes of the plane waves are connected by two
linear relations imposed on the molecular ends. The relations
are compatible and allow for nonzero solutions if the follow-
ing quantization condition for the wavevector is satisfied:

kl = 	n − �T. �7�

Here l is the molecular length in repeat units and n is an
integer that labels the excited states. As found below, we
have 	
�T
2	 in the entire light-exciton band with �T���
being a monotonically increasing function of the excitation
energy � �see Fig. 4�. This should be compared to the hard-
wall reflection phase �T=	. Consequently, in Eq. �7� the
integer n�2 is related to the number of nodes in the exciton
wave function given by n−2.

Scattering at the molecular end adjacent to the x=1 re-
peat unit results in the following asymptotic form of the
exciton wave function:

��x� � cos�k�x −
1

2
� +

�T

2
	 , �8�

where k=k��� and �T=�T��� are determined by the excited
state energy �. Equation �7� determines the excitation ener-

gies � in a linear oligomer, if the functions k��� and �T���
are given. The key feature of the ES approach is that these
functions are independent of the segment length: k��� de-
pends only on the repeat unit structure, whereas the scatter-
ing matrices are also determined by a chemical composition
of the scattering center.

We use the numerical data for the excited state energies
and the corresponding transition density matrices in linear
�P� molecules of different lengths. Simultaneous evaluation
of two smooth functions k��� and �T��� based on the set of
discrete numbers �molecular spectra� is not a trivial task. The
values of the functions obey Eq. �7� at given discrete ener-
gies �, with molecular length l and the number of nodes
n−2 being the additional parameters. The lowest excited
state of the molecule corresponds to n=2, and for each fol-
lowing excited state, n increases by one, as long as the rela-
tive electron-hole motion remains the same, i.e., we stay
within the same exciton band, which can be verified by
checking the shapes of the transition density matrices �see
Fig. 2�. The results, however, usually turn out to be so accu-
rate that any excited states, erroneously attributed to the band
under consideration, produce noticeable deviations and can
be easily singled out.

The relative relevance of the scattering phase is deter-
mined by the molecular length, which allows us to separate
contributions of two unknown functions. When the excited
states in the vicinity of the given energy � are considered in
the molecules of increasing lengths, the scattering phase
�T��� drops out of Eq. �7�. This corresponds to the restora-
tion of translational invariance in the limit of infinitely long
molecules. Neglecting the scattering phase in Eq. �7� com-
pletely �or setting its value, for example, to the hard-wall
value �T=	 for all energies� would not make a sufficiently
accurate approximation for the spectrum even if the longest
available molecules are used, since the numerical methods
are naturally restricted to the moderate oligomer lengths.
This approximation can be referred to as a one-point ap-
proach, to ensure the consistency with the subsequent de-
scription, because only one data point is used to evaluate a
single value of the inverse spectral function k���.

We further introduce the two-point approach, which can
be exact with respect to the quantum chemistry �i.e., the
two-point approach does not create an additional inaccuracy
compared to the existing numerical errors� for a certain en-
ergy, if two excited states with this energy exist in molecules
of different lengths. The approach is also useful for close
energies �1 and �2, if the changes in functions k��� and
�T��� between �1 and �2 are negligible. The values of the
functions are easily found from Eq. �7� applied to two
molecules:

k =
	�n1 − n2�

l1 − l2
, �T =

	�n2l1 − n1l2�
l1 − l2

, �9�

where the indices 1 and 2 denote the quantities of the corre-
sponding excited states and molecules. The results exhibit
degeneracies at n1=n2 and n1 / l1=n2 / l2 which are typical and
should be avoided in all n-point approaches. Apart from
these degeneracies, in the practical situations, the two-point
approach fails to yield the results of desired accuracy if the
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energies �1 and �2 are too separated. However, it may still
be useful if the changes in the functions k��� and �T���
between �1 and �2 are properly evaluated. Obviously, the
latter is locally impossible with only two data points used.
This can be performed, for instance, by using an extrapola-
tion involving neighboring groups of data points and estimat-
ing the derivatives of the functions, which is feasible because
of their smoothness. We use the two-point approach for esti-
mates at low energies near the bottom of the exciton band,
where the functions k��� and �T��� are not smooth, and
straightforward inclusion of further data points compromises
the accuracy due to the associated wider range of energies.

It is clear that one can achieve better accuracy of values
k��� and �T��� when more data points are present in the
vicinity of the energy �, which requires numerical computa-
tions for more and longer molecules.

For most energies we employ the four-point approach.
Truncating the Taylor expansion of Eq. �7� applied to four
data points with energies �i, with i=1, . . . ,4, in the vicinity
of energy �, we calculate the values of the functions k���
and �T��� and their derivatives k���� and �0����. We disre-
gard groups of points leading to the degenerate cases every-
where. Corrections due to the second derivatives can be eas-
ily estimated and serve as another criterion for the
appropriate choice of points. Since there is enough data
available from molecules with lengths l�10, we do not use
shorter molecules to avoid their influence on the otherwise
relatively smooth behavior of k���. We apply a piecewise
polynomial least-square fit to tabulate the functions k��� and
�T��� for their further use.

The results obtained from the linear oligomers are pre-
sented in Figs. 3–5. The dispersion in Fig. 3 is a smooth
function everywhere at k�0 but has a possible weak cusp at
k=0, which may be an effect of the long-ranged Coulomb
interaction. We cannot exclude the cusp, since it is obtained
by extrapolation in the lowest part of the spectrum, where
relative errors might be considerable. We note that, besides
the weak cusp, the spectrum ��k� can be adequately approxi-
mated by a single cosine, while the fit significantly improves

if three first cosine harmonics are included. This suggests
that the effective interactions in the molecule are limited to
the neighboring repeat units. In fact, the exciton size �a typi-
cal electron-hole separation� does not exceed two- to three-
repeat units.

The phase �T��� of reflection at the molecular end is
shown in Fig. 4. The energy dependence of the phase is quite
strong. If the phase �T is plotted as a function of the wave-
number k the dependence turns out to be different from a
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FIG. 3. �Color online� Dispersions of two lowest-energy excitons in pheny-
lacetylene oligomers, the light �squares� and heavy �filled circles� excitons.
The light-exciton dispersion is approximated by one cosine �dashed line, the
parameters are a=3.504, b=−0.603� and three cosine harmonics �solid line,
the parameters are A=3.490, B=−0.589, C=−0.009, and D=−0.042�.

FIG. 4. �Color online� Scattering phases: at the molecular terminals, �T

�solid black line�; at the orthosubstituted linkages, �O and �O �red dashed
and dotted lines�; at the metasubstituted linkages, �O and �O �blue dashed
and dotted lines�.

(b)

(a)

FIG. 5. Deviations between the CEO excitation energies in the linear mol-
ecules and the smooth dispersion of the ES model: �a� all states and �b� a
zoomed in view �note that the numerical accuracy of the CEO method was
estimated as 0.01 meV�. The mth mode in the molecule Pn is denoted by
n /m.
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linear one, which indicates that the scattering is not of the
hard-wall type even if the “wall” is shifted from the chain
terminal.

Figure 5 shows deviations from the ES dispersion in
linear oligomers. The energy differences presented are ob-
tained by subtracting the smooth fit ��k� from the quantum-
chemical energies. The deviations approach the numerical
CEO accuracy 0.01 meV and vanish for longer molecules,
which is the expected asymptotic behavior. However, the de-
viations are amazingly small even for short oligomers. For
two- and three-repeat unit molecules the ES energies are
within 1–5 meV from the quantum chemistry results, al-
though these oligomers are certainly not longer than the ex-
citon size.

Next we determine the scattering properties of the
degree-two vertices. To that end we consider molecules with
two linear segments of equal lengths, so that the test mol-
ecules preserve the mirror symmetry of the joint under study.
Pure phenylacetylene compounds allow for two types of
nontrivial links: the connections through meta-�M� and
ortho-�O� substitutions �see Fig. 1�. Linear molecules can be
viewed as a trivial case of para-�P� substitution.

Scattering processes at the meta- or ortholinks are de-
scribed by 2�2 matrices ��2���� which can be parametrized
by two phases according to Eq. �4�. Since within the ES
approach only a quantitative difference between the meta-
and orthojoints appear in the scattering matrices, we can de-
rive the general relations for both cases simultaneously. In
each linear segment, the exciton wave function far from the
scattering centers is represented by a linear combination of
plane waves running in opposite directions. Their amplitudes
are connected by a set of linear equations—the ES
equations1—which describe free-particle propagation along
the linear segments and scattering at the vertices. In a mol-
ecule with two segments of l1 and l2 repeat units, nontrivial
solutions of the ES equations exist if

�sin �ei�2kl1+�+�T� − 1��sin �ei�2kl2+�+�T� − 1�

+ cos2 �e2i�kl1+kl2+�+�T� = 0, �10�

which is as an energy quantization condition provided k, �T,
�, and � are given functions of energy. In the case of equal
arms, l1= l2= l, the molecules have the mirror symmetry with
respect to the joint, and, consequently, all excited states must
be either even or odd. Equation �10� can then be reduced to
two decoupled equations that correspond to two possible val-
ues of the excited state parity. Thus, we obtain the relations

2kl1 =  � − �� + �T� �
	

2
+ 2	n , �11�

where the upper and lower signs correspond to even and odd
modes, respectively, and n is an integer which increases by
one for each higher mode of the same parity. The lower
bound for n as well as its exact relation to the number of
nodes depend on the definitions of the scattering phase
ranges. Besides the circular �2	� invariance, the scattering
matrix in Eq. �4� is invariant with respect to the simultaneous
shift of � and � by 	. We fix the definition of n for the
lowest modes and hence define the range of � and �.

Since the functions k��� and �T��� have already been
tabulated, the combinations �������� of the phases which
characterize the double joints can be found at any excitation
energy of the symmetric two-segment molecules using
Eq. �10� without introducing further numerical errors. We
approximate the combinations �������� by piecewise
smooth fitting functions and thus obtain the phases
separately.

An additional complication appears in orthoconjugated
phenylacetylene molecules: we have to distinguish two types
of the orthojoint. One is found in unconstrained geometries,
i.e., molecules without loops, such as in two-segment
ortholinked molecules. The arms of these orthomolecules are
twisted out of plane of the linking phenyl ring in the opposite
directions by 
1.3° due to steric interactions, thus making
the joint itself nonplanar. The geometry of the nonplanar
orthojoint is almost independent of the length of the seg-
ments attached to the joint. Therefore, there is a clear
geometrical distinction between the nonplanar and planar
orthojoints. The latter type occurs, for example, in cycle mol-
ecules such as triangles.15 We also observe that the planar
orthojoint corresponds to a local minimum of energy in un-
constrained structures and can be found after a symmetry-
constrained optimization of geometry. This is a practical way
to achieve the same geometry in two-segment ortho-
molecules as in planar cycle structures. The scattering prop-
erties of the joint are naturally affected by its geometry. The
phases describing the scattering of light excitons at the two
types of the orthojoint are similar but consistently different.
In contrast to the planar orthojoint, the empirical scattering
phases of the nonplanar joint appear to be somewhat irregu-
lar in the vicinity of the heavy exciton band. This indicates a
possible scattering between the light and heavy excitons at
the nonplanar orthojoint. While strictly speaking the ES
model with the single exciton is not justified in this energy
range, approximations of the scattering phases for the non-
planar orthojoint by smooth functions provide an adequate
accuracy in practice. When applying the ES model �for ex-
ample, in Ref. 15�, we will use different scattering phases for
planar and nonplanar orthojoints.

The scattering phases for meta- and planar orthojoints
are shown in Fig. 4. We note that the energy dependencies of
the scattering phases obtained on the basis of the CEO
method and the time-dependent density functional theory2

have very similar shapes. The scattering phases for the meta-
and orthojoints should be compared to values that corre-
spond to total reflection and ideal transmission, respectively.
The transmission coefficient is given by cos2 � according to
Eq. �5�. Our results show that the metaconjugation does not
present an impenetrable barrier for all energies. However, at
a certain energy ��3.5 eV near the middle of the band
�=	 /2, and the metajoint completely blocks transmission of
light excitons. At the same time we note that the reflection
amplitude phase at the metajoint is almost identical to the
scattering phase �T at the molecular end for all energies. The
phases in the scattering matrix for the orthojoint are close to
the ideal transmission values, �=3	 /2 and �=0. The
energy-dependent corrections are small, but can still be ad-
equately described by smooth functions.
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The accuracy of the phases that describe the M and O
joints can be checked by comparing the energies predicted
by the ES model with those from the quantum chemistry in
two-segment molecules. To make a more convincing case,
for comparison we include the data that have not been used
yet in extracting the scattering phases.

We obtain the excitation energies from Eq. �10� after all
the necessary parameters have been tabulated as functions of
energy. Figure 6 shows a comparison of the energies ob-
tained using the ES approach and the CEO computations for
selected M and O molecules. As shown in Fig. 6, for M
molecules most energy differences are within 1 meV, and for
O molecules this range widens to 2 meV. For short two-
segment molecules the deviations are similar to those in
short linear molecules.

The results presented above validate the exciton scatter-
ing model for linear and single-joint molecules. In the fol-
lowing paper15 we apply the ES model to more complex
molecules and discuss how features of the molecular spectra
can be understood within the ES model.

III. DISCUSSION

The ES approach can be applied to any quasi-one-
dimensional molecular system �e.g., conjugated polymers or
molecular quantum wires� with tightly bound excitons. In
this manuscript we have characterized the building blocks of

phenylacetylene polymers without extraneous vertices: we
have obtained the exciton dispersion ��k�, the scattering ma-
trices �ij

�1���� for the molecular ends, and �ij
�2���� for the

double joints. As expected, the dispersion relation and the
scattering matrices are smooth functions of energy. Our re-
sults refine earlier reports3,10–14 concerning the properties of
the ortho- and metajoints. We observe that the transmission
is energy, dependent for both joints. The metajoint does not
completely block excitations except for an isolated energy
value, whereas the phases of the reflection amplitudes at the
metajoint and the molecular end are close for all energies.
We find that, although the orthojoint seems to be transparent
to the excitations, its scattering matrix has a small detectable
deviation from the ideal transmission case. We check the
applicability of the ES model and the quality of the extracted
parameters by comparing the excitation energies from the ES
and CEO calculations in several simple one- and two-
segment molecules. Although in short molecules �as the mo-
lecular length becomes comparable to the exciton size� the
ES model is expected to fail, we are able to obtain surpris-
ingly small errors of order of 1–5 meV, given the excitation
energy on the order of 3–4 eV �see Fig. 3�. In longer mol-
ecules the deviations of energies are typically well below
1 meV. Finally, we observe the dependence of the scattering
properties of the joints on their geometry. This can be
important, for example, in the circular and dendritic
aggregates,21–24 where the geometry is constrained. This also
demonstrates the capability of the ES approach to deal with
the molecular geometry distortion, which is crucial for future
applications of the ES approach to treat effects of exciton
coupling and molecular disorder.

To find the ES parameters of complex asymmetric scat-
tering centers we may need a more general wave function
method. Here we use only the energy method for simpler
building blocks which proves to yield generally smaller er-
rors than the wave function method. The results of the wave
function method are more sensitive to the deviations from
the ES picture due to the finiteness of the exciton size. Such
deviations clearly appear in the vicinity of scattering centers.
Consequently, the estimates for the wavenumber and the
scattering phases depend on the choice of the region where
the exciton wave function can be assumed to have its
asymptotic form. To emphasize an additional advantage of
the energy method we recall that the main goal of the ES
theory is calculating optical properties of branched mol-
ecules. The energy method is designed to produce more ac-
curate results for the transition frequencies. However, the
scattering center should have a sufficiently high symmetry to
be treated by the energy method. Direct extraction of the
wavenumbers from the transition density matrices can
still be used occasionally to support the energy approach in
the regions and for molecules where the latter becomes less
accurate.

Possible further developments include a study of the
scattering involving different exciton types, taking into ac-
count the finiteness of the exciton size and long-range inter-
actions. Other exciton types can be treated in the future using
the same ES approach. It is noteworthy that quantum-
chemical calculations to tabulate the ES parameters of the

(b)

(a)

FIG. 6. Difference between the ES and CEO results for excitation energies
in selected �a� meta- and �b� orthoconjugated molecules. Xy−z stands for an
X-conjugated molecule �X=M or O� that consists of two segments with y
and z repeat units.
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building blocks have to be done only once. The parameters
then allow instantaneous simulations in arbitrary structures
composed of the molecular building blocks at negligible
computational cost, i.e., building the correspondent molecu-
lar graph �lego-type design� and solving the scattering prob-
lem on the graph.
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