
J. Appl. Phys. 128, 015301 (2020); https://doi.org/10.1063/5.0011145 128, 015301

An extended moments model of quantum
efficiency for metals and semiconductors
Cite as: J. Appl. Phys. 128, 015301 (2020); https://doi.org/10.1063/5.0011145
Submitted: 17 April 2020 . Accepted: 09 June 2020 . Published Online: 01 July 2020

 Kevin L. Jensen, Andrew Shabaev, Samuel G. Lambrakos,  Daniel Finkenstadt, John J. Petillo, Anna M.

Alexander, John Smedley,  Nathan A. Moody, Hisato Yamaguchi,  Fangze Liu, Amanda J. Neukirch, and Sergei
Tretiak

ARTICLES YOU MAY BE INTERESTED IN

Analytic model of electron transport through and over non-linear barriers
Journal of Applied Physics 127, 235301 (2020); https://doi.org/10.1063/5.0009759

Tunneling between density-of-state tails: Theory and effect on Esaki diodes
Journal of Applied Physics 128, 014502 (2020); https://doi.org/10.1063/5.0008709

An advanced 2ω method enabling thermal conductivity measurement for various sample
thicknesses: From thin films to bulk materials
Journal of Applied Physics 128, 015102 (2020); https://doi.org/10.1063/5.0007302

https://images.scitation.org/redirect.spark?MID=176720&plid=1401535&setID=379065&channelID=0&CID=496959&banID=520310235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=71bf76294ba1eff3502a31fdb96fd8874112c042&location=
https://doi.org/10.1063/5.0011145
https://doi.org/10.1063/5.0011145
http://orcid.org/0000-0001-8644-1680
https://aip.scitation.org/author/Jensen%2C+Kevin+L
https://aip.scitation.org/author/Shabaev%2C+Andrew
https://aip.scitation.org/author/Lambrakos%2C+Samuel+G
http://orcid.org/0000-0001-6363-0374
https://aip.scitation.org/author/Finkenstadt%2C+Daniel
https://aip.scitation.org/author/Petillo%2C+John+J
https://aip.scitation.org/author/Alexander%2C+Anna+M
https://aip.scitation.org/author/Alexander%2C+Anna+M
https://aip.scitation.org/author/Smedley%2C+John
http://orcid.org/0000-0001-6568-7841
https://aip.scitation.org/author/Moody%2C+Nathan+A
https://aip.scitation.org/author/Yamaguchi%2C+Hisato
http://orcid.org/0000-0003-3114-5280
https://aip.scitation.org/author/Liu%2C+Fangze
https://aip.scitation.org/author/Neukirch%2C+Amanda+J
https://aip.scitation.org/author/Tretiak%2C+Sergei
https://aip.scitation.org/author/Tretiak%2C+Sergei
https://doi.org/10.1063/5.0011145
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0011145
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0011145&domain=aip.scitation.org&date_stamp=2020-07-01
https://aip.scitation.org/doi/10.1063/5.0009759
https://doi.org/10.1063/5.0009759
https://aip.scitation.org/doi/10.1063/5.0008709
https://doi.org/10.1063/5.0008709
https://aip.scitation.org/doi/10.1063/5.0007302
https://aip.scitation.org/doi/10.1063/5.0007302
https://doi.org/10.1063/5.0007302


An extended moments model of quantum
efficiency for metals and semiconductors

Cite as: J. Appl. Phys. 128, 015301 (2020); doi: 10.1063/5.0011145

View Online Export Citation CrossMark
Submitted: 17 April 2020 · Accepted: 9 June 2020 ·
Published Online: 1 July 2020

Kevin L. Jensen,1,a) Andrew Shabaev,1 Samuel G. Lambrakos,1 Daniel Finkenstadt,2 John J. Petillo,3

Anna M. Alexander,4 John Smedley,4 Nathan A. Moody,4 Hisato Yamaguchi,4 Fangze Liu,4

Amanda J. Neukirch,4 and Sergei Tretiak4

AFFILIATIONS

1Naval Research Laboratory, Washington, DC 20375, USA
2US Naval Academy, Annapolis, Maryland 21402, USA
3Leidos, Billerica, Massachusetts 01821, USA
4Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

a)Author to whom correspondence should be addressed: kjensen@mailaps.org

ABSTRACT

The complexity of photocathode designs and detector materials, and the need to model their performance for short pulse durations, the
response to high-frequency photons, the presence of coatings and/or thinness of the absorptive layer, necessitates modifications to three-
step and moments models of photoemission that are used in simulation codes. In this study, methods to include input from computationally
intensive approaches, such as density functional theory to model optical properties and transfer matrix approaches to treat emission from
the surface or transport past coatings, by means of parametric models are demonstrated. First, a technique to accurately represent optical
behavior so as to model reflectivity and penetration depth is given. Second, modifications to bulk models arising from the usage of thin film
architectures, and a means to rapidly calculate them, are provided. Third, a parameterization to model the impact of wells associated with
coatings and surface layers on the transmission probably is given. In all cases, the methods are computationally efficient and designed to
allow for including input from numerically intensive approaches that would otherwise be unavailable for simulations.

https://doi.org/10.1063/5.0011145

I. INTRODUCTION

Models of photo-excitation and electron transport are needed
to predictively estimate the quantum efficiency QE and emittance
εn,rms of photoemitters with coatings or heterostructures that meet
the needs of future x-ray free-electron lasers such as the Linac
Coherent Light Source II (LCLS-II) and Dynamic Mesoscale
Material Science Capability (DMMSC) xFELs.1–3 The same
methods are argued to be useful to respond to the demands of
other technologically important applications and developments,
such as (i) beam optics codes, such as MICHELLE4–8 for the treat-
ment of pulsed or density modulated beams, (ii) simulations treat-
ing emission through and from negative electron affinity (NEA)
and/or roughened surfaces and semiconductors,9–18 (iii) simula-
tions in which processes generate a range of photon energies in
exotic bulk materials that leads to internal photo-excitation effects
as in detectors, photovoltaics, and optoelectronic devices,19,20 (iv)
photo-enhanced emission mechanisms for materials with coatings

or heterostructures used for energy conversion,21,22 and (v) photo-
emission processes modified by multi-photon emission,23 short
pulse effects,24,25 or rapid heating from high intensity lasers.26–28

Such examples share one or more features of light absorption over
a range of energies, transport within bulk materials, and/or electron
emission through or past surfaces with coatings or heterostructures
in a manner that complicates phenomenological models often used
to treat photoemission and generally referred to as Three-step
Models (TSMs)29–34 or Simple Moments models (SMMs).35,36

The present work reformulates a program began in a prior
work37 to upgrade the SMM to account for increasingly complex
physics associated with modern photocathode candidates; to enable
a better account of the physics of absorption, transport, and emis-
sion; and to implement the theory in simulation methods compati-
ble with beam optics code requirements and the utilization of the
theory for characterization and analysis of sources. We first briefly
recount the application of SMM to bulk materials such as metals
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(e.g., copper34) and semiconductors (e.g., multialkali antimonoides
with or without cesiated surfaces38 or graphene layers2,39 or perov-
skites20,40,41), in Sec. II. It then undertakes specific modifications to
extend the applicably of the underlying physics models and thereby
address opportunities associated with recent developments. In
particular, improvements to the SMM will account for materials
physics, optical parameters, and scattering; extend the optical
models to frequencies for which measured data are not available;
evaluate the transmission probability D(E) using exact methods for
surface barriers more complex than the simple triangular and
metallic (or “Schottky–Nordheim”42) barriers from which analyti-
cal models43 can be developed; and accounts for modifications
associated with thin photocathodes.44 Such modifications are
needed for modeling photoemission when conditions are rapidly
changing because small duration charge bunches37 are drawn from
metals and semiconductors with coatings and layers.2,45–47 The
changes fall into five categories:

1. parameterizations of the optical constants and laser penetration
depth extended to high energy regimes discussed in Sec. III,

2. material physics based parameters affecting, e.g., density of
states factors, effective masses, and scattering terms based on
density functional theory (DFT) and other methods outlined in
Sec. III C,

3. replacement of the (infinite extent) bulk semiconductor material
by a layer (or a thin film) of finite thickness presented in Sec. IV,

4. more complex transmission probabilities, accounting for applied
fields, surface coatings, resonances, and reflectionless well/barrier
combinations that require exact evaluation described in Sec. V, and

5. meso-scopic factors caused by surface contamination by high
work function materials such as carbon, different crystal faces,
effects of temperature and thermal-field emission, and field
enhancement due to surface roughness or geometric emitters28,48

contribute and require additional considerations.

The first four are treated in the present study; the last is treated sepa-
rately17,49 or part of on-going studies (e.g., temperature-dependence
of scattering factors for novel materials and their impact on the
transport models).

The extensions to SMM are constrained by two requirements:
first, their implementation is guided by the needs of simulation and
design, in particular, by the needs of beam optics codes and device
modeling requirements and second, they remain open to incorpo-
rating input from experiments, measurements, and details provided
by computationally intensive approaches such as density functional
theory50 and Monte Carlo simulations11 using parametric methods.

The need for computational expediency in contrast to compre-
hensive theoretical models51–54 is made apparent by efforts to
model the complications of surface roughness, work function and
other emission site statistical variation, delayed emission, and space
charge forces17,55 that are implicated in emittance growth, halo for-
mation,56,57 and non-optimal launch times associated with short
pulse length demands. The relentless demand for higher beam
brightness necessitates simulations of beam dynamics where fluctu-
ations and initial particle distribution affect the prediction of
photoinjector performance.28 How the beam optics codes treat the
emission process, therefore, has bearing. A 3D beam optics

simulation using a modern particle-in-cell (PIC) code for photo-
emission in an RF photocathode can have upward of 3–30� 106

macro-particles or more per beam bunch. Similar large scale
macro-particle counts are required when modeling micro- to meso-
scale rough surfaces features and/or surface material property varia-
tions in order to predict transverse energy spread. For very short
pulses, where the transport time of a photoexcited electron to the
surface is comparable to the duration of the laser pulse or when
scattered electrons contribute significantly to an emission tail exist-
ing after the laser pulse duration is over,7,9 a history of intensity
and field strength conditions (to say nothing of temperature) at
earlier times and the repetitive calculation of emission at each time
step during the beam pulse further complicate the nature of the
emission models that can be employed to model the origin of fluc-
tuations. A computationally expedient and simpler methodology
that permits generalizations enabling minimizing computation time
per emitted particle is needed. The reformulations developed in the
present work are restricted by computational expediency in how
they fulfill that need yet bring in the desired physics. The additional
demands associated with internal photoemission effects at all fre-
quencies associated with x-ray and γ-ray detectors add to the com-
plexity in a different but no less complicated manner.58

II. SIMPLE MOMENTS MODEL

A Simple Moments Model (SMM) derives from the same
framework responsible for the Fowler Nordheim and Richardson
equations59,60 and is structurally analogous to Three-Step Models
(TSMs) of photoemission,30,31,33,61,62 a phenomenological approach
in which separate models for absorption of photons, transport of
electrons through bulk material, and emission of electrons past a
surface barrier are combined. The nomenclature “Moments” is
used because both quantum efficiency and emittance are propor-
tional to the moments kzh i and k2?

� �
for QE and εn,rms, respec-

tively.36,63 In either case, it is the distribution of emitted electrons
over which the moments are taken that require the extensions to
the SMM developed herein, with which the momentum component
(and to what power) is considered being of secondary importance.
For that reason, even though the SMM methodology applies
equally to QE and εn,rms, for narrative simplicity, it is both more
convenient and likely more familiar to focus on the former. In its
zero temperature limit, SMM models quantum efficiency (QE) by

QEmetal ¼ 1� R(ω)ð Þ
�hω(2μ� �hω)

ðμ
μþf��hω

EdE Fλ(xm, E), (1)

QEsemi ¼ 1� R(ω)ð Þ
(�hω� Eg)

2

ð�hω�Eg
Ea

EdE Fλ(xm, E), (2)

where the scattering factor Fλ(x, E) is given by64

Fλ(xm, E) ;
ð1
xm

fλ(x
0, E) x0dx0, (3)

where �hω is the photon energy, R(ω) is the reflectivity, R(ω) ¼
reflectivity, D(E) is the density of states (assumed parabolic), μ is the
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chemical potential (or Fermi energy at T ¼ 0), Φ is the work func-
tion, ~E ¼ E þ �hω, and Eg , Ea are the bandgap and electron affinity.
The height above the Fermi level for metals f ¼ Φ� ffiffiffiffiffiffiffiffiffi

4QF
p

is the
work function reduced by the Schottky barrier lowering factorffiffiffiffiffiffiffiffiffi
4QF
p

, where Q ; q2=16πε0 ¼ α fs�hc=4 and α fs � 1=137:036 is the
fine structure constant.65 The factor xm(E) ¼ cos θm defines the
“escape cone” or the minimum angle for which Ez ¼ E cos2 θ
exceeds the barrier height and is

xm ¼ (μþ f)=(E þ �hω)½ �1=2 (metal),

[Ea=E]
1=2 (semi)

(
(4)

for metals characterized by a work function Φ or semiconductors
characterized by an electron affinity Ea. The scattering factor fλ
depends on the ratio between the laser penetration depth δ(ω) [see
Eq. (32)] and the mean free path between scattering events
‘ ¼ (�hk=m)τ, where �hk=m and τ are the velocity and the associated
relaxation time of the photoexcited electron, resulting in

fλ( cos θ, E) ;
1
δ

ð1
0
exp � x

δ
1þ p

cos θ

� �h i
dx

¼ cos θ
cos θ þ p(ω, E)

,

(5)

where p(ω, E) ¼ δ(ω)=‘(~E) (the tilde indicating that it is the energy
of the photoexcited electron that is used). It assumes that electrons
that have undergone a scattering event no longer have sufficient
energy to surmount the surface barrier as governed by the transmis-
sion probability D(~Ez), resulting in limits on the angular and energy
integrations on which QE depends. The integral in Eq. (3) is analyti-
cally given by

Fλ(x, p) ¼ 1
2
(1� x)(1þ x � 2p)� p2 ln

x þ p
1þ p

� �
: (6)

A. Metals

The SMM often makes further approximations to obtain ana-
lytic forms of Eqs. (1) and (2). For metals, near threshold, �hω is
close to f, and therefore, fλ( cos θ, E) � cos θ=[1þ p(ω, μ)]. Doing
so results in

QE � (1� R(ω))
3�hω(2μ� �hω)(1þ p)

ðμ
μþf��hω

E 1� x3m
	 


dE,

where p ¼ p(ω, μ). Replacing the integral with its trapezoidal
approximation gives to the leading order,59,66

QEmetal � 1� R(ω)
1þ p(ω, μ)

� �
μ(�hω� f)2

4�hω(μþ �hω)(2μ� �hω)
, (7)

which recovers the Fowler–DuBridge approximation QE/ (�hω� f)2

to leading order. Equation (7) enjoys good correspondence with data:
a comparison with the measured data of Dowell et al.34 using repre-
sentative values of the various frequency-dependent factors for copper
(Cu) gives the correspondence shown in Fig. 1, for which the value of
p ¼ mδ=�hkτ used entails that τ � 1:3 fs assuming δ ¼ 12:9 nm and

�hk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(μþ �hω)
p

(evaluated for λ ¼ 266 nm or �hω ¼ 4:661 eV):
this value is lower than, but nevertheless comparable to, the relaxation
times in copper for similar conditions.34,66 It does not, however,
account for variations in δ(ω), R(ω), or τ(μþ �hω) that will cause
changes as a function of frequency.

B. Semiconductors

A similar analysis for semiconductor parameters can be per-
formed using a triangular barrier model for the transmission prob-
ability,2 giving

QEsemi � 1� R
1þ p

� �
2s5

s02(1þ s0)(sþ s0)
, (8)

where s0 ¼ [(�hω� Eg)=Ea]
1=2, s ¼ [(�hω� Eg � Ea)=Ea]

1=2, and Ea
and Eg are the electron affinity and bandgap, respectively, which
recovers the parametric form suggested by Spicer29 and which com-
pares favorably to measured values (Figs. 8 and 9 of Ref. 2).

For bulk photocathodes under long illumination conditions,
low intensities that do not heat the photocathode, and photon
energies comparable to the surface barrier, the simple forms of
Eqs. (7) and (8) are well-suited for simulation and characterization.
Complications such as heating due to high intensity lasers leading
to additional emission mechanisms,26,27,35,67 ultrafast pulses23,24,68

and delayed emission,7,9,37 evolving surface conditions during oper-
ation or designed structures,2,69 large area emission from thin
materials44 with irregular surface conditions for which coatings70

or layers are present,17,39,45,46 or illumination at short wavelengths40

for which optical and material parameters are unavailable or inade-
quate require that the SMM be reformulated and methods devel-
oped for it to utilize more varied sources of parameters and
models. An auxiliary goal of the present work is to ensure that
the reformulated methods do not demand a computationally

FIG. 1. Quantum efficiency for copper34 (data courtesy of D. Dowell) compared to
the simple moments model of Eq. (7) for μ ¼ 7 eV, Φ ¼ 4:6 eV, F ¼ 50 eV/μm
(corresponding to a field of 50 MV/m and implying f ¼ Φ� ffiffiffiffiffiffiffiffi

4QF
p ¼ 4:3317 eV),

R(ω) ¼ 0:336, and p ¼ 5. Also shown are Fowler–DuBridge (FD) relations pinned
to QE values at the squares at �hω ¼ 4:66 eV and 6.2 eV.
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prohibitive numerical overhead or introduce black-box components
that would undermine their utility in beam optics codes, device
simulations, and characterization efforts (e.g., optimization routines
available in symbolic and computational packages for the determi-
nation of parameters).

III. OPTICAL MODEL

A simple model of the dielectric constant ε(ω) ¼ K(ω)ε0 is
derivable from a damped harmonic oscillator model applied to a
free-electron gas and can account for features of the optical proper-
ties of metals and semiconductors with large carrier concentra-
tions,71,72 but the same underlying Lorentzian forms naturally
emerge from a quantum theory of free-carrier absorption73,74

applied to semiconductors for a wide range of photon energies.
Rakić et al.75–77 have developed algorithms for modeling peaks in
the imaginary part of the dielectric function using a small number
of Lorentzians for metals and semiconductors parameterized
by optimization methods. Here, a means to incorporate many
Lorentzians is developed, allowing excellent matching with mea-
sured data over a large energy range and, importantly, providing a
means to parameterize Density Functional Theory (DFT) results
for which data do not exist or have not been extended to frequency
regimes of interest. For comparisons to experimentally measured
dielectric constants in Figs. 2–8, 11, and 12, data have been aggre-
gated (from tabulated data or digitally extracted) from commonly
used sources for metals and semiconductors77–83 and compared to
online databases.84

A. Lorentz–Drude (LD) model

A dielectric function K ωð Þ can be written as78

K ωð Þ ¼ 1þ χf ωð Þ þ χb ωð Þ, (9)

where χf ωð Þ and χb ωð Þ are intraband and interband electric sus-
ceptibilities. The intraband susceptibility is described parametrically
by the free-electron Drude–Zener model with the oscillator
strength f0 and the damping rate Γ0,

76

χf (ω) ¼ �
f0ω2

p

ω ωþ iΓ0ð Þ , (10)

whereas the interband susceptibility is described parametrically by
the simple semi-quantum model resembling the Lorentz result for

FIG. 2. Ki (ω) as a function of photon energy for copper. Dots: measured
data.77,79,80 Line: sum of the simple Drude and Lorentzian components evalu-
ated via Eqs. (10) and (11). Yellow dots are locations of �hωj for the Lorentz
resonances.

FIG. 3. The data associated with Y0(xi ) for copper, obtained by subtracting the
red line values from the black dot values in Fig. 2. Green vertical lines show the
locations of the xj resonances.

FIG. 4. The data of Fig. 2 for the middle-range energies and showing the con-
tributions of the resonant Lorentzians of Eq. (11) (R) and the asymptotic (LD)
lines for copper.
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insulators77 given by

χb(ω) ¼ �
XNb

j¼1

fjω2
p

ω2 � ω2
j þ iωΓj

, (11)

where

ω2
p ¼

q2

ε0m
ρo ;

16πQ
m

ρo (12)

is the plasma frequency for ρo electrons per unit volume and Nb is
the number of interband transitions with the frequency ωj, oscilla-
tor strength fj, and damping rate Γj.

The total dielectric constant is then the sum of the free and
bound components, or K(ω) ¼ Kf (ω)þ Kb(ω), both of which are
complex. Having obtained the dielectric function, the optical
parameters n and k are evaluated from its real and imaginary parts
K(ω) ¼ Kr(ω)þ iKi(ω) by

2n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
r þ K2

i

q
þ Kr ,

2k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
r þ K2

i

q
� Kr:

(13)

In turn, the reflectivity R(ω) and penetration depth δ(ω) are
obtained from

R(ω) ¼ (n� 1)2 � k2

(nþ 1)2 � k2
, δ(ω) ¼ c

2kω
(14)

[compare Eq. (32)]. For example, by adding two phenomenological
Lorenztian terms, the prediction of reflectivity for copper (see
Fig. 60 of Ref. 35) is improved. Systematic methods to evaluate and
optimize the weighting factors fj, damping factors Γj, and resonant
frequencies ωj have been treated by Rakić et al.77 and Adachi
et al.85 and can be applied to measured79–82,86 or calculated

(e.g., by DFT) values for both metals and semiconductors. In con-
trast, the rapid and repetitive determination of R(ω) and δ(ω), as
demanded by predictive models of photoemission and simulation
models used in beam optics codes, requires a reconsideration of
how the factors (fj, Γj, ωj) may be determined, with methods allow-
ing for flexibility and speed taking precedence and (depending on
application) extended to frequencies for which measured data may
not be available. A computationally expedient and simpler method-
ology that permits generalizations is needed.

B. Metal optical model

The method is first demonstrated for metals, beginning with
copper as a representative and well understood test case. ε(ω) is
taken to be the sum of three classes of terms: a low frequency
Drude component based on Eq. (10) and characterized by fd and
Γd , a high-frequency Lorentz component based on Eq. (11) charac-
terized by fo, Γo, and ωo such that the latter two are in some sense
“large”, and resonant components based on the j [ (1, N) frequen-
cies ωj and associated with fj and Γj. They are found for metals by
matching the imaginary part Ki(ω) to Eqs. (10) and (11) because
the Kramers–Kronig relations71 ensure that Kr(ω) can be deter-
mined from the same parameters. By introducing x ¼ �hω and func-
tion y(x), the forms of which are fashioned after the behavior of
Ki(ω), and by defining γ ¼ Γ=�h,

y(x; a) ;
γx

(x2 � a2)2 þ (γx)2
: (15)

Furthermore, let the measured (or calculated) data Ki(ω) be pro-
cessed such that it is mapped onto a regularly spaced set of values
�hωi ; xi (where Δ ; xiþ1 � xi) using, e.g., cubic spline fitting: the
“i” subscript will refer to that set of data, whereas the “j” subscript
is reserved to correspond to the resonant levels determined by
�hωj ¼ xj. Such a mapping enables methods drawn from finite dif-
ference techniques87 to be used for approximating derivatives and
finding local maxima. Let yi ; y(xi; a). The factors (fj, Γj, ωj) are
then determined as follows. Observe in advance that the fj so chosen
will be replaced by a fourth step and also that the plasma energy �hωp

evident in Eq. (11) has been folded into its definition. The method
of extracting Lorentzian parameters is adapted from techniques
familiar to spectral analysis88 and is undertaken in four steps:

1. evaluation of Drude parameters,
2. evaluation of Lorentz (�hωo, γo, fo) parameters,
3. evaluation of Lorentz (�hωj, γ j, fj) parameters, and
4. correction to the resonant fj parameters.

These steps are described next.

1. Drude

Set a! 0 and γ ! γd in Eq. (15) with

γd �
x3nyn � x31y1
x1y1 � xnyn

� �1=2
,

fd � x1y1
γd

x21 þ γ2d
	 
 (16)

FIG. 5. Comparison of measured K(ω) to results of the light-dependent resistor
(LDR) analysis (Steps 1–4) for both real and imaginary components for copper
data.77,79,80 The absolute value of the real parts is shown.
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for a suitably chosen small xn (n � 2), where ln y is approximately
linear in ln x. Although fd so evaluated gives a good fit to Ki(ω) for
a small ω, the non-optimization of the algorithm and its reliance
on potentially noisy data result in estimates of Kr(ω) being slightly
off there. That small offset [which affects R(ω)] can be mitigated by
fd ! hfd with h close to unity after Step 4 is performed: for copper,
h � 0:9 is used in Figs. 5 and 6, whereas h ¼ 1:28 is used for
Figs. 7 and 8.

2. Lorentz

Set a! �hωo ; xo and Γ! γo=�h. Approximate x=y(x) by a
quadratic in x2, or x=y � Aþ Bx2 þ Cx4 for a range of xa � xi � xb
with xa and xb chosen to span a region for which the polynomial

approximation to x=y(x) in x2 is reasonable. Letting
g(x) ¼ 1=(xy(x)), then

�hωo � ffiffiffiffiffiffiffiffiffi
xaxb
p

, g 0a ¼
gb � ga
xb � xa

,

γo �
ga
g 0a
� xa þ 2(�hωo)

2

� �1=2
,

fo � 1
γog 0a

:

(17)

In Fig. 2, xa ¼ 30 eV and xb ¼ 70 eV were chosen for the evaluation.
While the resonant γ j will be small (� O(1)), the γo will be large
(� O(10)).

3. Resonant

Finding the xj first requires removing the Drude and Lorentz
components: this is accomplished by subtracting the theory (red
line) from the measured data line in Fig. 2. Let Y0 be the resulting
set of data points, with the “0” indicating that only the Drude and
Lorentz components have been subtracted, but no resonant term
has as yet been removed. Y0 is shown in Fig. 4. The curve Y0(x)
shows a series of peaks taken to be near the xj, the selection of
which is an esthetic choice (e.g., the highest of the peaks and/or a
shape that appears to match a Lorentzian and/or progress toward a
desired behavior): “esthetic” means that no algorithm is involved,
but rather, the xj is selected on the basis of how they affect the
shape of y(x) when the xj resonant contribution is removed. This
entails that the xj is not selected in the order of magnitude, but
rather in the order that they best remove peaks and features. This is
acceptable for present purposes because although such a process
may be automated (in principle), (i) it meets the immediate needs
of developing a library of optical parameters that can be called as
required by simulation codes, (ii) it is accurate to the extent needed
for simulations of photocathode yield at a given wavelength, and

FIG. 6. Reflectivity R(ω) and penetration δ(ω)=δo as a function of wavelength
for copper, with δo ¼ 20 nm. Points marked “exp” are evaluated using the data
of Fig. 5.

FIG. 7. Comparison of measured K(ω) to results of the LDR analysis (Steps 1–4)
for both real and imaginary components for gold data.77,79,80

FIG. 8. Reflectivity R(ω) and penetration δ(ω)=δo as a function of wavelength
for gold,77,79,80 with δo ¼ 25 nm.
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(iii) simulations of detector performance sum over a (large) range
of frequencies responsible for photoexcited electrons so that small
variations as a function of frequency are smoothed. The by-hand
approach is, therefore, preferable for present purposes as it focuses
on important features and does not preclude future automation of
the process. The locations of the xj for copper are indicated by the
yellow-filled circles in Fig. 2. Let xn be the local extremum (peak or
valley) of a set of five points, and let ~yn be the corresponding
values of Y0(x), shown in Fig. 3, such that there are five pairs of
coordinates (xn�2, ~yn�2) � � � (xnþ2, ~ynþ2)

 �
. Using the five-point

finite difference approximation to the derivatives [Appendix
(A1.3.2) of Ref. 59],

y0n ¼
�~ynþ2 þ 8~ynþ1 � 8~yn�1 þ ~yn�2

12Δ
,

y00n ¼
�~ynþ2 þ 16~ynþ1 � 30~yn þ 16~yn�1 � ~yn�2

12Δ2 ,

then the location of the extremum xm [where y0(xm) ¼ 0] is
approximated by

xm ¼ xn � y0n
y00n

: (18)

The use of a 5-point scheme is advantageous when the shapes
of the extrema are more hyperbolic than parabolic, but the scheme
can occasionally introduce undesired effects for closely spaced
extrema due to the overlapping of the resonant terms (as occurs
when �hω is small). Introduce the coefficients A and B defined by

A ¼ yn þ 1
2
(xm � 2xn)y

0
n þ

1
2
xn(� xm þ xn)y

00
n ,

B ¼ xny00n � y0n
2xm

:

Introduce an initial value of s ; �A=2Bx2m, which is then iterated
according to

s � A(sþ 2)(sþ 1)(s2 þ 2sþ 4)
2Bx2m(3s

5 þ 15s4 þ 33s3 þ 44s2 þ 28sþ 8)
,

with four iterations generally being sufficient. Then, it is found that

xj ; (1þ s)xm: (19)

This approach is an iterative method to find a ¼ xj in Eq. (15)
when the location of its maximum is known. The last step is to
remove the resonant term from the Y0(xi) data points, or

Y jþ1(xi) ¼ Yj(xi)� fjy(xi; xj), (20)

after which the process is repeated to remove the next desired local
extremum at x jþ1 and ~y drawn from Y jþ1 until the resulting YNb is
of a desired flatness, where Nb is the number of resonant terms
required.

4. Weighting correction

The values of fj returned in Step 3 were temporary, only
serving to remove the influence of a local maximum or minimum:
each subsequent one corrupts the earlier fj because of the finite
width of y(x; xj) as governed by γ j. The final step is, therefore, to
renormalize the weighting factors fj. With γ j and xj determined, the
fj are found by inverting the matrix equation

Y ¼M � f , (21)

where Y and f are vectors of the length Nb (number of resonant
terms) such that [Y]i ¼ Y0(xi), [f]i ¼ fi, and M½ �ij¼
y(xi; xj)=y(xm; xj) is an Nb � Nb matrix, the form of which is deter-
mined from Eq. (15). Note that xm is evaluated for each associated
xj. The values of (ωj, δj, fj) as determined by these steps, along with
the Drude and Lorentz parameters, are shown in Table I for
copper.

The same exercise can be performed for other metals such as
gold, for which the parameters are shown in Table II, the behavior
of K(ω) being depicted in Fig. 7, and the R(ω) and δ(ω) plotted in
Fig. 8. The range in �hω over which K(ω) values are measured is

TABLE II. Optical parameters for gold using the Lorentz–Drude-resonant model of
Eqs. (10) and (11) as evaluated in Steps 1–4. Units are in eV. The R-terms are eval-
uated in the order they appear in the j column. The D- and L- rows are Drude and
Lorentz factors, respectively. The fD value is shown with the factor of h implicitly
included.

j �hωj γj fj j �hωj γj fj

D 0 0.0262 70.564 L 25.691 42.307 801.98
17 1.909 1.044 −0.6409 6 9.32 0.5973 −0.154 6
16 2.392 0.6644 −0.6887 5 10.28 6.402 0.874 5
12 2.783 0.5378 2.258 8 12.3 2.601 −0.515 2
13 3.108 0.681 1.451 4 13.22 2.988 0.857 8
11 3.887 1.737 4.258 7 17.43 2.403 −0.247 1
14 4.705 1.310 0.5908 3 18.45 1.449 −0.215 1
15 5.856 2.995 0.894 1 20.37 13.42 1.084
9 7.329 4.783 0.2931 10 20.85 1.485 0.035 35
18 7.685 1.152 0.5327 2 24.77 2.820 −0.515 3

TABLE I. Optical parameters for copper using the Lorentz–Drude-resonant model
of Eqs. (10) and (11) as evaluated in Steps 1–4. Units are in eV. The R-terms are
evaluated in the order they appear in the j column. The D- and L- rows are Drude
and Lorentz factors, respectively. The fD value is shown with the factor of h implicitly
included.

j �hωj γj fj j �hωj γj fj

D 0 0.0888 79.710 L 45.826 210.34 2611.5
11 1.435 0.8263 0.5554 4 8.789 5.070 0.771 8
9 1.901 0.9819 −2.370 8 11.96 1.602 0.112 4
1 2.695 1.223 4.158 5 14.41 6.247 0.659 3
3 3.616 1.178 1.486 7 17.44 4.418 0.095 79
10 4.768 2.017 −0.4978 6 25.43 3.842 0.239 7
2 5.06 2.363 4.396
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smaller than that for copper (90 eV for Cu compared to 30 eV for
Au), making the determination of the L-parameters affected.
No effort was made to mitigate the defect in order to show the
impact of non-optimized parameters: it is seen that the evaluation
remains reasonably robust for the estimation of R(ω) and δ(ω).
Optimization beyond the straightforward implementation of Steps
1–4 is deferred to a separate study. The absence of an optimization
step results in some metals (such as lead) being more challenging
to parameterize well but enables the steps to be implemented far
more easily. Specifically, metals such as lead can be characterized as
having higher parameter sensitivity, which is a numerical, rather
than physical, characteristic of their dielectric response and thus
require more refined parameter optimization.

C. Semiconductor optical model

The Drude–Lorentz (DL) susceptibility model provides a suit-
able phenomenological parametric representation of experimental
values for semiconductor dielectric functions.89 The application of
Steps 1–4 can be extended to the treatment of semiconductors but
subject to modifications. In insulators and semiconductors, where
Van Hove singularities [non-smooth points in the density of states
(DOS) where j∇k(Ek)j vanishes, and thus, Dj(�hω) is not a smooth
function of its argument] are of interest, this model can achieve the
more detailed representation of band edges in the optical spectrum
by including critical points associated with these singularities in the
joint density of states.90 For the interband transitions between two
bands, c and v, with energies Ec(k) and Ev(k), the susceptibility in
Eq. (11) can be written as

χb(ω) ¼ �
X
k

fcv(k)ω2
p

ω2 � ω2
cv(k)þ iωΓk

, (22)

where ωcv(k) ¼ Ecv(k)=�h, Ecv(k) ; Ec(k)� Ev(k), fcv(k) ¼ 2 Pcvj j2=
mEcv(k)ð Þ, and Pcv is the matrix element of the momentum operator.
Accordingly, close to the band edge, the imaginary and real parts of
the interband dielectric function ΔK(ω) ¼ 4πχb(ω) with susceptibil-
ity from Eq.(22) are given, respectively, by85,91,92

ΔKi(ω) ¼ πq2

m2ω2V

X
k

jPcvj2δ Ecv(k)� �hω½ �,

ΔKr(ω) ¼ q2�h2

mV

X
k

jPcvj2
E2
cv(k)� (�hω)2

2
mEcv(k)

,

(23)

where V is the volume and the δ-function ensures energy conserva-
tion. The sum over the δ-function in Eq. (23) can be turned to the
joint density of states D by

Dj(�hω) ¼ 1
V

X
k

δ Ecv(k)� �hω½ �

¼ 1
4π3

ð
Ecv¼�hω

dSk
∇kEcvj j , (24)

where Sk is the surface defined by constant Ecv(k) and the index j
labels critical points known as Van Hove singularities93 for which
∇kEcv ¼ 0. In three dimensions, the energy near critical points can

be expanded as

Ecv(k) ¼ Ecv(0)þ �h2

2m

X3
i¼1

αik
2
i :

Four possible Van Hove singularities exist, classified according to the
number of negative coefficients Mj:j [ {0, 1, 2, 3}, where M0 and M3

represent a maximum and a minimum in the spectrum where all αi

are positive (maximum) or negative (minimum), and M1 and M2 are
saddle points where one or two of the αi are negative. Various combi-
nations of critical points can be used to fit the dielectric function for
a large number of direct bandgap semiconductors.85,94–98 Near the
M0 critical point, in the range of energy where the expansion above is
valid, the imaginary part of K(ω) can be written as

Ki(ω) ¼ A
(�hω) p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hω� Eg

q
Θ(�hω� Eg), (25)

where p ¼ 2, Eg ¼ Ecv(0) is the bandgap, and Θ(x) is the Heaviside
step function. For all 3D critical points Mj, a general form of the
dielectric constant is99

K(ω) ¼ 1þ Ai j

(�hωþ iη) p
2

ffiffiffiffiffi
Eg

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg � �hω� iη

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hωþ Eg þ iη

q o
, (26)

with η vanishing. For the model leading to Eq. (26), the energy is
assumed to be relatively close to the critical point such that typically
Eg � �hω
�� �� ≃ Eg . In the case of a resonance structure possessing fea-
tures that are of interest, accurate parametric representations exist.91,92

The present intent, however, is to construct a dielectric response func-
tion over a wide range of energies by means of interpolation between
the M0 band edge, where K � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�hω� Eg
p

, and regions of a high fre-
quency, where �hω	 Eg and K � ω�p. In particular, capturing
general trends of K ωð Þ is desirable, consistent with the inherent sensi-
tivity of integral formulations of QE implicit in, e.g., Eqs. (1) and (2).

The extension of the Drude–Lorentz model to semiconductors
has additional complications due to the lower free-carrier density
of electrons in comparison with metals. The validity of the (quasi-
classical) Boltzmann transport equation (and hence the Drude–
Zener theory100) used in the modeling of solids in the determina-
tion of the dielectric function is altered by quantum mechanical
effects, as can be shown using either the density matrix or the
second order perturbation theory (both giving the same result): the
relaxation time at high frequencies becomes frequency dependent,
and this in turn alters the absorption coefficient. Briefly, the
absorption coefficient’s relation to the optical conductivity, which
is proportional to the relaxation time τ(ω) [Eqs. (114) and (126) of
Ref. 101], entail that the frequency dependence of τ(ω) transfers to
the absorption coefficient. A 1=ω3 dependence describes the
absorption coefficient instead of the 1=ω2 predicted by the quasi-
classical Boltzmann equation and is revealed by a quantum
mechanical calculation of the absorption coefficient for the polar
optical scattering mechanisms for, e.g., GaAs, InAs, InP, and
CdTe.101 At higher carrier concentrations, impurity scattering
increases in importance, and the characteristic dependence of the
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product of the absorption coefficient with the index of refraction
varies from ω�4 to ω�2 and is dependent on the ratio of the
photon energy to the initial electron energy.73,74,100,102 As a result,
a higher power of ω can appear in the denominator of Eq. (25).
Practically, it means that the value of p in Eq. (25) takes into
account the quantum effects discussed in Sec. III C, for which p is
expected to range from 3 to 4 instead of 2. Because measured data
at large ω can be lacking, a demonstration of the dependence will
include a description of the DFT methods that are used to estimate
the behavior of the optical constants at higher energies than are
available from experimental data so far considered.

D. Density functional theory

DFT calculations were performed considering an ideal system
for calculating optical properties of the alkali antimonides Cs3Sb
and CsK2Sb, as shown in Fig. 9. For present purposes, the parame-
terization analysis is only conducted for Cs3Sb. Electronic structure
calculations were done using the Vienna Ab initio Simulation Package
(VASP),103–105 including core state effects via the VASP implementa-
tion106 of Projector Augmented-Wave (PAW) methods.107 We used
the Local Density Approximation (LDA)108,109 to DFT110,111 for basic
relaxation of structures, choosing a plane wave cutoff energy of
520 eV. Lattice constants of 0.91 nm were chosen for Cs3Sb and
0.86 nm for CsK2Sb, in the Fm3m space group, to approximate exper-
imental values. For all structures, a k-mesh of 8� 8� 8 was used for
non-local exchange, resulting in actual k-spacings of 0:3� 0:3� 0:3
per 0.1 nm. The k-mesh was forced to be centered on the Γ point.

The properties calculated determine the proper choice of
density functional, as well as the particular system of interest.
Calculations for graphene, as well as other metallic and dielectric
systems, have been treated previously.112–115 For the present optical
calculations, we chose a hybrid functional (HSE06)116 that com-
bines a screened Hartree–Fock approach within DFT. The expres-
sion for the complex imaginary dielectric function was obtained by
summing over conduction bands:117 in a formulation reflecting

conventions of VASP calculations and at the risk of some confu-
sion, it is commonly represented as

ε(2)αβ (ω) ¼
4πe2

Ω
lim
q!0

1
q2

X
v,c,k

2ωkδ(ϵck � ϵvk � ω)

� uckþqeα juvk
� �

uvkjuckþqeβ
� �

, (27)

where for this equation only, e is the electron charge, uck and similar
are periodic parts of Bloch wave functions, Ω is the cell volume, ωk

is a multiplicity factor for each k-point, and transitions are made
from occupied to unoccupied states within the first Brillouin zone.

Real and imaginary parts of dielectric functions are connected
by Kramers–Kronig relations118 from which the optical constants
R(ω) and δ(ω) are calculated as per Eqs. (13) and (14). A compari-
son of measured vs calculated values of Ki(ω) for both Cs3Sb and
CsK2Sb are shown in Fig. 9. The DFT data for �hω are shifted, given
the inability of semi-local density functional models to reproduce
the absolute value of the bandgap: such shifts in the x-coordinate
are not uncommon. It is assumed, however, that for the present
study, DFT is sufficiently accurate for qualitatively estimating the
functional character of Ki(ω), which can then be adjusted paramet-
rically to fit a target functionally.

Although experimentally measured Ki(ω) data exist for the
multi-alkali antimonides, the energy range is generally not as
extensive as simulation desires. Extending the energy range of
Ki(ω) using DFT, for the purposes of estimating its functional char-
acter at higher energies, and performing a parameter fit results in
the family of curves shown in Fig. 10, where a conventional
Eg ¼ 1:6 eV value is chosen, and where the p-curves are normal-
ized so that they pass through an anchor point chosen to be 90% of
Ki(ω) at �hω ¼ 1:7478 eV, although the actual power that is selected
depends on how the Lorentz–Drude factors are chosen and used in
Fig. 11. The closest fits are for 3 , p , 4, compatible with the dis-
cussion regarding the Drude–Zener theory. The p ¼ 3:5 curve

FIG. 9. Measured Ki (ω) data compared to DFT Cs3Sb († and red line) and
CsK2Sb (
 and blue line). The DFT �hω axis has been shifted by
�hω! �hω� 0:7 eV (see the text for discussion). Gray lines show energies
characteristic of the harmonic frequencies of an Nd:YAG laser for comparison.

FIG. 10. Measured Ki (ω) (†)79,81 compared to Eq. (25) for different values of p.
The value of A for all p-lines was determined by demanding that the curve pass
through 90% of the Ki (ω) value for �hω ¼ 1:7478 eV, shown as a yellow dot.
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passes through the high Ki(ω) values well so that p is chosen.
Performing the �hωj analysis analogous to Steps 3 and 4 using the
parameters shown in Table III, but using Eq. (25) instead of the
Drude model of Eq. (10), gives rise to the red “Theory” line and
seen to match the data well. From the theory line, the R(ω) and
δ(ω) relations can be obtained, as in Fig. 12.

E. Perovskites

Experimental data for the dielectric function of cesium lead
halide perovskites is available, as is computational data for the

cubic phase.41,119,120 Cesium lead halide perovskites arrange in
lower symmetry phases at room temperature, with the experimental
data most likely measured for these phases. In the absence of more
conclusive experimental and computational studies, approximate
fits analogous to the methods above can be constructed using the
available information with regard to the bandgap Eg and the high-
frequency dielectric function K1 ¼ ε1=ε0.

The bandgap in cesium lead halide perovskites can be tuned
by replacing one halogen with another120 from the largest in
CsPbCl3, Eg � 3:1 eV, to a smaller in CsPbBr3, Eg � 2:4 eV, to the
smallest in CsPbI3, Eg � 1:7 eV. These approximate values can be
estimated using combinations of experimental121,122 and computa-
tional41,120 data.

Similarly, the high-frequency dielectric constant can be
deduced from experimental measurements of the exciton binding
energy, provided the effective masses are known,41 or directly cal-
culated120 using the density functional perturbation theory.123

Again, the exciton binding energy is most likely measured in low
symmetry phases: 20 meV (I), 40 meV (Br), and 70 meV (Cl),124

which is consistent with binding energies reported earlier.122

Estimates based on experiments are given in Ref. 41, where
K1 ¼ 4:5 (Cl), 4.8 (Br), and 5.0 (I). For CsPbI3, however, the
dielectric constant of 5.0 is taken from measurements on hybrid
organic–inorganic perovskite MAPbI3, which forms a cubic struc-
ture similar to CsPbI3, with Cs replaced by the organic cation of
methylammonium (CH3NHþ3 or MA). MA is one of two widely
used organic cations (the other is formamidinium NH2CH¼NHþ2
or FA) to stabilize the cubic phase. In general, the dielectric
constant in the range of 4:5–5 is consistent with the results of first-
principles calculations for several halides being 4.1 (Cl), 5.0 (Br),
and 6.3 (I).120

A simple fit is based on approximation of the dielectric func-
tion near the M0 van Hove critical point at the edge of the
bandgap, believed to be formed by the valence and conduction
band at the high symmetry point R of the Brillouin zone. At the
M0 point, and introducing s ; �hω=Eg , the real and imaginary parts

FIG. 11. Measured Ki (ω) (†)79,81 compared to the resonant terms of Eq. (11),
but instead of Eq. (10), Eq. (25) is used for the red line, for which p ¼ 3:5 (as
in Fig. 10).

TABLE III. Optical parameters for Cs3Sb. DL parameters are absent; instead,
Eq. (25) is used with A = 152.1982, p = 3.5, and Eg = 1.6 eV. j is the order in which
the resonant terms are subtracted in removing the peaks.

j �hωj γj fj j �hωj γj fj

35 1.336 0.322 3 2.981 32 3.306 0.096 01 0.656 5
34 1.538 0.248 2 5.702 8 3.394 0.133 4 1.791
14 1.595 0.043 19 4.071 17 3.496 0.089 38 0.832 6
33 1.639 0.082 28 −0.2193 9 3.825 0.221 1.488
36 1.655 0.758 4 −1.765 25 3.975 0.088 26 0.725 5
15 1.797 0.003 73 0.1212 5 4.087 0.114 2 2.868
16 2.099 0.111 9 1.405 18 4.24 0.056 75 0.270
7 2.224 0.165 4 2.939 6 4.418 0.291 5 2.625
1 2.337 0.170 6 12.19 10 4.583 0.116 3 1.174
29 2.394 0.116 1 −1.865 19 4.703 0.102 6 0.179 6
2 2.551 0.158 3 6.065 11 4.837 0.146 9 0.421 4
28 2.693 0.093 57 −0.8654 21 4.953 0.113 4 0.099 34
3 2.792 0.128 4 7.723 20 5.097 0.123 5 0.158 5
27 2.839 0.171 3 −1.645 12 5.441 0.091 88 0.582 8
30 2.894 0.077 55 0.2366 23 5.599 0.098 76 −0.113 5
31 3.041 0.131 0 0.1525 24 5.709 0.122 5 −0.077 27
4 3.112 0.336 4 6.963 22 5.883 0.123 3 −0.217 9
26 3.232 0.123 1 −1.847 13 6.01 0.185 9 0.775 4

FIG. 12. Reflectivity R(ω) and penetration δ(ω)=δo as a function of wavelength
for Cs3Sb found from standard optical data,79,81 with δo ¼ 75 nm.
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can be approximated as

Kr(ω) ¼ aþ b
s p

2� ffiffiffiffiffiffiffiffiffiffi
1þ s
p � ffiffiffiffiffiffiffiffiffiffi

1� s
p

Θ(1� s)
h i

,

Ki(ω) ¼ b
s p

ffiffiffiffiffiffiffiffiffiffi
s� 1
p

Θ(s� 1),

(28)

where Θ(x) is the Heaviside step function and a and b are numeri-
cally determined by matching the LDR model with DFT simula-
tions (or measured data), but which are understood as arising from
the coefficients of Eq. (26). For the three materials shown in
Fig. 13, a ¼ 1 for all, and b ¼ 12.4, 16.0, and 21.2 for CsPbCl3,
CsPbBr3, and CsPbI3, respectively. For small �hω, p ¼ 2, but as with
the Drude–Zener discussion (Section III C), its value shall be set by
fits to the data.

For the purposes of demonstrating the methodology on
perovskites, therefore, first consider the more tractable lead halide
perovskite PbCI3N2H5, as shown in Fig. 14, to demonstrate perfor-
mance, with the results shown in Figs. 15 and 16 using Table IV
parameters. The method is then applied to cesium lead halide cases
CsPbX3 for X ¼ (Br, Cs, I), in Fig. 17. In these applications, the
method is clearly not optimized but is rapid and flexible and

provides a reasonable behavior of the critical parameters R(ω) and
δ(ω), particularly for high photon energies �hω. Moreover, it allows
for a substantial adjustment of parameters in an algorithmic manner
and, therefore, may lead to an automated determination of the reso-
nant and DL parameters, closer to the spirit of Rakić et al.,75,77 but
for many more ωj components. For example, many of the more
rapid variations in Ki(ω) can be mapped by artificially restricting the
size of γ j and using more resonant terms (ωj) where a detailed struc-
ture is present. It is cautioned that attention to fine structure,
however desirable as a matter of accuracy, is not necessary in simula-
tions that span a broad range in the spectrum: variation within that
range is of greater interest and is more consequential when a range

TABLE IV. Optical parameters for lead halide perovskite PbCI3N2H5. DL parameters
are absent; instead, Eq. (25) is used with A = 90, p = 2.6, and Eg = 2 eV.

j �hωj γj fj j �hωj γj fj

38 −0.9919 1.434 0.071 98 6 12.94 2.627 0.497 6
56 1.940 0.5407 −0.102 2 19 13.7 0.9547 −0.050 37
31 2.434 0.6001 0.509 3 18 14.54 0.7026 0.098 8
55 2.495 0.4193 −0.240 5 50 14.97 0.4653 0.134 8
54 2.649 0.1511 −0.209 7 52 15.25 0.2310 0.045 29
11 2.792 0.6273 2.601 20 15.68 1.3720 0.236 2
1 2.959 0.1687 2.922 53 16.15 0.6062 0.014 08
32 3.049 0.2493 −0.821 8 51 16.54 0.4444 0.081 02
2 3.255 0.5134 −1.508 7 17.02 0.7430 0.333 2
33 3.769 0.4166 0.350 2 4 17.69 0.4592 0.591 6
12 4.002 0.539 0.535 2 21 18.74 1.518 0.238 6
34 4.168 0.4703 0.425 9 22 19.14 0.6398 0.061 48
41 4.516 0.4247 −0.220 3 28 19.94 0.5764 0.110 7
15 5.127 1.0100 −1.117 10 20.98 1.570 0.279 4
35 5.300 0.5067 0.467 4 23 22.09 1.656 0.114 4
42 5.669 0.4418 −0.271 8 25 22.90 1.394 0.127 1
36 6.449 0.3569 0.013 81 24 23.92 0.8345 0.146 1
37 6.568 0.4259 0.019 61 26 25.52 1.294 0.084 56
16 6.679 2.5940 −1.198 27 26.64 0.7474 0.061 6
13 7.429 0.2069 1.064 44 27.82 0.5566 0.024 73
3 8.043 2.0560 3.225 47 28.28 0.8834 0.022 8
14 8.912 0.3308 0.392 5 48 31.20 0.9443 0.019 05
9 9.424 1.1630 1.277 46 32.12 0.8113 0.020 17
17 10.18 0.8626 0.610 3 29 33.17 0.6884 0.010 66
39 10.36 0.1339 0.059 74 43 34.37 0.8436 0.024 05
5 10.93 0.6245 1.087 45 35.43 0.5430 0.022 2
8 11.37 0.5368 0.325 1 49 39.89 1.589 0.014 61
40 11.75 0.1583 0.068 8 30 40.91 0.7115 0.023 62

FIG. 14. Lead halide perovskite PbCI3N2H5.

FIG. 13. Real (thin dashed lines) and imaginary (thick solid lines) K(ω) for
three perovskite materials CsPbCl3, CsPbBr3, and CsPbI3, based on Eq. (28).
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of frequencies are present (as for detectors) or can be investigated
for particular frequencies (as for photocathdoes). Therefore, the LDR
method of extracting K(ω), and thereby R(ω) and δ(ω), is signifi-
cantly advantageous for the simulation of internal photoemission
processes, characterization of photocathode materials, and utilization
by beam codes. Further optimizations are not precluded and will be
taken up elsewhere. Finally, DFT simulations of perovskites with a
top cesium layer cause changes in the work function58 and in turn
introduce changes in the LDR parameters that can presumably be
accommodated: such a study will be reported separately, but an indi-
cation of how surface layers affect emission are considered in Sec. V.

IV. THIN FILM MODEL

A thin film model differs from the bulk calculation: in the
former, reflections occur at the substrate (back contact), and such
reflections from a metallic substrate have been long suspected to be
potentially important.125 Specifically, with proper engineering, an
increase in the quantum efficiency is expected.44 Such “etalon”
cathodes70 further decrease the response time of a photocathode by
curtailing how far into a bulk material electrons are photoexcited

FIG. 15. Ki (ω) determined using DFT-calculated optical values for lead halide
perovskite PbCI3N2H5. Equation (25) is used for the blue line, for which
p ¼ 2:6.

FIG. 16. δ(ω) determined using DFT-calculated optical values for lead halide
perovskite PbCI3N2H5. Copper shown for comparison in R(ω) but is not visible
for δ(ω) for the limits shown.

FIG. 17. R(ω) and δ(ω) evaluated using DFT-calculated optical values for
cesium lead halide perovskites CsPbX3 with X ¼ (Br, Cl, I).
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and thereby limiting the transport time to the surface.7 The meth-
odology to analyze them is first applied to the well-known bulk-
vacuum problem and then extended to treat a thin film on a metal-
lic substrate.

A. Bulk-vacuum emission

From Maxwell’s equations for the monochromatic electromag-
netic field of the frequency ω, c~∇� ~H þ iωK ωð Þ~E ¼ 0 and
c~∇�~E � iωμ ωð Þ~H ¼ 0,118 where in non-magnetic materials’
permeability is μ0 ¼ 1=ε0c2, it follows that

c2∇2 þ ω2K ωð Þ� �
~E ¼ 0: (29)

In general, the dielectric function, K ωð Þ ¼ 1þ χf þ χb, includes
both intra- and interband susceptibilities. In conductors, however,
the imaginary part of the intraband component dominates accord-
ing to Eq. (10) as χf ¼ iσ=ω, where σ ¼ f0ω2

p= 4πΓ0ð Þ is the Drude
conductivity and Eq. (29) then turns into c2∇2 þ ω2½ �~E ¼ �iσω~E.
Assuming the incident laser is along the x̂-direction, the electric

field ŷ �~E ¼ Ey is given by Ey(x, t) ¼ Eoeiκx�iωt , with the associated
magnetic field Hz ¼ Hoexp(iκx � iωt) with Ho ¼ (cκ=ω)Eo, where
κ is the wave number, and then Eq. (29) for the homogeneous
medium entails,

�c2κ2 þ ω2K ωð Þ ¼ 0: (30)

The complex index of refraction n̂ ; n(ω)þ ik(ω) is then

n̂ ;
cκ
ω
¼

ffiffiffiffiffiffiffiffiffiffiffi
K ωð Þ

p
: (31)

The imaginary part =(n̂) ¼ k(ω) leads to dampening as light pene-
trates the bulk material. The penetration depth introduced in
Eq. (14) is found from how intensity decays, which is proportional
to jEj2, and therefore,

�@x ln jE(x)j2
	 


;
1

δ(ω)
¼ 2ωk

c
: (32)

Using the convention that terms in vacuum are designated by a “0”
subscript and those in bulk by a “1” subscript, then when the
wave is incident on the surface, part of the wave is reflected
or Er ¼ rE0exp(� iκ0x � iωt) and part is transmitted or
Et ¼ tE0exp(iκ1x � iωt). Because E(x) ¼ t1Eoeiκx in bulk, δ(ω) is
independent of x. Demanding continuity of E and @xE across the
surface results in equations readily handled by introducing a matrix
M and a coefficients vector C defined by

Mn(x) ;
eiκnx e�iκnx

iκneiκnx �iκne�iκnx

� �
, Cn ¼ tn

rn

� �
(33)

for which the relations of continuity at the surface are compactly
expressed as

M1(0) � C1 ¼ M0(0) � C0, (34)

with the boundary conditions t0 ; 1 and r1 ; 0. The solution of
the matrix equation results in the commonly known relations

t1 ¼ 2n̂0
n̂1 þ n̂0

, r0 ¼ n̂0 � n̂1
n̂0 þ n̂1

, (35)

in terms of which the reflection coefficient R0 ¼ jr0=t0j2 is given by
the well-known result,

R0(ω) ¼ n̂0 � n̂1
n̂0 þ n̂1

����
����
2

¼ (n1 � 1)2 þ k21
(n1 þ 1)2 þ k21

, (36)

where n̂ ¼ n� ik and n0 ¼ 1 have been used.

B. Thin film on a metallic substrate

Now, let the photocathode material be deposited to a thickness
L, which can be nanometers to micrometers in thickness, on the
surface of a metal substrate. This is schematically shown in Fig. 18.
The coefficients Cn are altered by the introduction of another rela-
tion that must be satisfied, in addition to Eq. (34), of the form

M2(L) � C2 ¼M1(L) � C1 (37)

but now with the boundary conditions t0 ; 1 and r2 ; 0. The
resulting matrix equation,

C2 ¼ M2(L)
�1 �M1(L) �M1(0)

�1 �M0(0) � C0, (38)

with t0 ¼ 1 and r2 ¼ 0, may be solved for r0 and t2. Introducing

FIG. 18. Schematic of incident light on a photocathode thin film of the thickness
L deposited on a (metal) substrate. Coefficients of the transmitted and reflected
waves are labeled by the region (0 ¼ vacuum, 1 ¼ photocathode, 2 ¼ sub-
strate). No wave is incident from the right (r2 ¼ 0), and normalization is such
that t0 ¼ 1.
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the compact forms [recall Eq. (31)]

A ¼ (n̂1 � n̂2)(n̂0 þ n̂1)exp(iκ1L),

B ¼ (n̂1 þ n̂2)(n̂0 � n̂1)exp(� iκ1L),
(39)

where n̂0 ¼ 1, then it is found

r0 ¼ BþA
n̂0 þ n̂1n̂0 � n̂1ð ÞBþ n̂0 � n̂1n̂0 þ n̂1ð ÞA , (40)

t2 ¼ 4n̂1n̂0
Aþ B

� �
r0exp(�iκ2L): (41)

Alexander et al.44 observe that the simple vacuum-bulk solution of
Eq. (35) is recouped in the limit that k1L! 1, but an equivalent
method is to take n̂2 ! n̂1 for which A! 0, and Eq. (35) is
directly recovered. Continuing, the coefficients for the photocath-
ode film are given by

C1 ¼ t1
r1

� �
¼ 1

2n̂1

(n̂1 þ n̂0)þ (n̂1 � n̂0)r0
(n̂1 � n̂0)þ (n̂1 þ n̂0)r0

� �
: (42)

The reflection coefficient at the film-substrate boundary is then

R1(ω) ¼ r1e�iκ1L

t1eiκ1L

����
����
2

¼ n̂1 � n̂2
n̂1 þ n̂2

����
����
2

, (43)

as may have been anticipated by Eq. (36). The electric field E in the
film is the top element of M1(x) � C1 or

E1(x) ¼ Eo t1e
iκ1x þ r1e

�iκ1x
	 


(44)

for which the intensity Iω(x)/ jE(x)j2 may be evaluated given the
material parameters n̂2, n̂1, and n̂0 ¼ 1. The interference between
the transmitted and reflected waves, however, means that a constant
dampening factor similar to Eq. (32) may not always be possible:
depending on n1 and k1, absorption may peak within the film
rather than at the surface, with consequences for quantum effi-
ciency QE and emittance εn,rms due to losses associated with photo-
excited electrons transporting back to the surface.

Multi-alkali antimonide photocathode materials (e.g., Cs3Sb
and CsK2Sb) are under active consideration to meet the needs of
future x-ray Free-Electron Lasers (xFELs) because they (along with
III–V semiconductors such as GaAs) are well-established high
quantum efficiency photocathodes once the appropriate surface
treatments are implemented (although at the cost of limited life-
time).2 Two examples are indicative for parameters drawn from the
parameters for Cs3Sb-on-Cu for λ ¼ 532 nm and CsK2Sb-on-Ag
for λ ¼ 650 nm, referred to as cases A and B, respectively (compare
to, for example, Cs2Te, with 0:8 & n & 1:8 and 0:3 & k & 0:7 for
λ ¼ 254 nm126), compare to values shown in Table V for common
photocathode materials. In both cases, let L ¼ λ=3. The intensity is
proportional to jE1(x)j2 with E1(x) given by Eq. (44). Also shown
is the L! 1 (bulk) calculation, where the decay is governed by
Eq. (32). Although the values of n(ω) in both cases are approxi-
mately λ=L, the higher value of k(ω) in Case A leads to a rapid
decline as x increases so that reflection off the substrate and the

interference effects it entails in E1(x) are mitigated. In Case B, con-
structive interference effects can occur so that the intensity has
peaks further from the surface. As a result, the escape cone is nar-
rowed, and therefore, the QE and εn,rms will be affected.

The emergence of the constructive interference effects as n̂1
changes can be investigated. Figure 19 considers a hypothetical
example for which =(n̂p) ¼ k stays fixed at k ¼ 0:3, and the index of
refraction <(n̂p) ¼ n changes from 1.0 to 4.5 for the case of a bulk
material (L! 1) and a thin film (L ¼ λ=3) with λ ¼ 600 nm and
n̂s ¼ 0:5þ 5:0i. When k is increased, the oscillations are damped and
the bulk behavior recovered; conversely, when it is smaller, interference
effects are stronger and the oscillations, similar to those in Fig. 20, are
correspondingly larger, particularly when L=λ is close to an integer.

For actual materials, the dependence of both n and k on ω
results in maps of Iω(x) of greater complexity. The example of a
layer of Cs3Sb, of thickness L ¼ 160 nm, on a substrate of copper
in Fig. 21 shows both Iω(x), which better shows the interference
effects giving rise to peaks in the intensity, and ln (Iω(x)) in Fig. 19,
which better gives a sense of the decay of the intensity into the
film. Practically, the actual behavior of n̂p(ω) affects choices regard-
ing the thickness of the film effect and the optimal choice of the
substrate. Theoretically, the departure of ln (Iω(x)) from linearity
affects both TSM and moments models2,35,37 of the quantum effi-
ciency QE, and the presence of peaks in Iω(x) within the film has
implications for emittance εnorms.

44 Both the exploration of configu-
rations and material choices and the simulation of photoemitter
performance are, therefore, enhanced by having a computationally
efficient model of the optical properties and an ability to predic-
tively estimate them by DFT as in Sec. III E.

V. EMISSION PROBABILITY MODEL

Insofar as a high quantum efficiency is a primary metric of
photocathode utility for photoinjectors,69 a notable feature of the

TABLE V. Approximate values of real and imaginary parts of n̂ for typical
wavelengths of technological interest. Data for GaAs, approximated from Table V of
Ref. 86, shown for comparison.

λ (nm) 1064 800 650 532 405 355 266 206

�hω (eV) 1.17 1.55 1.91 2.33 3.06 3.49 4.66 6.02
Ag n 0.405 0.469 0.571 0.74 1.10 1.28 1.51 1.56
Ag k 7.36 5.28 4.06 3.08 2.11 1.81 1.44 1.23
Au n 0.118 0.144 0.216 0.406 1.34 1.51 1.37 1.16
Au k 6.73 4.75 3.53 2.43 1.89 1.49 1.64 1.06
Cu n 0.414 0.328 0.365 0.582 1.26 1.25 1.54 1.13
Cu k 7.44 5.31 4.01 2.87 2.20 1.93 1.77 1.66
Pb n 2.97 2.19 2.76 2.79 1.56 1.23 1.05 0.708
Pb k 6.50 4.48 3.72 4.05 3.76 3.25 2.50 2.16
Cs3Sb n 3.61 3.73 3.81 2.96 1.98 1.37 1.01 0.378
Cs3Sb k 0.0434 0.512 1.26 2.12 2.24 1.98 1.70 1.16
CsK2Sb n 3.19 3.17 3.11 3.21 2.34 1.68 1.23 0.717
CsK2Sb k 0.123 0.313 0.564 0.992 2.06 1.84 1.55 1.47
GaAs n … 3.68 3.83 4.13 4.42 3.54 3.66 1.26
GaAs k … 0.09 0.18 0.34 2.07 2.02 3.34 2.47
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highest QE photocathodes is the incorporation of cesium in the sto-
ichiometry and/or its presence as a surface layer127–130 to reduce
the work function or eliminate it as for the III–V negative electron
affinity, or NEA, photocathodes.131,132 For the latter cathodes,
Spicer131 and Fisher et al.133 proposed a narrow, or “interfacial,”
barrier at the surface, often represented as a tall triangular barrier
but of sufficient thinness that tunneling electrons mostly pass
through. For other metals and semiconductors for which a submo-
nolayer covering of cesium acts to reduce the barrier height to
emission, the manner by which the barrier is reduced, is a

consequence of dipole effects described successfully by phenome-
nological theories.66,134,135 Our investigations of coatings on surfaces
using DFT have suggested that the hypothetical triangular barrier
may, in fact, be better treated as a potential well37,43 for which the
qualitative features of a triangular barrier are mimicked. The barrier-
well structure resulting from those simulations qualitatively resem-
bled a model of photoemission from a metal with a partial alkali or
alkali earth coating on the surface proposed by Fowler in his treat-
ment of “selective” photoemission (the transmission of electrons
from the conduction band of a metal first through a barrier then
past a well with the barriers and wells being square, or constant
potential, regions), which, although challenged, matched data.136

Here, a quantification of the behavior resulting from a coating layer
is undertaken. The evaluation of the transmission probability
D[E(k)] demonstrates that the electrons that most contribute to QE
are those for which the normal energy Ez ¼ �h2k2z=2mn [in contrast
to E? that appears in the mean transverse energy (MTE) associated
with emittance]. These electrons are sufficiently above the conduc-
tion band minimum that effective mass modifications do not arise;
that is, the “effective” mass of the electron can be taken as the free-
electron mass (nearly free-electron approximation). This approxima-
tion is made throughout. In addition, for the one-dimensional (1D)
transmission problem, it is convenient to use kz rather than Ez and
to suppress the z-subscript, as shall be done below.

A. Potential model of a coating

The Pöschl–Teller (PT) potential well,137 aka sech2 poten-
tial,138 is modified (mPT) to be

Vpt(x) ¼ � �h2ν(ν þ 1)
2ma2

sech2(x=a): (45)

For integer ν in Eq. (45), D(k)! 1 such that all incident electrons
for a particular k are transmitted. We have shown previously that
analogous behavior occurs for rectangular, triangular, and parabolic

FIG. 19. Intensity Iω(x)/ jE(x)j2 in arbitrary units as a function of the distance
x (nm) from the surface and λ (nm) for a Cu substrate with a Cs3Sb thin film of
thickness L ¼ 160 nm. (top) Iω(x) (a.u.) (bottom) ln (Iω(x)).

FIG. 20. Intensity Iω(x)/ jE(x)j2 for (A) Cs3Sb-on-Cu for λ ¼ 532 and (B)
CsK2Sb-on-Ag for λ ¼ 650 nm. In both cases, the film is of thickness L ¼ λ=3.
Values of n̂(ω) for both the substrate and the film are drawn from Table V.
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wells,37,43 wherein for an arc of k values, reflectionless transmission
occurs. For the purposes of constructing an analytic representation of
D(k) useful for the simulation of QE, however, the behavior of D(k)
with respect to a particular k for the sech2 potential is advantageous,
and therefore, it shall be used exclusively here. The justification is
because macro-averaging of the potentials associated with coatings, as
obtained from DFT, closely conforms to the sech2 potential.37

For the non-integer ν in Eq. (45), then reflection can occur
and can be determined using the transfer matrix approach (TMA)

following methods described previously.43,59,139 For a potential
mimicking a coating, V(x) is given by

Vpt(x)! �ΔVsech2 x � xo
an

� �
, (46)

where xo specifies the location of the monolayer coating and an
is ostensibly given by the Bohr radius for the nth shell of the
coating atom or an ¼ n�h=α fsmc. For cesium, n ¼ 6; therefore,
a6 ¼ 0:3175 nm. Also, a representative potential is shown in Fig. 22.

As in Ref. 43, D(k) can be plotted with increasing ΔV to
reveal when reflectionless conditions occur: an example for cesium-
like parameters is shown in Fig. 23. Clearly, specific values of ΔV
are associated with D(k) ¼ 1 for all k. In between, reflection for
small k occurs. ΔV is correlated to the strength of the dipole associ-
ated with sub-monolayer coatings of cesium on surfaces in
Gyftopoulous–Levine theory,59,66,135 and is, therefore, related to the
degree of submonolayer coverage of cesium. Therefore, a represen-
tative selection of ΔV � Ry=4 needs to be parameterized. A
contour representation of that region in shown in Fig. 24.

The region between the maximum reflection near ΔV ¼ 0:1Ry

and the reflectionless condition near ΔV ¼ 0:164Ry shows condi-
tions ranging from significant reflection for a small k to near total
transmission for all k. For a step-function potential barrier, D(k) is
known analytically59 to be given by D(k) ¼ 4kk0=(kþ k0)2 with
k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2o
p

and �h2k2o=2m ¼ Vo equal to the height of a step-
function barrier, corresponding to the asymptotic limit (as the field
vanishes) of Fowler and Nordheim’s triangular barrier DFN (k)
[compare Eqs. (15) and (23) of Ref. 37]. Such limits have but one
independent variable (the barrier height), whereas the ad hoc trian-
gular barrier of Spicer and Fisher et al. are further characterized by
a field. As previously shown,37 the triangular barrier model is a fair
representation of the sech2 well in that the behavior of D(k) in
between the reflectionless (integer ν) regions qualitatively resembles
the step potential D(k). Therefore, a rapid two-parameter model of

FIG. 21. Hypothetical intensity Iω(x)/ jE(x)j2 in arbitrary units for λ ¼ 600 nm
and k ¼ 0:3 as a function of the distance x from the surface and n ¼ <(n̂).
(top) L! 1 or a bulk material and (bottom) l ¼ λ=3 or a film.

FIG. 22. Vpt (x) for ΔV ¼ Ry as per Eq. (22), composed of Np ¼ 12 discrete
line segments for TMA analysis. The spacing of xj is chosen so that the points
are more densely spaced near xo.
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D(k) for regions where reflection is significant for the sech2 poten-
tial wells is sought so as to quantitatively account for the presence
of coatings.

B. Analytic two-parameter D(k) model

Let each line shown in the waterfall plot of D(k) of Fig. 24 be
indexed by j with the depth of the well given by ΔVj ; fjRy and
fj ¼ j fmax=Nv , for which Fig. 24 sets fmax ¼ 0:25 and Nv ¼ 96.
The reflectionless conditions then occur for j ¼ 21 and 62

(corresponding to f21 ¼ 0:0547, ν ¼ 1 and f62 ¼ 0:1615, ν ¼ 2).
The Dj(k) for 39 � j � 62 are shown in Fig. 25, approximately cor-
responding to the region where 1:5 � ν � 2. In examining the
reflections that occur in that region, a sampling of which are shown
in Fig. 25, it is evident that a better approximation to D(k) for the
values of well depth that show reflection is reminiscent of the step
potential. A two-parameter candidate is

D(k) � kr

k2r þ k2ra
	 
1=2 , (47)

where ka and r are to be determined (and not to be confused with
the notation for the optical constants in Secs. III and IV). Define a
new kj by the relation Dj(kj) ¼ 1=2 whereby k2ra ¼ 3k2rj and result-
ing in

Da
j (k) �

krj

k2rj þ 3k
2rj
j

� �1=2
: (48)

The best least-squares values of the remaining parameter rj are
straightforward, resulting in the approximations shown by lines in
Fig. 25.

Beam simulations4,7 demanding evaluations of QE over
sub-μm-scale areas and sub-ps time steps entail a large number of
calls to the algorithms for generating QE when modeling an elec-
tron bunch: the number scales as N2

xNt , with Nx ¼ L=Δx and
Nt ¼ T=Δt, with L and T being the diameter of the emission area
and the duration of the pulse, respectively. Device simulations for
detectors, for which pair production and Compton scattering can
result in energetic electrons that pass a bulk material/a contact
barrier,40 have analogous demands. Consequently, even though an
approximate form of D(k) given by Eq. (48) has become available,
the requirements to perform a least-squares fit to the critical
r-parameter and extract kj from a TMA evaluation, are substantial

FIG. 24. The region of Fig. 23 for which ΔV � 0:25Ry rendered as a surface
plot and emphasizing the region between the ν ¼ 1 (ΔV=Ry � 0:055) and
ν ¼ 2 (ΔV=Ry � 0:161) reflectionless ridges.

FIG. 25. Dots: values of Dj (k) determined by using TMA on the potential of
Fig. 23 using ΔVj with (39 � j � 62). Lines: best least-squares fit using
Eq. (48). The legend denotes a value of j from Fig. 24.

FIG. 23. Lines of D(k) as ΔVj increases from 0 to Ry ¼ 13:6057 eV
(fj increases from 0 to 1), clearly showing values of ΔV for which reflectionless
transmission [D(k) ¼ 1 for all k ] occurs.
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obstacles to its usage. It is necessary to either pre-load values for
representative conditions and interpolate between them or reduce
the time required for an evaluation. The latter approach motivates
additionally approximating r and kj by simple functions. As shown
in Fig. 26, the approximations,

sj ¼ (j� 39)=23,

rj ¼ 0:8891s7=5j � 0:8176,

kj ¼ 1:7219s2j � 0:6935,

(49)

perform adequately. Therefore, a means to rapidly modify D(k) for
varying submonolayer coatings is available, or, conversely, to
rapidly determine parameters for a given configuration. More
importantly here, however, is that an approximation to D(k) that
replaces the ad hoc triangular barrier model is now made available
and accounts for the effect of a coating or a surface layer (like gra-
phene37,45,46) so as to predictively estimate QE from surfaces that
have been modified. Rapid methods to treat interface barriers are
described separately.140

VI. CONCLUSION

The calculation of quantum efficiency and photoexcitation in
complex multicomponent materials and structures requires numer-
ically efficient algorithms for beam optics and device simulation
codes to model the generation of electron beams from a photocath-
ode, predict detector behavior, or characterize performance.
Three-step models (TSMs) and simple moments models (SMMs)
used to treat bulk materials provide an effective and widely used
basis for simulation. However, these approaches require extensions
to their underlying physics models to treat novel and coated mate-
rials with surface modifications, particularly if exploiting wave
interference (an “etalon” thin film cathode) to enable fast respond-
ing structures with improved quantum efficiency is desired or if
extending predictive capabilities to frequency regimes where optical
or material properties are lacking is needed. In this contribution,

modifications to the SMM model to allow for the effects of thin
films were developed and demonstrated across a number of techno-
logically relevant materials.

The predictive capabilities of DFT to treat the optical proper-
ties of materials, and of TMA to model emission past barrier struc-
tures, have been shown here to satisfy the physics modeling needs.
Their computational cost (ill-afforded in device simulation and
beam optics codes) has been mitigated by developing parametric
models. For DFT, optical parameters such as the reflectivity R(ω)
and penetration depth δ(ω) of Eq. (14) are well-described by
parameterizing a Drude–Lorentz fit with additional resonant terms
for both metals and semiconductors. A method to identify and
evaluate the required frequency, damping term, and weight, or
(ωj, γ j, fj) parameters was presented, vetted on metals and semicon-
ductors used in photocathodes, and projected to treat perovskites
where the optical constants are extended to large frequencies using
DFT methods. For TMA, the types of barrier modifications associ-
ated with coatings were parameterized by a Poschl–Teller well rep-
resentation and their relation to the transmission probability
associated with triangular barriers for non-reflectionless conditions.
These techniques (in conjunction with methods treating interface
transport and temperature effects) are being adapted for inclusion
into characterization and simulation codes, the performance of
which shall be reported in a separate contribution.
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