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We develop a formalism for the exciton scattering �ES� approach to calculation of the excited state
electronic structure of branched conjugated polymers with insignificant numerical expense. The ES
approach attributes electronic excitations in quasi-one-dimensional molecules to standing waves
formed by the scattering of quantum quasiparticles. We derive the phenomenology from the
microscopic description in terms of many-electron excitations. The presented model can be used to
compute both excited state frequencies and transition dipoles in large molecules after the ES
ingredients are extracted from smaller molecular fragments. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3005647�

I. INTRODUCTION

Conjugated organic molecules and molecular wires con-
stitute a class of systems with complex electronic structure
that are promising materials for a number of technological
applications.1–5 The complexity of the electronic structure
originates from the delocalized nature of �-electron states,
strong Coulomb electron-electron interactions, and low-
dimensional �quasi-one-dimensional� geometry.6–9 The latter
effectively enhances the effects of electron-electron correla-
tions. Electronic excitations in such systems can be thought
of as bound electron-hole pairs �excitons�.8–16 However, as
opposed to the case of conventional semiconductors, the
electron-hole pair picture of optical excitations is only quali-
tative due to strong electron correlations. In particular, the
exciton binding energy is comparable to the optical
gap.12,17–21 This implies that the excited states are, strictly
speaking, superpositions of excitations that contain different
numbers of electron-hole pairs.22,23 This calls for computa-
tional methods that account for electron exchange and
correlations,24,25 such as the time-dependent density func-
tional theory �TDDFT�.26–28

However, explicit computations of electronic excitations
in large conjugated macromolecules and molecular structures
are numerically expensive �the effort scales as O�N2�
−O�N4� with the number of orbitals N� and rarely feasible
even if efficient TDDFT approaches are implemented.28,29

On the other hand, the structure of the aforementioned mol-
ecules involves linear segments of oligomers connected to
each other at branching centers,5,30–36 which allows one to
develop phenomenological theory.37,38

Excited states in conjugated molecules are complex
many-particle excitations. Nevertheless, their quasimomen-
tum k is well defined in an infinite one-dimensional chain
�polymer� due to discrete translational symmetry. The exci-

tations in infinite polymer chains can be characterized by
their spectrum ��k� which describes the dependence of the
excitation frequency � on its momentum k.19,39 We will con-
centrate on the electron-hole nature of the excited states8,9,11

because following the transitions of single electrons turns out
to be sufficient for building a phenomenological model. A
low-energy excitation in a semiconducting polymer is char-
acterized by its size le which has the meaning of a typical
distance between the electron and the hole.8,16,24,25 Thus, the
excited states can be viewed as bound excitons, which justi-
fies that below we will simply refer to them as excitons.
Stated differently, using the ideas of condensed matter phys-
ics, excitations in polymer chains can be considered as qua-
siparticles regardless of how complex their internal elec-
tronic structure could possibly be.

We consider an excited state in a finite-size linear oligo-
mer, whose length is large compared to the exciton size,
l� le, which naturally resembles the problem of a quantum
particle in a box. The length scale separation can be taken
into account to substantially simplify the calculations and
their interpretations in the branched conjugated molecules.
The wave function for the common motion of the quasipar-
ticle components is represented by a standing wave37,38,40,41

that results from interference of the plane waves moving in
opposite directions and being scattered at the ends of the
linear segment. This results in a discrete spectrum of elec-
tronic excitations determined by the quasiparticle spectrum
��k� and the boundary scattering conditions. The latter are
described by the energy-dependent exciton scattering �ES�
amplitudes.

We are now in a position to describe the main idea of the
ES approach developed in this paper. Consider a large
branched macromolecule or molecular structure of size L
that consists of linear polymer segments of typical size l, so
that le� l�L, connected to each other via branching centers.
An excited state can be viewed as a quasiparticle �exciton�
that moves along the linear segments as a plane wave and
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gets scattered at the molecular ends and branching points,
resulting in a standing wave.37 Within the ES picture, com-
putation of the transition energies and dipole moments that
correspond to excited electronic states is reduced to finding
the standing waves formed by a respective quantum particle.
This is an extremely simple task even for huge
macromolecules17,42–44 once the exciton spectrum and scat-
tering matrices are known. The latter should be retrieved
beforehand from quantum-chemical calculations. Thus, the
computation of the excited state electronic structure in large
molecules can be divided into two steps: �i� retrieving the
quasiparticle properties and �ii� applying the ES theory to
large molecules of interest. Step �i� can be accomplished by
performing calculations in relatively simple molecular frag-
ments, so that the numerical effort has nothing to do with the
supramolecular size L.38 The numerical effort involved in
step �ii� depends on the number of linear segments rather
than on the number of single-electron orbitals, and therefore,
computations in large structures and macromolecules can be
easily performed.

The ES approach to the excited state electronic structure
in branched conjugated systems has been briefly described in
our earlier papers.37,38 This manuscript is the first in the se-
ries of three papers, devoted to a detailed description of the
ES model. It is focused on the development of the ES for-
malism and is organized as follows. In Sec. II we introduce
the ES picture for excited state electronic structure and the
ingredients of the ES model and describe how it can be used
to compute the relevant information on the excited states. In
Sec. III we show how the ES model can be derived in terms
of fully microscopic theory. Some details of the alternative
microscopic picture within the many-body Green function
formalism are presented in the Appendix.

II. EXCITON SCATTERING PICTURE

We start with formulating the ES model for a branched
conjugated molecule. A branched conjugated molecule con-
sists of linear segments connected via branching units. Each
linear segment contains a certain number of identical repeat
units. The branching units can be represented by benzene
rings �for example, in phenylacetylene dendrimers�, nonphe-
nyl based branching centers �e.g., nitrogen or phosphorus�,
as well as more complicated objects �e.g., paracyclophen
bridges�. A branched molecule can be naturally associated
with a nonoriented graph M, whose vertices a�M0 repre-
sent the branching units, whereas the edges ��M1 corre-
spond to linear segments.45–47 We will use the notation
a�� that means the edge � contains the vertex a or, using
the molecular language, the linear segment � is connected to
the branching unit a. The length l� of the edge � is the
number of repeat units in the corresponding linear segment.
We also denote by na the number of linear segments con-
nected to the branching unit a, which is also referred to as
the degree of the corresponding vertex. Note that a vertex
with na=1 represents a molecular terminal, and a vertex with
na=2 is a joint connecting two linear segments. The branch-
ing proper occurs if na�3. A simple oligomer that consists
of l repeat units and two end groups is represented by a

graph with two vertices a and b, with na=nb=1, connected
by a single edge ��a ,b of the length l�= l. The repeat unit
positions in a linear segment � will be denoted by integers x�

with x�=1, . . . , l. We will also denote by ra and rx�

��� the real-
space positions of the branching centers and repeat units,
respectively. We naturally assume that their sizes are small
compared to the optical wavelength.

The ES model treats electronic excited states �also re-
ferred to as excitons� in a branched molecule as quantum
quasiparticles on the corresponding graph M. Excitons
move freely along the linear segments, while they get scat-
tered at the vertices, including the segment ends �terminals�.
In this section we formulate the ES model, also providing
some physical motivation. The derivation of the ES ap-
proach, as well as attributing the ES model ingredients
to microscopic many-body quantities will be presented in
Sec. III.

Presently it is widely accepted that excited states in con-
jugated systems can be attributed to excitons that represent
bound states of the relative electron-hole motion.11–16 The ES
model focuses on describing the collective electron-hole mo-
tion along the branched molecule. Compared to an infinite
linear chain, the relative motion of an electron and a hole in
a real molecule is weakly perturbed provided the exciton is
not too close to the segment ends, joints, and branching cen-
ters. This is conceptually similar to how elementary particles
are interpreted in the quantum field theory, where an elemen-
tary particle in a translationally invariant system is treated as
an excited state with a given momentum value. Note that
elementary particles can be �and usually are� some complex
excitations in a quantum system with a macroscopically large
number of degrees of freedom; in particular, sometimes they
can be represented as many-particle �dressed� excitations in
some systems of strongly interacting reference particles �e.g.,
electrons coupled to either photons or phonons�. Adopting
this language, excitons can be considered as complex many-
particle dressed excitations in a strongly correlated many-
electron system that are only qualitatively interpreted as
states that involve an electron and a hole. The ES approach,
on the other hand, treats excitons as elementary particles
without paying much attention to their complex structure in
terms of the correlated electrons.

We describe an excited state �exciton� of energy �, mea-
sured with respect to the ground state and hence identified
with the transition frequency, by its wave function given as a
set of expressions on all linear segments ��M1. On the
edge ��a ,b which connects vertices a and b, the wave
function is represented by a linear superposition of wave
functions �see Fig. 1�:

���x�� = ��,ab�x�� + ��,ba�x�� ,

��,ab�x� = a�,ab exp�ik�,abx� , �1�

��,ba�x� = a�,ba exp�ik�,bax� ,

where ��,ab and ��,ba describe two plane waves propagating
along the linear segment � from a to b and from b to a,
respectively. Their quasimomenta �wavevectors� k�,ab and
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k�,ba are related to the frequency � through the exciton spec-
trum ��k�:

��k�,ab� = ��k�,ba� = � . �2�

Time reversal invariance in the absence of a magnetic field
results in the symmetric spectrum ��−k�=��k�, which
yields the same absolute values of the quasimomenta:
k�,ab=−k�,ba. We denote the values of the outgoing and in-
coming plane waves at the vertex a by ��a

�+� and ��a
�−�, respec-

tively. These can be defined by continuing the asymptotic
forms of the plane waves to the scattering center, as shown in
Sec. III. Combining the definitions of ��a

�+� and ��a
�−� with ex-

pressions of the exciton wave functions in Eq. �1�, we arrive
at the following relation:

��b
�−� = ��a

�+� exp�ik�,ab���l�� , �3�

which does not depend on how the repeat units are numbered
on the linear segment ��a ,b. There are two such relations
on each segment.

Within the ES model the vertices are described on the
level of scattering of incoming plane waves. In a vertex that
connects n linear segments, an incoming wave in one of the
segments generates n outgoing waves, i.e., n−1 transmitted
and one backscattered. The amplitudes of the outgoing plane
waves are related to the incoming wave amplitudes by means
of a frequency-dependent n�n scattering matrix 	a�
���.
The off-diagonal and diagonal elements of 	 describe trans-
mission and reflection processes, respectively. Using our no-
tation this can be represented by the following relation:

��a
�+� = �


�a

	a,�
����
a
�−�. �4�

A vertex connecting n branches is described by n linear
equations, which expresses the fact that the amplitude of the
outgoing wave is a result of the scattering of all incoming
plane waves with the amplitudes weighted by the corre-
sponding elements of the scattering matrix.

The relations on the segments �Eq. �3�� together with the
vertex relations �Eq. �4�� will hereafter be referred to as ES
equations. The ES equations constitute a frequency-
dependent homogeneous system of linear equations for the
amplitudes ��a

��� with the number of equations matching the
number of variables.37,38 In fact, attaching a new segment to
the existing vertex adds four new variables and four new
equations: two relations in the form of Eq. �3� describe the
propagation of the waves along the additional segment,

whereas the other two relations in the form of Eq. �4� express
the outgoing waves at the ends of the segment. The values of
frequency � for which the system has a nonzero solution
describes the transition frequencies between the ground and
excited states, whereas the amplitudes ��a

��� combined with
Eq. �1� and definition of the amplitudes provide the exciton
wave function that correspond to the excited state. Given the
exciton dispersion ��k� and the scattering matrices 	a,�
���
as an input, we can obtain the energies of the electronic
excited states by solving the system of ES equations given
by Eqs. �3� and �4�.

Next, we demonstrate how the transition dipoles, which
determine the intensities of optical transitions, can be de-
scribed in the framework of the ES approach. Again, we
employ the fact that the molecule consists of only a few
types of building blocks, namely, the repeat units �mono-
mers� and specific vertices. The building blocks of the same
type are assumed to be geometrically indistinguishable
throughout the branched molecule. This allows us to intro-
duce quantitative characteristics of the transition charge dis-
tribution that are equivalent for the geometrically equivalent
building blocks. These quantities whose microscopic defini-
tions in terms of the charge and dipole moment operators,
respectively, are presented in Sec. III include q��� and
d������ which describe the repeat units, as well as qa���� and
da���� which describe the branching centers. Apart from
their trivial orientation dependence, d������ and da���� de-
pend only on the energy. They relate charges and dipole mo-
ments induced at repeat units and branching centers to the
local values of the exciton wave function. Then the transition
dipole � for an excited state described within the ES model
by an exciton wave function ���x�� with ��M1 is given by

� = �
��M1

�
x�=1

l�

�q���rx�

����̃��x�� + d���������x���

+ �
a�M0

�
��a

�qa����ra + da�������a
�−�, �5�

where �̃� is linearly related to the exciton wave function ��

according to Eq. �21�. The functions q���, d������, qa����,
and da���� can be retrieved from the transition dipoles ob-
tained by quantum-chemical calculations in simple mol-
ecules of different lengths with different types of branching
centers.

The ES equations �Eqs. �3� and �4�� together with Eq. �5�
constitute a full set of equations/expressions to determine the
optical properties of electronic transitions in a branched con-
jugated molecule.37,38

III. MICROSCOPIC VIEW OF EXCITON SCATTERING

In Sec. II we have formulated the ES picture of elec-
tronic excitations in branched organic molecules and pre-
sented a method of calculating their relevant optical proper-
ties in terms of the parameters of the elementary building
blocks such as quasiparticle spectra and scattering matrices.
Here we derive the ES model by expressing the relevant
properties of its building blocks in terms of the transition
density matrices which provide a reduced microscopic de-

a�,+ exp(ikx�)

�

O

M

T

T a�,� exp(�ikx�)

FIG. 1. In the ES model, the molecule is represented by a graph. Excited
states are viewed as quasiparticles scattered at the vertices. Scattering cen-
ters of order n are characterized by n�n scattering matrices. Shown are
molecular termini �T� �n=1�, double meta- and orthojoints �n=2�, and a
triple branching center �n=3�.
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scription of many-electron excited states. The ES model con-
stitutes an asymptotically exact picture for optical excitations
in the limit when the exciton size le is small compared to a
typical linear segment length.

An excited many-electron state with the wave function
����� can be described by the transition density matrix ����

with its elements defined as16,24,25

�mm�
��� = �����cm

† cm��
�0�� . �6�

Here ��0�� is the ground state wave function of the system,
and cm

† �cm� are electron creation �annihilation� operators on
the mth atomic orbital.

We start with considering an infinite linear chain �a poly-
mer�. Due to its translational symmetry, the quasimomentum
k is a well-defined quantum number, and all excited states
can be labeled as ��k� by their quasimomenta k and some
additional set of quantum numbers, referred to as �. The
numbers � describe relative electron-hole motion. In an infi-
nite chain, the excited state ��k� has the energy ���k�
with respect to the ground state. The corresponding many-
electron wave function ��k , 	ri
� is the eigenfunction of lat-
tice translations:

��k,	ri + la
� = eikl��k,	ri
� , �7�

where ri denote the electron coordinates, l is an integer, and
a is the repeat unit length. This implies that the quasimomen-
tum k is defined as a dimensionless quantity.

The excitonic �bound electron-hole� nature of optical ex-
citations, being expressed in terms of the many-electron sys-
tem, means that for a given value of k, the lower part of the
excitation spectrum ���k� is discrete. Stated differently, the
quantum number � is discrete and labels exciton bands in the
optical region. For a given value of �, we can interpret ���k�
as the dispersion of the quasiparticle �exciton� �. Since the
symmetries of different excitons are generally different, the
corresponding bands may overlap. A real-space examination
of the appropriate transition densities allows one to distin-
guish a specific excitonic band in the molecular
spectra.16,24,25,48 Thus, we can omit the discrete index � and
consider ��k� as the spectrum of all possible excitons that
belong to the specific band �. Any many-electron state with a
certain quasimomentum in an infinite polymer is an eigen-
state of the many-body Hamiltonian. Therefore, quasimo-
menta k that label different states can assume any value in
the interval of length 2�; for a symmetric Brillouin zone it is
natural to choose −��k��.

Using a reduced description in terms of the transition
density matrix allows us to visualize the symmetry of the
many-particle wave function. Due to the equivalence of the
repeat units, it is convenient to switch to new notations with
the atomic orbitals labeled within the repeat units. In these
notations the transition density matrices �

mm�
��� �x ,x�� between

the ground state and the excited state are defined via the
creation �annihilation� operators cx,m

† �cx,m� on the mth orbital
of the xth repeat unit. For instance, for an excited state with
the quasimomentum k we have

�mm�
�k� �x,x�� = ��k��cx,m

† cx�,m��
�0�� . �8�

In an infinite polymer −��x ,x�� +�, and the ground state
wave function �0� is obviously invariant with respect to the
translations by an integer number of repeat units, i.e., its
quasimomentum is zero. We employ the definition of the
quasimomentum in Eq. �7� to obtain how the transition den-
sity matrix is transformed as a result of a shift by l repeat
units:

�mm�
�k� �x + l,x� + l� = eikl�mm�

�k� �x,x�� . �9�

This symmetry with respect to the discrete translations en-
ables us to introduce Bloch functions �

mm�
�k� �l� �see Ref. 40�:

�mm�
�k� �x,x�� = eikx�mm�

�k� �x − x�� . �10�

Identity �10� reflects the separation of the collective electron-
hole motion from the internal exciton degrees of freedom. In
addition, we note that there is an antilinear correspondence
between the transition density matrices and the excited state
wave functions, i.e., if ��ki�, i=1,2, corresponds to �ki�, for
any numbers a1 and a2 we have

a1�k1� + a2�k2� ↔ a1
���k1� + a2

���k2�. �11�

These features show that the transition density matrix can be
naturally interpreted as a wave function, which is factorized
into the parts corresponding to the center of mass and rela-
tive motions of the electron-hole pair in an infinite polymer.
The center-of-mass component is naturally described by an
exciton wave function,

��k,x� = eikx. �12�

The relative motion component is described by a matrix
which depends on the specific solution of the related many-
body problem.

Discrete translational symmetry of the ideal infinite
polymer is violated in real molecular systems. Molecular
ends and branching points give rise to the ES, which is the
scope of our interest. Besides, the finite size of the molecules
to a large extent determines their observable optical proper-
ties. Other symmetry-breaking factors, such as interaction
with the environment or imperfection of the molecular ge-
ometry, which result in the reduction in the conjugation
length, should be a subject of future studies.

We proceed to a microscopic description of the excited
states in the linear segments of finite lengths. A segment end
can be either a terminus of the molecule or a vertex of degree
2 and higher which connects the segment with other linear
segments. Note that a molecular terminal can be represented
by a “natural” free end or by a donor/acceptor substitution.
We assume that the exciton dispersion ��k� of a linear seg-
ment is determined by the repeat unit structure only and is
unaffected by the presence of the vertices that violate the
translational symmetry. This property is a consequence of the
exciton size being small compared to the linear segment
length. The dispersion ��k� is given by an even function due
to the time reversal symmetry.

A general form of an excited state with the energy � is a
linear combination of the excitons with different quasimo-
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menta k that satisfy the equations ���k�=�. In the simplest
case when a single exciton band is involved at the energy �,
the corresponding quasimomenta on the segment � between
vertices a and b have opposite signs: k�,ba=−k�,ab.

Molecular ends and joints can mix excitations with dif-
ferent quasimomenta which exist on the segments at a given
energy. The amplitudes in these superpositions of states be-
come linearly dependent, which is formalized by introducing
the scattering matrices. Far from the scattering centers,
namely, at distances exceeding the exciton size, the excited
state has an asymptotic form of a linear combination of the
Bloch plane waves allowed at the energy �:

� = a�,ab
� �k�,ab� + a�,ba

� �k�,ba� , �13�

with the complex conjugated coefficients. Due to relation
�11�, this form corresponds to the exciton wave function
given by the linear superposition of the plane waves in
Eq. �1�.

We use the conventional formulation of the scattering in
terms of the wavepacket dynamics �see, for example, Ref.
49�. This separates in time the components of the stationary
excitons that have certain quasimomenta. A linear relation
between them is equivalent to the relation between the cor-
responding incoming and outgoing wavepackets. Since ex-
cited states in the infinite polymer are characterized by well-
defined quasimomenta, a wavepacket far from scattering
centers can be decomposed into the plane waves. A scatter-
ing matrix establishes a linear relation between the incoming
and outgoing waves. Specifically, we formally continue the
asymptotic plane waves to the scattering point and relate thus
determined values of the incoming and outgoing components
of the exciton wave functions. Since a scattering center is
located between two repeat units labeled by integer numbers,
its position on a given segment can be specified by the cor-
responding half-integer coordinate. While being one of pos-
sible choices, this definition has the advantage that the ideal
transmission between two neighboring repeat units �e.g., the
transmission between neighboring repeat units that are not
separated by a scattering center� is described by the energy-
independent unit transmission amplitude. We illustrate this
definition by considering an excited state which has the form
given by Eq. �13� on a linear segment � of length l� far from
its ends. The asymptotic form of the exciton wave function is
specified by Eq. �1�. If the repeat units are labeled from a to
b by x�=1, . . . , l� and kab=−kba�0, the values ��−� and ��+�

of the incoming and outgoing wave functions, respectively,
are defined at the scattering centers a and b as

��,a
�−� = ��,ba�1/2�, ��,b

�−� = ��,ab�l� + 1/2� ,

�14�
��,a

�+� = ��,ab�1/2�, ��,b
�+� = ��,ba�l� + 1/2� .

We note that, since the scattering matrices connect the plane
wave asymptotics only, the stationary exciton wave function
is generally discontinuous at the scattering centers.

In the ES picture, each scattering center �vertex� is de-
scribed by a frequency-dependent scattering matrix 	a,�
���,
according to Eq. �4�. If several exciton types are present at
the same energy, the objects ��,a

��� and ��,b
��� are vectors, and

the scattering matrices acquire two additional indices. On

this level of description, there is no essential difference be-
tween such multiexciton scattering and the processes that
involve only one exciton type.

General properties of the scattering matrices in the ES
picture can be easily obtained from the definition of the ex-
citon wave function in terms of many-particle excitations.
Quantum-mechanical scattering unitarity on the level of
many-body states implies the unitarity of the ES matrix for-
mulated in terms of the reduced exciton wave functions �
due to relation �11�. Besides, the scattering matrices possess
the symmetry of the scattering center. For example, in many
cases the joint connecting two linear segments is mirror sym-
metric, which leads to the equality of reflection amplitudes in
both directions.

Although we have already introduced the reduced exci-
ton wave functions � microscopically, it would be insightful
and convenient for future applications to derive an explicit
relation between the exciton wave function and the corre-
sponding transition density matrix. For the sake of simplicity
we consider the case of the repeat unit being symmetric with
respect to the mirror reflection �or inversion� transformation
I. The symmetry transformation, applied to a repeat unit,
transforms the mth orbital to the orbital denoted by I�m�.
Starting with a normalized many-electron states �k� and
�−k�, we obtain

�mm�
�−k� �x − x�� = − �I�m�I�m��

�k� �x� − x� , �15�

where we introduced the minus sign in the right-hand side by
choosing the proper phase of the wave function correspond-
ing to �−k�.

Note that Eq. �15� ensures that certain linear combina-
tions of the transition density matrix elements behave as the
corresponding exciton wave function. For simplicity, we
consider the matrix elements between the atomic orbitals
within the same repeat unit. By applying Eqs. �10� and �15�
to the excited state � with the energy �=��k� described by
the exciton wave function

��x� = ak exp�ikx� + a−k exp�− ikx� , �16�

we obtain the following relation for the elements of the cor-
responding transition density matrix �:

�mm��x,x� − �I�m�I�m���x,x�

= �ake
ikx + a−ke

−ikx���mm�
�k� �0� − �I�m�I�m��

�k� �0��

= ��mm�
�k� �0� − �I�m�I�m��

�k� �0����x� , �17�

which provides a direct way to extract the exciton wave
function from the transition density matrix.

We conclude this section by outlining a microscopic in-
terpretation of the ES theory parameters q��� and d���
which describe the transition dipole properties of the repeat

unit. To that end we introduce the operators q̂�x� and d̂�x� of
the charge and the dipole moment, respectively, of the repeat
unit x. They can be expressed in terms of the electron density
operator �̂�r� as
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q̂�x� = �
Vx

dr�̂�r�, d̂�x� = �
Vx

dr�r − rx��̂�r� , �18�

where the integration is performed over the region Vx occu-
pied by the repeat unit x. The matrix elements of q̂�x� and

d̂�x� between the ground state �0� and the excited state �k�
with the quasimomentum k can be written as

��k��q̂�x���0�� = q�k�exp�ikx� ,

�19�
��k��d̂�x���0�� = d�k�exp�ikx� ,

where we have introduced the functions q�k� and d�k� of the
quasimomentum only. These can be easily expressed in
terms of the Bloch functions �

mm�
�k� �x−x�� �see Eq. �10��

weighted with the overlap integrals of the atomic orbitals.
Only the diagonal matrix elements �mm

�k� �0� would contribute
if the electronic orbitals were well localized on the corre-
sponding atoms. The mirror or inversion symmetry of a re-
peat unit represented by Eq. �15� implies q�−k�=−q�k� and
d�−k�=d�k�. Taking the exciton wave function in its
asymptotic form �Eq. �16��, we obtain the contribution of the
repeat unit x to the transition dipole in the form

���rxq̂�x� + d̂�x���0�� = q���rx�̃�x� + d�����x� . �20�

Here the function �̃�x� is dual to the exciton wave function
�16� and given by

�̃�x� = ak exp�ikx� − a−k exp�− ikx� . �21�

Thus we have derived the bulk part of the transition dipole in
Eq. �5�. Near the branching centers the transition density
matrix deviates from the form prescribed by the asymptotic
form of the exciton wave function. The contribution of a
branching center to the transition dipole can be accounted for
by introducing the corresponding charge and dipole moment.
Their magnitudes can be represented as linear combinations
of the incoming wave values ��−� because of the linearity of
the problem, which yields the second term in the right-hand
side of Eq. �5�. Instead of q�k� and d�k� for k�0, we can use
the energy-dependent functions:

q��� = q�k����� dk

d�
1/2

,

�22�

d��� = d�k����� dk

d�
1/2

.

Here additional factors appear as a result of the conversion
from the wavevector to the frequency �-function normaliza-
tion of the excited states. In addition, the phase of the wave
function �k� is chosen to make q��� and d��� real.

IV. DISCUSSION

In the present manuscript we have developed a formal-
ism for the ES picture of electronic excitations in branched
conjugated molecules. In the ES model, the excitations are
viewed as quasiparticles �excitons� on the graph that repre-
sents a branched conjugated molecule. The molecular build-

ing blocks, i.e., linear segments and scattering centers �which
include molecular termini as well as branching centers of
degree 2 and higher�, correspond to edges and vertices of the
graph. The behavior of the excitons in the building blocks is
characterized by the parameters of the ES approach: the ex-
citon dispersion on the edges and the frequency-dependent
matrices that describe the ES at the vertices. The parameters
of the building blocks can be determined from the micro-
scopic quantum-chemical computations. In this manuscript
we have also presented an ES formalism to describe the elec-
tronic transition dipoles. The multiscale ES approach is
based on the length scale separation, where the exciton size
�a typical distance between the electron and the hole in the
bound pair� is small compared to a typical linear segment
length in a molecule.

Application of the ES approach to a large branched mol-
ecule is as simple as the solution of the generalized “particle
in a box” problem on the corresponding graph. The ES ap-
proach provides a useful and numerically inexpensive tool to
calculate electronic spectra of large molecular structures. The
approach is designed to predict the results of quantum chem-
istry that is coupled to the ES model. In the following manu-
script we demonstrate how to obtain the ES parameters in
practice �the dispersion and the scattering matrices� from
quantum-chemical calculations in simple molecular frag-
ments. In the third paper of the series we apply the ES model
to perform calculations for some test molecules and compare
the results to those obtained in direct quantum-chemical
computations.

The representation of the electronic molecular excita-
tions by quasiparticles opens a path to refining the ES pic-
ture, in particular, by taking into account long-range Cou-
lomb interactions and effects of disorder and a realistic
environment. The parameters of the ES model can be ad-
justed to better reproduce experimental observations if the
initial approximation for the parameters is based on a
quantum-chemical method that adequately describes the na-
ture of excitations.
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exp(�ikx�) ��

�

��� exp(ikx�)

��� exp(ik (x��1)) ��� exp(ikx�)

FIG. 2. A scheme of the exciton wave function specified by Eq. �A4�.
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APPENDIX: MICROSCOPIC FORMALISM
IN TERMS OF GREEN FUNCTIONS

In Sec. II we have described the ES picture of electronic
excitations in branched organic molecules and formulated a
method of calculating optical observables in terms of the
relevant properties of the elementary building blocks �i.e., a
quasiparticle dispersion, scattering matrices, and transition

dipole parameters�. In Sec. III the ingredients of the ES
model have been interpreted microscopically using the lan-
guage of many-electron wave functions. In this appendix, for
the sake of completeness, we develop a microscopic descrip-
tion of the ES using an alternative language of many-body
Green functions.50 We define the retarded two-point Green
functions of the repeat unit’s charge and dipole operators as
the following spectral decompositions:

G�0��x,x�;�� = �
�
� dk

2�

��0��q̂�x����k�����k��q̂�x����0�� + c.c.

� − ���k� + i0
, �A1�

G�1��x,x�;�� = �
�
� dk

2�

��0��d̂�x����k�����k��d̂�x����0�� + c.c.

� − ���k� + i0
. �A2�

To simplify notations we omit the matrix structure of dipole-
dipole Green functions G�1�. Combining Eq. �A1� with Eq.
�19� and applying the result to the region of frequencies
where only one exciton band exists, we obtain the following
microscopic interpretation of ES theory ingredients q��� and
d��� in terms of the Green functions:

Im G�0��x,x�;�� = 2q2���cos�k����x − x��� ,

�A3�
Im G�1��x,x�;�� = 2�d����2 cos�k����x − x��� .

Microscopic interpretation of the scattering matrices
	a,�
��� as well as the charges qa���� and the dipoles da����
induced on a branching center can be obtained by consider-
ing a system that contains semi-infinite linear chains attached
to the branching center. We express the Green functions in
terms of the exciton spectrum ��k�, as well as the functions
q��� and d������ that determine the charges and dipoles in-
duced at a repeat unit. We count the repeat units x� on the
linear segments starting from the branching center. We also
consider the frequencies at which only one exciton type
exists. In the full analogy with the infinite polymer, we
can introduce a retarded repeat unit charge Green function
G

���
�0� �x� ,x��

� ;�� for a semi-infinite branched polymer. A
degree-n vertex admits n independent exciton wave func-
tions with the energy �=��k�. We choose the scattering
states so that an incoming wave is present only in the branch
���, which corresponds to the following asymptotic wave
function expression in the segment 
 �also see Fig. 2�:

�

��� = ��
 exp�− ikx
� + �
� exp�ikx
� , �A4�

where the matrix � is obtained from the scattering matrix by
a phase shift of the diagonal elements according to Eq. �14�:

���� = �e−ik − 1�����	�� + 	���. �A5�

Using the asymptotic exciton wave functions given by

Eq. �A4�, we obtain the asymptotic form Ḡ�0� of the Green
function G�0� for x��

� �1 and x��1 in terms of the scattering

matrix elements:

Im G���
�0� �x�,x��

� ;��

� Im Ḡ���
�0� �x�,x��

� ;��

= − 2����q
2���cos�k�x� − x���� + q2���

���a,������exp�ik�x� + x��
� �� + c.c.� , �A6�

where k�0 is the solution of ���k�=�, and the relation of �

to the scattering matrix 	 is given by Eq. �A5�.
To provide microscopic interpretation of the quantities

qa���� and da���� which determine the contributions of the
vertex to the transition charge and dipole, we introduce the
following operators of the full transition charge and dipole,
respectively, induced at a branching center:

q̂a = �
Va

dr�̂�r�, d̂a = �
Va

dr�r − rx��̂�r� , �A7�

where the integration is performed over the vertex volume.
We define the mixed retarded Green functions of the branch-
ing center and the repeat units in the linear segments as
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Ga�
�0��x;�� = �

�
� d�

�

��0��q̂��x��������������q̂a��0�� + c.c.

� − � + i0
,

�A8�

Ga�
�1��x;�� = �

�
� d�

�

��0��d̂��x��������������d̂a��0�� + c.c.

� − � + i0
,

using spectral decompositions similar to Eq. �A1�, in terms
of the many-body eigenstates ���� that are assumed to be
normalized to the � function in the frequency space:

������������� = 2�������� − ��� . �A9�

Note that the degeneracy of the many-body eigenstates
���� implies that, besides energy, an additional discrete
quantum number is included in the notation �.

In the ES expression for the transition dipole �Eq. �5��
the contributions of the repeat units are computed as if the
exciton wave functions are represented by plane waves for
all repeat units. However, this is true only for those repeat
units whose distance from the branching centers exceeds the
exciton size. Yet, Eq. �5� can still be correct if the charges
and dipoles induced on the branching centers include not
only the obvious direct contributions but also the corrections
resulting from the differences between the actual contribu-
tions of the repeat units near the branching centers and their
approximations with asymptotic exciton wave functions.
Since these corrections are essential only for the repeat units
located close to the branching centers �at distances of about
the exciton size�, it is natural to incorporate these corrections
into the branching center contributions when building the ES
model. This implies the partitions qa����=qa�

�0����+qa�
�1����

and da����=da�
�0����+da�

�1����+da�
�2���� into the bare contribu-

tion and corrections: qa�
�1���� is the correction to the total

charge of the repeat units, da�
�1���� is the correction to the

vertex dipole due to the corrections to the total charges in-
duced on the repeat units, and finally da�

�2���� is the correction
to the vertex dipole due to corrections to dipoles of the repeat
units. The bare contributions can be retrieved from the
x��1 asymptotic form of the mixed Green functions:

Im Ga�
�0��x�;�� � 2q����qa�

�0����cos�k�x� − 1/2��

− �

�a

�q
���qa

�0����	a,�
���

�exp�ik�x� − 1/2�� + c.c.� ,

�A10�
Im Ga�

�1��x�;�� � − 2d����da�
�0����cos�k�x� − 1/2��

− �

�a

�d
���da

�0����	a,�
���

�exp�ik�x� − 1/2�� + c.c.� .

The correction terms can be retrieved from the asymptotic
x��1 form of the Green functions G����x� ,x��

� ;�� with x��
�

being kept finite:

�
���a

�
x

��
� =1

�

Im�G���
�0� �x�,x��

� ;�� − Ḡ���
�0� �x�,x��

� ;���

� 2q����qa�
�1����cos�k�x� − 1/2�� + �


�a

�q����qa

�1����

�	a,�
���exp�ik�x� − 1/2�� + c.c.� ,

�
���a

�
x

��
� =1

�

r
x

��
�

����
Im�G���

�0� �x�,x��
� ;�� − Ḡ���

�0� �x�,x��
� ;���

� 2q����da�
�1����cos�k�x� − 1/2�� + �


�a

�q����da

�1����

�	a,�
���exp�ik�x� − 1/2�� + c.c.� , �A11�

�
���a

�
x

��
� =1

�

Im�G���
�1� �x�,x��

� ;�� − Ḡ���
�1� �x�,x��

� ;���

� 2d����da�
�2����cos�k�x� − 1/2�� + �


�a

�d����da

�2����

�	a,�
���exp�ik�x� − 1/2�� + c.c.� .
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