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ABSTRACT
Predicting the functional properties of many molecular systems relies on understanding how atomistic interactions give rise to macroscale
observables. However, current attempts to develop predictive models for the structural and thermodynamic properties of condensed-
phase systems often rely on extensive parameter fitting to empirically selected functional forms whose effectiveness is limited to a narrow
range of physical conditions. In this article, we illustrate how these traditional fitting paradigms can be superseded using machine learn-
ing. Specifically, we use the results of molecular dynamics simulations to train machine learning protocols that are able to produce the
radial distribution function, pressure, and internal energy of a Lennard-Jones fluid with increased accuracy in comparison to previous
theoretical methods. The radial distribution function is determined using a variant of the segmented linear regression with the multi-
variate function decomposition approach developed by Craven et al. [J. Phys. Chem. Lett. 11, 4372 (2020)]. The pressure and internal
energy are determined using expressions containing the learned radial distribution function and also a kernel ridge regression process
that is trained directly on thermodynamic properties measured in simulation. The presented results suggest that the structural and ther-
modynamic properties of fluids may be determined more accurately through machine learning than through human-guided functional
forms.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0017894., s

I. INTRODUCTION

The principal goal of statistical mechanics is to predict a
system’s collective behavior from its constituent interactions. In
condensed-phase molecular systems, solving this problem is typi-
cally intractable analytically, and therefore, computer-assisted meth-
ods must be employed.1,2 Over the last 60 years, molecular simula-
tions, particularly with respect to fluids, have significantly advanced
our understanding of how macroscale observables arise from inter-
atomic interactions.3–8 A major limitation of using computer sim-
ulations, however, is that they are typically performed in an ad hoc

fashion and as such the predictive power of these models is limited.
This is because the observations taken from computer simulations
are virtual measurements of a system’s properties under a particular
set of physical conditions, and these measurements are, in general,
not transferable to other physical conditions. In addition to the lack
of transferability in the solutions produced by molecular simula-
tions, these methods can also incur significant computational costs
in order to make simple predictions. This is particularly true when
the interatomic interactions are treated quantum mechanically, the
system is very large, and/or the system must be simulated over a long
timescale in order to make meaningful observations.8–15
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Recently, new machine learning (ML) methods have been
developed and applied to solve problems in physics and chemistry
that were previously intractable using traditional molecular simula-
tion methods.16–20 The success of these ML methods has illustrated
that many problems in the physical sciences can be solved faster and
more accurately using data-driven approaches based on information
analysis than through the application of protocols that institute some
set of physics principles directly.17,21–23 Machine learning methods
are not without significant shortcomings, however. For example, if
not trained and tested on a suitably general dataset, ML programs
often fail catastrophically when asked to solve problems that require
extrapolation outside of the dataset on which they are trained.24–29

Despite having usability that is typically constrained to a narrow
application window, ML approaches have been successfully applied
to solve both new problems in physics and to develop improved solu-
tions to old problems. The latter is the focus of this article in the
context of a canonical problem in statistical mechanics—predicting
the structural and thermodynamic properties of a Lennard-Jones
(LJ) fluid.30–37

Previous attempts to model structural properties of the LJ fluid,
specifically, the radial distribution function (RDF), have relied on fit-
ting simulation data to empirically motivated functional forms33–45

or using integral equation methods.46–53 Classical density functional
theories and quasi-continuum theories have also been developed
to determine properties of simple fluids.54 There are a number of
empirical expressions in the literature that can be applied to produce
the RDF of a LJ fluid.33–37 The pioneering expression of Goldman33

gives accurate predictions for the RDF in certain temperature and
density regimes but has a limited range of applicability. The expres-
sion by Morsali et al.35 gives accurate predictions for the RDF over a
selected range of temperatures and densities, but it does suffer from
the significant problem that its functional form is not continuous
and therefore results in unphysical predictions. It also fails under low
density conditions. Lack of continuity and a limited range of appli-
cability are also problems in the expressions proposed by Bamdad
et al. and Matteoli and Mansoori.34,36 Other than fitting empirical
functional forms, another common approach to predict the RDF of
simple fluids is to use integral equation methods. However, integral
equations have historically not produced acceptable results for the
LJ fluid.46–48 This is, in part, due to the fact that in order to produce
accurate predictions, the functional form of the integral equation,
i.e., the closure relation, must be modified specifically to treat the LJ
system.49–51,53

Machine learning approaches have been applied to examine
structural correlations in a LJ fluid. Moradzadeh and Aluru have
trained a neural network to predict what values of the LJ parame-
ters will give a specific form of the RDF. They then applied this deep
learning approach to address inverse design problems for coarse-
graining applications.19 They have also trained an autoencoder net-
work to determine the RDF of simple fluids from a limited number
of atomistic configurations.55 We have previously developed a ML
method based on segmented linear regression and multivariate func-
tion decomposition that is able to predict the RDF of simple fluids
with significantly increased accuracy in comparison to traditional
theoretical approaches.20

Determining the equation of state (EOS) of a LJ fluid is
another long-standing problem, which has attracted significant
interest.37,38,41–45,56 Although not an exhaustive list, prominent LJ

equations have been developed by Nicolas et al.,38 Johnson et al.,41

Mecke et al.,42 and Thol et al.,44 among others. In each of these
previous studies, the equation of state is constructed by fitting sim-
ulation data to an empirically motivated functional form. Compre-
hensive discussions of the advantages and disadvantages of many LJ
equations of state can be found in Refs. 44 and 57. Recently, ML
approaches have been applied to predict thermodynamic proper-
ties of fluid systems.58 To our best knowledge, however, there have
been no attempts to understand how ML can be applied to deter-
mine the thermodynamic properties of the LJ fluid and if these data-
driven approaches provide any advantages compared to standard
frameworks.

In this article, we illustrate how ML methods can be applied to
determine properties of a LJ fluid with significantly increased accu-
racy in comparison to traditional human-guided fitting models and
integral equation approaches. First, we provide a detailed analysis
of the error decreases that can be expected in comparison to tra-
ditional theoretical methods when a modified version of the ML
methodology developed in Ref. 20 is used to generate the RDF of
a LJ fluid. Second, we use the learned RDF to determine the pressure
and internal energy of a LJ fluid and compare those values to the
values generated by several analytical functions. Finally, we train a
kernel ridge regression (KRR) process59–61 to determine the pressure
and internal energy of a LJ fluid. Comparisons are made between
the thermodynamic properties generated by each ML method and
the values produced by two important EOS expressions for the LJ
fluid. We find that the presented ML methods are able to produce
properties of a LJ system more accurately in comparison to previous
theoretical methods.

In general, the computational advantage of applying ML
approaches to generate structural and thermodynamic proper-
ties of condensed-phase systems will be particularly significant
when batches of data are needed for applications such as coarse-
grained model development, analytical function fitting, inverse
design approaches, and interfacing between scales in multi-scale
physics applications. The most computationally expensive step in
the implementation of the ML methods is the generation of train-
ing data, which is an upfront investment of computational effort.
We have previously shown, however, that similar ML approaches
to those applied here can produce significant error reductions in
comparison to traditional theoretical methods even when trained
on sparse amounts of data.20 After training, the developed pro-
cedures produce structural and thermodynamic properties at a
negligible computational cost in comparison to using molecular
simulations.

The rest of this article is organized as follows: Sec. II A con-
tains the details of the datasets that are used to train the differ-
ent ML procedures. The technical details of the ML methods are
presented in Sec. II B. A discussion of the testing datasets that
are used to quantify the error generated by the developed meth-
ods is given in Sec. II C. The results of applying ML to predict the
RDF, pressure, and internal energy of a LJ fluid are presented in
Sec. III. Comparisons are made between the developed ML pro-
cedures, the results from integral equation methods, and several
analytical models whose parameters are obtained by fitting sim-
ulation data to empirical functional forms. Concluding remarks
and thoughts on the ramifications of this work are presented in
Sec. IV.
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II. METHODS
A. Training data

We use both home-generated and literature datasets to train
our ML models. The data used to train the ML process to pro-
duce the LJ RDF was generated using MD simulations of a system
of N = 2500 particles interacting through the cut and shifted LJ
potential,

ϕcs(r) = {
ϕ(r) − ϕ(rc), r ≤ rc
0, r > rc,

(1)

with

ϕ(r) = 4ϵ[(
σ
r
)

12
− (

σ
r
)

6
], (2)

where σ and ϵ are the standard LJ parameters and rc is the cut-
off distance. The values of the LJ parameters and the masses of
the particles were chosen to correspond to argon. A cutoff of
rc = 4.0σ was used, which is a typical cutoff chosen in LJ fluid
studies, e.g., by Johnson et al. in Ref. 41. The simulations were per-
formed in the NVT ensemble using the modified impulse Langevin
integrator developed by Goga et al. in Ref. 62. A time step of
Δt = 1 fs and a relaxation rate of γ = 0.5 ps−1 were used in the
Langevin integrator. A neighbor list that was updated every ten
time steps was employed to accelerate the sampling time. Standard
periodic boundary conditions were used. The propagation of each
MD trajectory was performed in three stages: In the initial equi-
libration stage lasting 5 ps, linear velocity scaling of each particle
was used at every time step in order to maintain a constant tem-
perature. In the second phase, which was the primary equilibra-
tion phase, the system was propagated for 500 ps using the mod-
ified impulse Langevin integrator with no sampling taking place.
Finally, in the third phase, the system was propagated and sampled
over 500 ps. During this phase, the RDF, pressure, and energy were
measured.

Using the results of these simulations, we calculated the RDF
g(r∗, ρ∗, T∗) of the system as a function of the reduced LJ
parameter’s distance r∗ = r/σ, density ρ∗ = ρσ3, and temperature
T∗ = kBT/ϵ. The RDF was computed using a histogram bin width
of 0.01 Å/σ ≈ 0.002 94. Simulations were performed at 629 state
points on a grid in the ρ∗ × T∗ plane. The grid spacing was
Δρ∗ = 0.05 and ΔT∗ = 0.2 in the respective dimensions. These
points were mostly constrained to the vapor, liquid, and supercriti-
cal regions of the phase diagram, as shown in Fig. 1, although some
of the sampled points were outside of the fluid region. The high-
est temperature and density sampled were T∗ = 6 and ρ∗ = 1.25,
respectively.

We also trained KRR processes to determine the reduced pres-
sure P∗ = Pσ3/ϵ and reduced residual internal energy U∗ = U/Nϵ of
a LJ fluid. The data used to train these processes were generated by
Gottschalk using Monte Carlo simulations.56 The Gottschalk dataset
contains thermodynamic properties of the LJ system from 8374 state
points with temperatures T∗ ≤ 6.4. Most of these state points are
confined to the region shown in blue in Fig. 1. This dataset was used
for training because it consisted of a large number of datapoints and
it also contains a high density of points in the supercritical region of
the phase diagram, a region that is often not well-sampled in other
datasets. An extensive review and analysis of various other datasets

FIG. 1. State points in the ρ∗ × T∗ plane that were sampled to use as training data
in the LR-RDF procedure. Each state point is shown as a red circle. The region
encompassing the vapor, liquid, and supercritical fluid phases is shown in light blue
and contains most of the red dots. The vapor–liquid and fluid–solid coexistence
curves are shown as solid black lines. The triple point temperature (T∗tp = 0.687)
is shown as a dashed black line. All of the data used to construct the coexistence
curves were taken from Ref. 45 and references therein.

containing thermodynamic properties of the LJ system can be found
in Ref. 57.

B. Machine learning procedures
1. Radial distribution function

The ML method we applied to determine the LJ RDF is a
variant of the linear regression (LR) with the multivariate function
decomposition approach developed in Ref. 20. Here, we term this
approach the LR-RDF method. The MD data used to train this pro-
cess consisted of feature vectors of the form {r∗k , ρ∗i ,T∗i }, which
were mapped to labels g(r∗k , ρ∗i ,T∗i ), where r∗k is a particular value
of the variable r∗ and pi = {ρ∗i ,T∗i } is a state point in the training
data.

The implementation algorithm for this method is as follows:
First, take an input state point p = {ρ∗,T∗} (the point where the
RDF would like to be predicted) and determine the Nneigh = 4 nearest
neighbor points in the training data to the input point. The metric
used to determine the distance between input point p and training
point pi is the weighted Euclidean distance

di =
√

w1(ρ∗i − ρ∗)2 + w2(T∗i − T∗)2, (3)

with weights w1 = 1 and w2 = 0.035, which were obtained using a
grid search hyperparameter optimization. Next, take the discretized
training data in the r∗ variable, and at each particular value, r∗ = r∗k
construct a linear approximation to the RDF,

g(r∗k , ρ∗,T∗) ≈ ĝk(r
∗
k , ρ∗,T∗)

= a0(r∗k ) + a1(r∗k )ρ
∗ + a2(r∗k )T

∗, (4)

where ĝk is a linear function in ρ∗ and T∗ with coefficients that are
determined from multivariate least squares regression. The linear
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approximation is based on the assumption that in the local region
in ρ∗ × T∗ space around input point p, the RDF will vary approxi-
mately linearly in ρ∗and T∗ at each r∗k . Finally, combine the collec-
tion of regression processes at each r∗k to construct the total RDF at
point p,

g(r∗, ρ∗,T∗)≈I [ĝ1(r∗1 , ρ∗,T∗), ĝ2(r∗2 , ρ∗,T∗), . . . , ĝK(r∗K , ρ∗,T∗)],

(5)

where I is an interpolant over the variable r∗ between functions in
the set G = {ĝ1, ĝ2, . . ., ĝK} and K is the index of the maximum r∗

value used in the regression. Structural correlations in the LJ fluid
occur over length scales in the dimensional r variable commensurate
with σ. Therefore, if the spacing of the training data in the r∗ = r/σ
dimension is ≪1, the choice of the functional form of the inter-
polant I (linear, polynomial, etc.) will not be significant. Moreover,
for most numerical applications, knowledge of the discretized set of
functions G will be sufficient, and therefore, interpolation over r∗

will not be necessary. Because the core regression process used in
the LR-RDF method is two-dimensional linear regression that is fit
to four neighboring state points, there is no significant overfitting in
the procedure.

2. Equation of state
We developed an equation of state for the LJ fluid by training

KRR processes to predict the thermodynamic properties pressure
P∗ and internal energy U∗. The training data for these processes
consisted of feature vectors (state points) pi = {ρ∗i ,T∗i }, which
were mapped to corresponding labels P∗(ρ∗i ,T∗i ) and U∗(ρ∗i ,T∗i ).
The data used for training was taken from the Gottschalk dataset.56

This dataset is well-suited to use for training because of its size
and because the cutoff distance in the simulations used to gener-
ate the data is large. A proximity-based approach was employed in
the KRR training procedures, meaning that for a particular input
point p, only local training data was used to determine the pres-
sure and internal energy at that point. Specifically, the training data
used to generate P∗ and U∗ at point p consisted of Nneigh = 16
nearest neighbor points in the training data as quantified through
the distance metric in Eq. (3). The number of neighboring points
used in the regression process was found through hyperparameter
optimization.

The KRR procedure was implemented using the scikit-learn
ML package for Python.63 A polynomial kernel

K(pi, pj) = (γp⊺i pj + c0)
d, (6)

of degree d = 4 was employed to quantify the similarity between
state points in the training data. For each regression process, we
performed optimization of the c0 parameter in Eq. (6) using a grid
search where the optimization scoring function was the absolute
percent error of the corresponding thermodynamic property P∗

or U∗. The conditioning factor α in the KRR process (see Ref. 63
and associated documentation) was set to unity. In each regres-
sion, we used a value of γ = 100 in Eq. (6), which was found
through a grid search. We took γ to be constant because we found
that its optimized value would typically not deviate significantly
from the given constant value and because doing so decreases

the computational time needed to perform the KRR. In compar-
ison, we found that the optimal value of c0 would change signif-
icantly for each regression process, and therefore, a grid search
optimization of this parameter was performed during each KRR
procedure.

C. Test data
The test data for the ML procedures were obtained using the

same simulation protocol described in Sec. II A. We generated two
different test sets. The first test set was generated by performing
MD simulations at 300 random points uniformly distributed over
the region [0.05, 1.15] × [1.0, 5.0] in the ρ∗ × T∗ plane and measur-
ing the RDF, pressure, and internal energy at each point. In order
to account for errors incurred by using the cut and shifted potential
in Eq. (1), standard tail corrections were applied to the measured
pressure and internal energy values.1,41 Any points outside of the
vapor, fluid, or supercritical regions were removed from the test
set, leaving 265 points. The second test set was generated by per-
forming simulations along select isodensity contours (ρ∗ = const.)
using a spacing of ΔT∗ = 0.2 in the T∗ dimension. For each con-
tour, the lowest temperature sampled was dictated by the fluid phase
boundaries shown in Fig. 1, and the highest temperature sampled
was T∗ = 5.

Additionally, there are multiple datasets in the literature con-
taining thermodynamic properties of the LJ system at various state
points measured using molecular simulation methods. Here, we
used the datasets generated by Johnson et al., Stephan et al., and
Meier as test sets to further gauge the accuracy of the developed
ML methods.41,57,64 In each of these datasets, we removed any out-
lier points as identified in the work of Ref. 57, any points that were
outside of the fluid region of the phase diagram (the blue region in
Fig. 1), and any points with temperature T∗ > 6. After this proce-
dure, the trimmed Johnson, Stephan, and Meier datasets consisted of
134, 317, and 269 points, respectively. We chose to use these datasets
as test sets because they are some of the largest datasets available
for the LJ fluid and also the cutoff distance used in each set is large
(rc ≥ 4.0σ).

III. RESULTS AND DISCUSSION
Most previous work developing predictive models for the RDF

of the LJ fluid has focused on fitting the results of simulations to
empirically selected analytical forms or applying integral equation
approaches. The main advantage of using empirical models is that
they allow fast and often accurate approximation of the RDF of a
LJ fluid without the need to perform computationally taxing simula-
tions or numerical procedures. The ML methodology we apply here
can produce LJ RDFs at a negligible computational cost, but with
improved accuracy in comparison to human-guided procedures and
integral equations.

Comparisons between RDFs measured in simulation and RDFs
predicted by the ML procedure described in Sec. II B are shown in
Fig. 2 for various temperature and density values. Excellent agree-
ment is observed between the ML and MD results. The results for
high-density systems with strong structural correlations are shown
in Figs. 2(a) and 2(b). In these systems, the ML protocol almost
exactly captures the highly structured form of the RDF. As shown
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FIG. 2. Radial distribution functions pre-
dicted by ML (solid red) and measured in
simulation using MD (dashed blue). Note
that the two curves are almost indistin-
guishable and their superposition may
appear pink. Results are shown for vari-
ous state points: (a) ρ∗ = 1.03; T∗ = 2.5,
(b) ρ∗ = 0.87; T∗ = 0.75, (c) ρ∗ = 0.61;
T∗ = 1.55, and (d) ρ∗ = 0.075; T∗ = 1.5.

in Figs. 2(c) and 2(d), the ML method also generates accurate pre-
dictions for the RDF in intermediate- and low-density systems. This
is notable because, as discussed in detail below, previous analytical
expressions for the LJ RDF typically fail to give accurate predictions
at low densities. In all cases, the ML results are in excellent agree-
ment with the simulation results, illustrating the power of using ML
to generate structural properties of fluids.

Figure 3 illustrates the root mean square deviation (RMSD) of
the RDF,

RMSD ≡

¿
Á
Á
Á
Á
ÁÀ

Kc

∑
k=1
(gMD(r∗k , ρ∗,T∗) − gtheory(r

∗
k , ρ∗,T∗))2

Kc
, (7)

predicted using various theoretical methods gtheory taken with
respect to the RDF measured in simulation gMD along several

isodensity contours. The RMSD was computed at Kc = 1362 points
along the variable r∗ using an equidistant spacing of ∼0.002 94
between points. This corresponded to a maximum value of r∗ ≈ 4
used in the RMSD calculation. We truncated the RMSD calcu-
lation at this value to avoid sampling the structureless regime
r∗ → ∞ where g(r∗, ρ∗, T∗) = 1 as sampling this regime would
bias the RMSD toward a lower value. The lower bound for T∗

along each contour is dictated by the fluid phase boundaries shown
in Fig. 1.

Along the isodensity contour ρ∗ = 1.11, shown in Fig. 3(a),
the RMSD of the Morsali expression is ∼0.025 while the RMSD of
the Goldman expression is ∼0.02. In contrast, the RMSD generated
using ML varies from 0.0005 to 0.001. We also tested if approx-
imating the RDF using the data from the nearest neighbor point
in the training set yields an accurate estimate for the RDF. The
nearest neighbor approximation yields a RMSD of ≈0.01. This illus-
trates that the accuracy of the ML method arises from the fitting

FIG. 3. Root mean square deviation
of the RDF generated by ML (red),
the expressions of Goldman (black) and
Morsali et al. (blue), and the solutions
to the PY (yellow) and HNC (magenta)
equations, all shown as a function T∗
along the isodensity contours: (a) ρ∗ =
1.11, (b) ρ∗ = 0.825, (c) ρ∗ = 0.6, and
(d) ρ∗ = 0.47. The red dashed curve in
panel (a) is the result given by approxi-
mating the RDF at the input point using
the RDF of the nearest neighbor point on
the training grid.
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procedure and is not simply a function of the density of train-
ing data. The ML approach also gives more accurate results with
respect to well-known integral equations. Specifically, the ML RMSD
is greater than an order of magnitude lower than solutions to the
Percus–Yevick (PY) and hypernetted-chain equations (HNC). The
solutions to the integral equations were obtained using the pyPRISM
program.65

The results along the contour ρ∗ = 0.825 are shown in Fig. 3(b).
The Morsali expression results in a RMSD of ∼0.01, while the Gold-
man expression produces an RMSD that is ∼0.015 for low T∗ but
diverges as T∗ is increased. The RMSDs produced by the PY and
HNC solutions are large for low T∗ but decrease to ∼0.015 and
0.04, respectively, as the temperature is increased. The ML result
ranges between ∼0.0005 to 0.001, greater than an order of magni-
tude decrease when compared to the RMSDs obtained using other
methods.

Figure 3(c) illustrates the results for ρ∗ = 0.6, which was a
density included in the training set. We have used this density to
illustrate the power of ML in comparison to other methods at a com-
monly examined density, not to infer any accuracy metrics about
the ML procedure itself. The RMSD due to the Morsali expression
is ∼0.005. The Goldman expression produces an RMSD of ∼0.015
for T∗ < 4 but diverges for T∗ > 4. The PY and HNC solutions
generate errors that are, in general, greater than the other methods.
In comparison, the RMSD due to ML is ∼0.001—a significant error
reduction.

The results along the contour ρ∗ = 0.47 are shown in
Fig. 3(d). The Morsali RMSD is ∼0.02 at low temperatures and
decreases to ∼0.004 at high temperatures. The Goldman expres-
sion again produces an RMSD result of ∼0.015 for low values of
T∗ but quickly diverges as T∗ is increased. Away from the low-
temperature regime, the integral equations result in errors of the
order 0.005 and 0.012 for the PY and HNC solutions, respec-
tively. The ML RMSD is ∼0.004 at low temperatures but then
decreases quickly to ∼0.0007 as T∗ is increased. Typically, we found
that using ML to predict the LJ RDF resulted in greater than
an order of magnitude decrease in the RMSD in comparison to
traditional theoretical methods in high- and intermediate-density
regimes.

The RMSD calculated along the isodensity contours ρ∗ = 0.25
and ρ∗ = 0.125, which both correspond to the low-density regime
of the LJ fluid, are shown in Figs. 4(a) and 4(b) respectively. Notice
that the RMSD for each density is shown on a log scale. In both cases,
the ML protocol developed in this article significantly outperforms
both the Morsali and Goldman expressions. In Fig. 4(a), the Mor-
sali RMSD is of the order 1 for low T∗ but quickly decreases to 0.1
as T∗ is increased, while the Goldman RMSD is of the order 0.1 at
lower temperatures but diverges to values greater than 100 for T∗ >
4. In comparison, the RMSD calculated using ML is ∼0.002 at low
T∗ but decreases to ∼0.0005 as the temperature increases. For the
case of ρ∗ = 0.125, shown in Fig. 4(b), the Morsali expression fails
catastrophically and produces an RMSD that is, at best, of the order
10, while the Goldman RMSD is again ∼0.1 for T∗ < 4 but diverges
for T∗ > 4. The failure of the Morsali expression arises because it is
a piecewise noncontinuous function, and one of the branches of the
expression diverges at low density creating the large deviations from
the MD results, using the ML results in an RMSD of ∼0.002 at this
density.

FIG. 4. Root mean square deviation of the RDF generated by ML (red), the expres-
sions of Goldman (black) and Morsali et al. (blue), and solutions to the PY (yellow)
and HNC (magenta) equations. The RMSD values are shown on a log scale. Each
result is shown a function T∗ along the isodensity contours (a) ρ∗ = 0.25 and (b)
ρ∗ = 0.125. The dashed black curve in panel (b) is the result calculated using the
theoretical RDF g(r∗,T∗) = e−ϕ

∗(r∗)/T∗ corresponding to the infinite dilution
limit.

In contrast to the empirically motivated functional forms, both
the PY and HNC integral equations perform reasonably well at
low density. For ρ∗ = 0.25, shown in Fig. 4(a), the PY and HNC
equations produce RMSDs that are ∼2 to 5 times greater than ML.
Therefore, the integral equation RMSDs are large in comparison
to the ML method but provide a dramatic improvement over both
the Goldman and Morsali expressions. For ρ∗ = 0.125, shown in
Fig. 4(b), the RMSD produced by both integral equations is approx-
imately equal to that produced using ML. Also shown in Fig. 4(b)
is the result given by taking the theoretical RDF to correspond to
the infinite dilution limit g(r∗,T∗) = e−ϕ

∗(r∗)/T∗ , with ϕ∗(r∗)/T∗
= ϕ(r)/kBT = 4/T∗[(1/r∗)12

− (1/r∗)6
)]. Infinite dilution corre-

sponds to the limit in which multi-body effects vanish. The RMSD
given by infinite dilution approximation is approximately an order
of magnitude greater than the RMSD generated by ML. This illus-
trates that theoretical procedures such as ML or integral equation
methods must be employed to obtain accurate estimates for the RDF
in systems with significant multi-body structural correlations. In
general, we find that using ML to predict the RDF in low-density
LJ systems will typically provide two orders of magnitude or greater
decrease in the RMSD when compared to empirical functional
forms and will often improve on the results of integral equation
solutions.
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Shown in Table I is the RMSD generated by each theoreti-
cal method calculated over the random test set described in Sec. II
C. The first column lists the various theoretical methods. The sec-
ond column is the RMSD result for each method calculated over
every point in the test set. The ML approach reduces the error by
factors of ∼20 and 30 in comparison to the PY and HNC equa-
tions, respectively. The results are not shown for the Morsali and
Goldman expressions because the claimed range of validity of both
expressions is ρ∗ > 0.35, and the lower density bound in the ran-
dom test set is ρ∗ = 0.05. We therefore cannot assess the error
generated by these expressions using the full test set because both
expressions return very large and often numerically divergent RMSD
values in the low density regime (see Fig. 4). In order to construct
a test set to compare the theoretical methods away from the low
density regime, we removed any points from the full set with ρ∗ <
0.35 and calculated the RMSD generated by each method over this
trimmed dataset. These results are shown in the third column of
the table. Over the trimmed test set, ML again generates the low-
est error. The error from the Morsali expression is the next low-
est, roughly 15 times greater than ML. The ML approach reduces
the error by respective factors of ∼40 and 60 in comparison to the
PY and HNC equations. Note that the RMSD generated by each
integral equation increases for the trimmed test set in compari-
son to the full test set because integral equations perform best in
the low-density regime, and therefore, removing the low-density
state points increases the average RMSD. The Goldman expression
returns divergent RMSD values in the high-temperature regime, as
shown in Fig. 3. Therefore, to calculate the average RMSD for the
Goldman expression, we also removed any state points from the
test set that generated an RMSD > 1. The RMSD value generated
by ML over the trimmed test set is approximately a factor 60 lower
than RMSD calculated using the Goldman expression with high-
temperature state points removed. The RDF can also be estimated
using data from the nearest point in the training data set. Over both
the full and trimmed test sets, the ML method reduces the RMSD by
approximately an order of magnitude in comparison to using the
RDF from the nearest neighbor to estimate the RDF at the input
point.

Shown in Fig. 5 is the learning curve for the LR-RDF method
illustrating how the accuracy of the method varies as a function

TABLE I. Average RMSD of the RDFs generated by various methods calculated over
the random test set. The first column of RMSD values includes all the test points. The
second column includes only test points with ρ∗ > 0.35, which is the reported range
of validity of the Morsali and Goldman expressions.

Average Average RMSD
Method RMSD (excluding low density)a

ML 0.0009 0.0007
Morsali et al. . . . 0.0104
Goldman . . . 0.0394b

PY 0.0171 0.0246
HNC 0.0307 0.0441
Nearest neighbor 0.0066 0.0076

aTest points with ρ∗ < 0.35 are excluded.
bTest points that generated an RMSD > 1 are excluded.

FIG. 5. Learning curve for the LR-RDF ML method illustrating the average RMSD
of the trimmed dataset from the third column in Table I as a function of the number
of training points. Results are shown for the LR-RDF procedure (red), the expres-
sions of Goldman (black) and Morsali et al. (blue), and solutions to the PY (yellow)
and HNC (magenta) equations. The red dashed curve is the result given by approx-
imating the RDF at the input point using the RDF of the nearest neighbor point on
the training grid. Both axes are shown on a log scale.

of the number of points in the training set. When using as few
as 100–200 training points, ML reduces the RMSD by approxi-
mately an order of magnitude, or more, in comparison to each of
the other methods. Moreover, the LR-RDF method outperforms all
the other methods when trained on as few as ∼30 points. Approx-
imating the RDF at the input point using data from the nearest
neighbor point in the training set yields better results than all the
other methods except ML when the number of training points,
i.e., the density of training data, is large but yields poor results in
comparison with the other methods as the training data becomes
sparse. It should be noted that as the density of the training data
decreases, a threshold is reached where the ML method ceases to
be more accurate than other theoretical methods. This threshold is
reached, however, when there are only a few points in the training
set.

It is important to note that the different analytical expres-
sions developed to generate the LJ RDF have been fit to data that
were obtained using many different simulation protocols.33,35,36,38

Because of these discrepancies between simulation procedures, we
can only make observations about how well any previously devel-
oped functions are able to reproduce the data obtained under the
specific simulation conditions used here. However, when the results
of these prior analytical expressions are compared to our simula-
tion data, we observe RMSD values that are typically similar to or
less than those reported in the original articles. This implies that the
simulation data obtained in this manuscript is well-representative
of the data used to fit these functions. Moreover, based on the
observed accuracy of the developed ML methods, we expect that
ML will provide substantial improvements when compared to all of
the previous empirical functions over a broad range of simulation
conditions.

The major bottleneck of applying the present ML method is
generating training data in a way that effectively samples the fluid
region of the phase diagram while also being computationally effi-
cient. While the comparisons given here illustrate the improvements
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in predictive accuracy that can be expected when using ML to
generate the RDF of a simple LJ fluid (see also the supplemen-
tary material of Ref. 20), questions remain with respect to the
best way to generate training data and if a grid-based approach
will scale well when applying the developed ML method to deter-
mine structural properties of more complex systems such as
fluid mixtures. These questions will be addressed in our future
work.

The ability to accurately predict macroscopic thermodynamic
quantities from the function used to generate the RDF is an impor-
tant test of both the precision of the fitting procedure and the valid-
ity of the chosen functional form used in the fitting.33–37 In sim-
ple fluids that are dominated by pairwise interactions, structurally
based macroscopic observables can be expressed using standard
thermodynamic relations containing the RDF. In the specific case
of a LJ fluid, the reduced pressure P∗(ρ∗, T∗) and reduced inter-
nal energy U∗(ρ∗, T∗) are related to the RDF through the respective
expressions1

P∗(ρ∗,T∗) = ρ∗T∗ − 16πρ∗2
∫

∞

0
(r∗−4

− 2r∗−10
)g(r∗, ρ∗,T∗)dr∗

(8)

and

U∗(ρ∗,T∗) = 8πρ∗ ∫
∞

0
(r∗−10

− r∗−4
)g(r∗, ρ∗,T∗)dr∗. (9)

Therefore, once a functional form for the RDF is known, it provides
a direct route to generate the thermodynamic properties of the LJ
system.

To further gauge the accuracy of the developed ML protocol,
we evaluated Eqs. (8) and (9) numerically using the learned RDF
and compared those results to pressure and internal energy values
that were measured directly in MD simulations. Calculating macro-
scopic observables using the predicted RDF and comparing those
values to values measured in simulation is a standard method that
is typically used to test the accuracy of the specific procedure that
is applied to generate the LJ RDF. We applied a long-range cor-
rection to the ML RDF by taking g(r∗, ρ∗, T∗) = 1 for values of
r∗ > L/2, where L is the simulation box length in the MD training
data.

Figure 6 illustrates a comparison between the results for P∗

and U∗ measured directly in simulation and the results calculated
by using the ML RDFs in Eqs. (8) and (9). The pressure and inter-
nal energy results are shown in Figs. 6(a) and 6(b), respectively. In
both figures, the results are shown as a function of T∗ along vari-
ous isodensity contours. The agreement between the two methods is
excellent in all cases.

Shown in Fig. 7 is the percent error,

Xerror(ρ∗,T∗) =
Xtheory(ρ∗,T∗) − XMD(ρ∗,T∗)

XMD(ρ∗,T∗)
× 100, (10)

for each thermodynamic property X ∈ {P∗,U∗} calculated along
various isodensity contours using the LR-RDF method as well as the
Goldman and Morsali expressions. In Eq. (10), Xtheory is the value
predicted by the particular theoretical method, and XMD is the value
taken from MD simulation. Figures 7(a) and 7(b) show P∗error along
the contours ρ∗ = 1.021 and ρ∗ = 0.88, respectively. The ML proce-
dure generates significantly lower error than the other methods at
these high densities. It is interesting to note that the error generated
by the Goldman and Morsali expressions is quasi-oscillatory, while
the error due to the ML approach presents as noise. As shown in
Fig. 7(c), the error reduction produced by using the LR-RDF method
is particularly pronounced in the low-density regime. Specifically,
for ρ∗ = 0.25, the error produced by the Goldman expression is very
large, while the Morsali expression produces an error of ≈10%. In
contrast, ML produces an error of ≈0.06%. The percent error in
the internal energy U∗error along the contours ρ∗ = 1.021 and ρ∗ =
0.88 are, respectively, shown in Figs. 7(d) and 7(e). The LR-RDF
method outperforms the other expressions, particularly at high tem-
peratures. Figure 7(f) shows the internal energy error for ρ∗ = 0.25
where, again, applying ML produces significantly lower error than
the other methods.

In general, the absolute error |Xerror(ρ∗, T∗)| in each thermody-
namic property calculated using the LR-RDF method is typically in
the range 0.05%–0.5% across all density regimes. In contrast, both
the Morsali and Goldman expressions result in average absolute
errors of ∼2% at high densities and greater than 10% at low densities.
These results highlight the effectiveness of applying ML to predict a
system’s macroscopic properties using the learned RDF.

FIG. 6. Pressure and internal energy val-
ues calculated along various isodensity
contours are shown in panels (a) and (b),
respectively. Results are shown for den-
sities ρ∗ = 1.11, ρ∗ = 1.021, ρ∗ = 0.88
[excluded in panel (b) for visual clarity],
ρ∗ = 0.713, and ρ∗ = 0.25. The blue
circles are the results measured directly
in MD simulations. The red curves are
the results predicted from ML using the
LR-RDF method, and the dashed black
curves are the ML results obtained using
the KRR approach.
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FIG. 7. Percent error in the pressure (left)
and internal energy (right) calculated
using the RDF generated by the ML(LR-
RDF) method (red) and the expressions
of Goldman (black) and Morsali et al.
(blue). The results are shown as a func-
tion of temperature along the isoden-
sity contours ρ∗ = 1.021 [(a) and (d)],
ρ∗ = 0.88 [(b) and (e)], and ρ∗ = 0.25
[(c) and (f)]. The dashed line in each
panel denotes zero error and is shown
for visual comparison.

We also trained a KRR process to produce thermodynamic
properties of the LJ system as described in Sec. II B 2. This process is
trained directly on thermodynamic properties measured in simula-
tion and therefore does not include information from the RDF. The
black dashed lines in Fig. 6 are the results for P∗ and U∗ generated
using KRR along various isodensity contours. In all cases, the agree-
ment between the MD results and the results generated using ML is
excellent. In fact, upon detailed examination, it can be observed that
the KRR process yields results that are in better agreement with the
MD values than those generated using the LR-RDF method.

Figure 8 illustrates a comparison between the percent error in
the pressure and internal energy values generated using the KRR
method, the LR-RDF method, the Johnson EOS, and the Mecke
EOS. The results are shown along various isodensity contours. The
errors in the predicted pressure for high-density systems with ρ∗
= 1.021 and ρ∗ = 0.88 are shown in Figs. 8(a) and 8(b), respec-
tively. The KRR method is the most accurate in both cases, gener-
ating an error along each contour that fluctuates around zero. The
errors generated by all of the theoretical methods are correlated
because the same MD data are used to compute the error for each
method. The MD data fluctuates along each isodensity contour due
to sampling errors, and so calculating the percent error generated
by each theoretical equation of state produces correlated fluctua-
tions. The results for a low-density system with ρ∗ = 0.25 are shown
in Fig. 8(c). In this case, both the KRR and LR-RDF methods gen-
erate errors along the contour that fluctuate about zero, while the
Mecke and Johnson expressions yield respective errors of ∼0.25%
and 0.5%. The percent error in the internal energy produced by

each method for ρ∗ = 1.021 and ρ∗ = 0.88 is shown in Figs. 8(d)
and 8(e). At these high densities, the Johnson EOS is clearly not as
accurate as the other methods and predicts values for the internal
energy that varies significantly from the MD results. The Mecke EOS
and the LR-RDF method yield similar errors at both densities, while
the KRR method is again the most accurate. The error in the pre-
dicted internal energy for ρ∗ = 0.25 is shown in Fig. 8(f). The Mecke
and Johnson expressions produce errors that change sign as T∗ is
increased. Therefore, while the average percent error along the con-
tour is approximately zero, the absolute percent error generated by
each expression will be relatively large. The LR-RDF method yields
slightly better results than the two analytical EOSs, and the KRR
process is, again, the most accurate method. The KRR method and
the Mecke and Johnson expressions are fit to two-dimensional input
data while the LR-RDF method uses three-dimensional inputs. It is
therefore noteworthy that the LR-RDF procedure produces compa-
rable results to the others while being trained on more complex data
structures.

Table II shows the results of using various methods to calcu-
late the average absolute percent error in the pressure ⟨∣P∗error∣⟩ over
four different test sets. The specific methods compared are the KRR
and LR-RDF ML methods, the Johnson and Mecke EOS expressions,
and the result obtained by approximating the pressure at the input
point using the pressure value from the nearest neighbor point in
the training set. The examined test sets are the random test set gen-
erated here and the datasets of Johnson et al., Stephan et al., and
Meier.41,57,64 Descriptions of each test set can be found in Sec. II C.
The combined error averaged over all of the test sets is also shown in
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FIG. 8. Percent error in the pressure
(left) and internal energy (right) cal-
culated using the ML(KRR) (red) and
ML(LR-RDF) (dashed red) methods and
the expressions of Mecke et al. (blue)
and Johnson et al. (black). The results
are shown as a function of temperature
along the isodensity contours ρ∗ = 1.021
[(a) and (d)], ρ∗ = 0.88 [(b) and (e)], and
ρ∗ = 0.25 [(c) and (f)]. The black dashed
line in each panel denotes zero error.

the last column of the table. The Mecke expression is widely consid-
ered to be the most accurate LJ EOS for generating thermodynamic
properties. The KRR process results in significant error decreases in
comparison to the other methods, outperforming the Mecke EOS
over every test set except the Johnson dataset where the methods
yield similar results. Specifically, the KRR procedure reduces the
error when compared to the Mecke EOS over the combined test set
by a factor of ≈1.7. The LR-RDF method is approximately as accurate
as the Johnson EOS and, in general, results in errors in the pres-
sure that are between 2 and 10 times greater than that produced by
the KRR method and the Mecke EOS. Because the KRR process is
more accurate than the Mecke EOS, we conclude that the KRR pro-
cess is currently the most accurate method for generating the pres-
sure of the LJ system. The nearest neighbor approximation leads to

significant errors, typically close to an order of magnitude greater
than the other methods.

The average absolute percent error in the internal energy
⟨∣U∗error∣⟩ generated by each theoretical method calculated over each
test set is shown in Table III. In general, the LR-RDF method is more
accurate than the Johnson EOS, but not as accurate as the Mecke
EOS, while the KRR method reduces the absolute error in compar-
ison to the Mecke EOS. Specifically, the developed KRR approach
outperforms the Mecke EOS on every test set except for Johnson
et al. data. When the absolute error is averaged over every point
in all of the test sets combined, as shown in the last column of
the table, the KRR method again reduces the error in the com-
parison to the Mecke EOS by roughly a factor of 1.7. We there-
fore conclude that the KRR approach developed here is currently

TABLE II. Average absolute percent error in the pressure ⟨∣P∗error∣⟩ generated by several theoretical methods calculated over
various test sets. The lowest value for each test set is shown in bold.

Test data

This work Meier Johnson et al. Stephan et al.
EOS/method (265 pts) (269 pts) (134 pts) (317 pts) Combined

Mecke et al. 0.151 0.350 0.285 0.338 0.284
Johnson et al. 0.305 0.632 0.536 0.770 0.575
ML(LR-RDF) 0.166 0.614 0.572 0.908 0.582
ML(KRR) 0.089 0.270 0.304 0.079 0.164
Nearest neighbor 1.768 1.845 0.409 6.191 3.027
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TABLE III. Average absolute percent error in the internal energy ⟨∣U∗error∣⟩ generated by several theoretical methods
calculated using various test sets. The lowest value for each test set is shown in bold.

Test data

This work Meier Johnson et al. Stephan et al.
EOS/method (265 pts) (269 pts) (134 pts) (317 pts) Combined

Mecke et al. 0.132 0.177 0.193 0.229 0.184
Johnson et al. 0.813 0.608 1.082 0.468 0.683
ML(LR-RDF) 0.105 0.264 0.378 0.415 0.285
ML(KRR) 0.066 0.104 0.272 0.080 0.109
Nearest neighbor 0.905 1.758 0.431 6.088 2.741

the most accurate theoretical method for determining the inter-
nal energy of the LJ system. The nearest neighbor approximation
is overall the worst method; however, over the Johnson et al. test
data, this method generates more accurate predictions for the pres-
sure than the LR-RDF method and the Johnson EOS and more
accurate predictions for the internal energy than the Johnson EOS.
This behavior is explained, in part, because the Johnson dataset
is the smallest we have examined, and the values in this dataset

FIG. 9. Learning curve for the KRR process showing the average absolute percent
error in the pressure (a) and internal energy (b) as a function of the number of
training points. Results are shown for the KRR process (red), the EOS expressions
of Mecke et al. (blue) and Johnson et al. (black), and the LR-RDF method (dashed
red) trained using the data shown in Fig. 1. The number of training points is shown
on a log scale.

are sampled from the fewest number of configurations in com-
parison to the other datasets, leading to uncertainty in the error
calculations.

Figure 9 shows learning curves for the KRR process. Specifi-
cally, the average absolute percent error in the pressure and internal
energy are shown, respectively, in Figs. 9(a) and 9(b) as a function of
the number of state points in the training set. The averages are taken
over the test set constructed in this manuscript (see Sec. II C). For
both of the thermodynamic properties, there are only small increases
in the error as the training set is reduced in size from ∼10 000 points
to ∼100 points. It is interesting to note that when the KRR process
is trained on as few as ≈200 points, it provides more accurate pre-
dictions for both the pressure and internal energy in comparison
to all of the other methods. The fluctuations in the learning curves
arise because the size of the training dataset cannot be reduced in
a completely uniform way because some regions of the phase dia-
gram contain a higher density of state points than others in the full
Gottschalk training set.

The EOS expressions that have been developed for the LJ sys-
tem are some of the most accurate due to the importance of the LJ
system as the prototypical fluid model and the simplicity of the inter-
atomic LJ potential. It is significant that the ML approaches devel-
oped here are more accurate than previous methods/expressions
applied to the LJ system, and we therefore expect that in other
condensed-phase systems, ML will provide even larger increases in
predictive accuracy than those observed here for the LJ fluid. For
example, in complex fluid systems, analytical EOS expressions typi-
cally do not exist or they provide only a qualitative description of the
system’s thermodynamical properties. An advantage of the present
ML approaches is that because no assumptions are made about the
functional form of the EOS or the RDF, the developed methods are
easily transferable to more complex systems. This opens the possi-
bility to apply similar approaches to complex condensed-phase sys-
tems that have previously been intractable to treat with traditional
methods other than brute-force simulation.

IV. CONCLUSIONS
Machine learning protocols have been developed that are

able to determine structural and thermodynamic properties of
a LJ fluid more accurately in comparison to previous human-
guided fitting attempts and integral equation methods. This work
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illustrates an example case in which ML methods can be used to
supersede human efforts in the development of predictive functions
that are generated by fitting large datasets. All of the raw training
data used in this article as well as the ML programs that are used
to compute the RDF, pressure, and internal energy of a LJ fluid
have been made publicly available at https://github.com/gtcraven.
The primary use of these programs is to avoid the computation-
ally taxing task of performing molecular simulations in order to
generate properties of the LJ system. This will be especially useful
when a large number of simulations are needed over various param-
eter values for: interfacing between scales in multi-scale physics
codes, analytical function fitting, molecular design, and other appli-
cations in which large batches of data are needed over diverse system
states.

Applying the developed LR-RDF method was shown to dra-
matically improve the predictive accuracy of generating the RDF
of a LJ fluid when compared to solving integral equations and
fitting human-guided functional forms. Typically, we found that
using the LR-RDF method reduced the error by an order of mag-
nitude in comparison to traditional theoretical methods. The ther-
modynamic properties generated using the developed KRR ML
method were also able to reduce the predictive accuracy when com-
pared to previous methods, but by a smaller factor, typically of
the order 2. The reason that the LR-RDF approach produces a
much larger error decrease for structural properties than the KRR
approach does for thermodynamic properties is because the dimen-
sionality and complexity of the structural functions is greater, and
therefore, previous theoretical methods have historically had dif-
ficulty producing accurate results for structural properties of the
LJ fluid. Said in more detail, the LJ thermodynamic properties
are fit to two-dimensional inputs, and therefore optimization and
regression over this data is much simpler than performing regres-
sion using the three-dimensional inputs that are used to fit the LJ
RDF.

The major disadvantage of applying the presented ML meth-
ods is that generating enough training data to sufficiently sample
a particular region of a system’s phase diagram can be computa-
tional expensive. Moreover, in some systems, this step may be so
computationally taxing that it precludes the use of ML to develop
predictive models. In fact, it should be noted that in any situ-
ation in which (a) data are only needed at a single state point,
(b) a simulation methodology exists that can accurately produce
properties of the system, and (c) no ML procedure has been pre-
viously trained to produce the properties of interest for the sys-
tem, performing a molecular simulation at this single point will be
much more computationally efficient than first generating train-
ing data and then implementing ML. As described in detail previ-
ously, however, we anticipate that there will be a number of sys-
tems and situations in which the present ML approaches will be
useful.

We have applied ML to produce particular properties of the
LJ fluid; however, the developed protocols should serve as general
blueprints that can be used to predict other structural, thermody-
namic, transport, and dynamical properties in a multitude of fluid
systems, including soft and complex fluids.66–75 Our future work
will address applications of ML in the development of predictive
functions for other properties of isotropic fluids. Extending the ML
methods developed in this article to the case of anisotropic fluids

is an important next step, and work in this direction is currently
underway.
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