
J. Appl. Phys. 127, 235301 (2020); https://doi.org/10.1063/5.0009759 127, 235301

Analytic model of electron transport through
and over non-linear barriers
Cite as: J. Appl. Phys. 127, 235301 (2020); https://doi.org/10.1063/5.0009759
Submitted: 03 April 2020 . Accepted: 29 May 2020 . Published Online: 17 June 2020

 Kevin L. Jensen, Andrew Shabaev, Sam G. Lambrakos,  Daniel Finkenstadt, Nathan A. Moody, Amanda J.
Neukirch, Sergei Tretiak, Donald A. Shiffler, and John J. Petillo

ARTICLES YOU MAY BE INTERESTED IN

An extended moments model of quantum efficiency for metals and semiconductors
Journal of Applied Physics 128, 015301 (2020); https://doi.org/10.1063/5.0011145

Harmonic generation at the nanoscale
Journal of Applied Physics 127, 230901 (2020); https://doi.org/10.1063/5.0006093

Defects in Semiconductors
Journal of Applied Physics 127, 190401 (2020); https://doi.org/10.1063/5.0012677

https://images.scitation.org/redirect.spark?MID=176720&plid=1401535&setID=379065&channelID=0&CID=496959&banID=520310235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=71bf76294ba1eff3502a31fdb96fd8874112c042&location=
https://doi.org/10.1063/5.0009759
https://doi.org/10.1063/5.0009759
http://orcid.org/0000-0001-8644-1680
https://aip.scitation.org/author/Jensen%2C+Kevin+L
https://aip.scitation.org/author/Shabaev%2C+Andrew
https://aip.scitation.org/author/Lambrakos%2C+Sam+G
http://orcid.org/0000-0001-6363-0374
https://aip.scitation.org/author/Finkenstadt%2C+Daniel
https://aip.scitation.org/author/Moody%2C+Nathan+A
https://aip.scitation.org/author/Neukirch%2C+Amanda+J
https://aip.scitation.org/author/Neukirch%2C+Amanda+J
https://aip.scitation.org/author/Tretiak%2C+Sergei
https://aip.scitation.org/author/Shiffler%2C+Donald+A
https://aip.scitation.org/author/Petillo%2C+John+J
https://doi.org/10.1063/5.0009759
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0009759
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0009759&domain=aip.scitation.org&date_stamp=2020-06-17
https://aip.scitation.org/doi/10.1063/5.0011145
https://doi.org/10.1063/5.0011145
https://aip.scitation.org/doi/10.1063/5.0006093
https://doi.org/10.1063/5.0006093
https://aip.scitation.org/doi/10.1063/5.0012677
https://doi.org/10.1063/5.0012677


Analytic model of electron transport through and
over non-linear barriers

Cite as: J. Appl. Phys. 127, 235301 (2020); doi: 10.1063/5.0009759

View Online Export Citation CrossMark
Submitted: 3 April 2020 · Accepted: 29 May 2020 ·
Published Online: 17 June 2020

Kevin L. Jensen,1,a) Andrew Shabaev,1 Sam G. Lambrakos,1 Daniel Finkenstadt,2 Nathan A. Moody,3

Amanda J. Neukirch,3 Sergei Tretiak,3 Donald A. Shiffler,4 and John J. Petillo5

AFFILIATIONS

1Naval Research Laboratory, Washington, DC 20375, USA
2US Naval Academy, Annapolis, Maryland 21402, USA
3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117, USA
5Center for Electromagnetics, DEOST, Leidos, Billerica, Massachusetts 01821, USA

a)Author to whom correspondence should be addressed: kljensen@ieee.org

ABSTRACT

Tunneling barriers are an essential component of electron sources, sensors, detectors, and vacuum nanoelectronics and a pivotal factor in
their performance, but the barriers themselves routinely depart from the analytic models used to model their behavior. A new formalism is
developed to analytically and accurately model emission through and over barriers associated with depletion layers, nanotip barriers, and
metal–insulator–metal (MIM) structures. The transmission probability for depletion layers and MIM and metal–oxide–semiconductor
(MOS) barriers is accurately modeled as the electron energy exceeds the barrier height using approaches designed for rapid implementation
demanded by simulation codes and extensible to general barriers. The models supersede conventional thermal and field models in depletion
and MIM/MOS barrier studies. Thermal-field methods are used to treat the transmission probability and shape factor methods to treat the
tunneling factor. Analytic formulas for current density are obtained. The methods ease device simulation and characterization of current–
voltage relations for emerging technologically interesting barriers with better accuracy.

https://doi.org/10.1063/5.0009759

I. INTRODUCTION

Emerging technologies where efficient and rapidly modulated
emission or tunneling is desired (and even conditions such as high
field breakdown where it is problematic) are giving rise to circum-
stances where transport is not due primarily to thermal or field
(tunneling) effects, but rather (i) entail a range of energies and dis-
tributions of electrons that can markedly differ from the presump-
tive Fermi–Dirac distribution on which the canonical equations are
based or (ii) include processes that entail emission through barriers
markedly different than those leading to the canonical equations
particularly for thermal, field, and photoemission. These technolo-
gies include photo-enhanced thermionic emission,1,2 photoexcita-
tion through layers and interfaces,3,4 barriers associated with
coatings,5 nano-scale plasmonic junctions,6 photonic bandgap
(PBG) devices and field effect transistors (FETs),7–9 nanoscale
vacuum channel transistors and electronics,10–12 field emission

associated with multi-photon absorption from atomically small
tips,13,14 voltage breakdown15 due to microparticles16 and micro-
discharges,17 field emission and resonant tunneling effects in break-
down,18,19 generation of high power microwave devices and
directed energy,20–22 Monte Carlo simulations of photoemission23

and secondary emission,24 emission from graphene,25 space charge
limited flow in the quantum regime26 and for nanogaps,27 and
interfaces between photocathode28 or detector materials and the
metal contacts for x-ray detectors29 or solar cells using perov-
skites.30 In all such cases, device simulation requires accurate mod-
eling of transport over a broad range of energies through and over
the surface or contact barriers. The tunneling probability is
required for energies below and beyond the height of the emission
barrier and is dependent on the shape of the tunneling barrier
itself, making use of the canonical equations at best problematic,
and at worst inadequate, for describing the distribution of emitted
or transported electrons.
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It is often required that the emission models in simulation
codes31–35 are compatible with the requirement for rapid algo-
rithms when interactive effects due to space charge36 and emittance
growth37 severely complicate simulation. As an example, in a
generic simulation of a vacuum electronic anode–cathode (AK) gap
for which space charge effects are integral (such as the simulation
of Miram curves for thermal emitters38), only a small fraction
(�2%) of the emitted particles cross the space charge barrier and
continue to the anode. The assumption of a Maxwell–Boltzmann
(MB) distribution of those electrons is expeditious and enabling,
but that ad hoc approximation is an assumption: given that the
buildup of space charge before the barrier is heavily dependent on
the distribution of electrons incident upon it and given that surface
features (geometric and chemical roughness39–41) have a pro-
nounced impact on the distribution, the fine details of emission off
the surface are increasingly important.

The treatment of the tunneling effect is historically one of the
earliest and most impressive successes of quantum mechanics,42

explaining the emission of alpha particles from the nucleus43–45 or
the emission of electrons from the surface of a metal subject to
high fields46,47 observed by Millikan and Eyring.48 Fowler and
Nordheim’s (FN) model of field emission from metals considered a
step barrier subject to a constant electric field E [that is, a triangu-
lar barrier of the form V(x) ¼ Vo � qjEjx ; Vo � Fx], later
amended to include an image charge contribution
(q2=16πεox ; Q=x) and used Sommerfeld and Bethe’s model of a
metal. The methods were extended by Fowler to treat thermal and
photoemission,49,50 ultimately giving rise to the “canonical” emis-
sion equations.51 The thermal emission equation due to
Richardson and updated by Fowler49,52 was adapted by Bethe to
treat the Schottky barrier between metals and semiconductors.53–55

The canonical equations are only qualitatively rather than quantita-
tively correct insofar as they presume a constant asymptotic field
modified (at most) by an image charge close to the interface (the
Schottky–Nordheim barrier), whereas depletion layers or barriers
associated with nano-scale thickness films56 and nanotip emitters57

depart from those assumptions.
Accuracy is regained (and self-consistency enabled) through

recourse to numerical methods that accurately solve Schrödinger’s
equation for quantum effects58–61 and enable coupling with
Poisson’s equation for charge distributions:6,62,63 the later effect is
important when quantized levels exist in the depletion layer at the
semiconductor–oxide interface and has consequences for the
depth of the depletion layer.64–68 The recent work of Banerjee and
Zhang,63 who evaluate the tunneling current through an
metal-insulator-metal (MIM)/metal–insulator–semiconductor (MIS)/
metal–oxide–semiconductor (MOS) barrier and include self-
consistent effects through a solution of a coupled Schrödinger equa-
tion and a Poisson equation, is notable: their study reflects how sys-
tematic and numerically intensive studies of MIM/MIS/MOS (and
more general barriers) can be undertaken. These intensive
approaches are superior for treating thin nanogaps, insulating films,
and interfacial tunneling barriers, but they entail excessive computa-
tional efforts compared to the analytical models that device simula-
tion, experimental characterization, and pedagogical models favor.

Depletion layer barriers at metal–semiconductor contacts68–74

are similar to emission barriers for highly curved surfaces75–79 or

nano-scale field emitters/emission sites27,80–83 or the inclusion of
space charge effects in nano-gaps.6 Such barriers, modeled as in
Appendix B 1 when due to doping and Appendix B 2 when due to
the emitter curvature near prolate spheroidal tips, acquire a para-
bolic (concave up) nature away from the surface or interface. In
contrast, thin barriers associated with MIM/MIS/MOS layers when
the layers are thin acquire a parabolic (concave down) character for
strong biases.84 For specificity, a quadratic barrier (following
Refs. 27 and 82) is taken to be of the form

Vγ(x) ¼ Vo � qjEjx þ γx2 � q2

16πKsε0x

; Vo � Fx þ γx2 � Qs

x
, (1)

with the γ-term accounting for the quadratic modification, where
ε ¼ Ksεo is the dielectric constant in the medium of the barrier,
and Qs ¼ Q=Ks generalizes the image charge term q2=16πεo ; Q
[an electron in vacuum outside of a semiconductor experiences an
image charge of Qs ¼ Q(Ks � 1)=(Ks þ 1),85 but here, the electron
is outside a metal and inside a material].

For narrative simplicity, henceforth, the MIM/MIS/MOS and
depletion layer barriers are collectively referred to as a MIM
barrier, as the barrier shape is the focus of the present work rather
than consequences of depletion layers due to band bending, and
therefore, the MIM barrier for a thin layer is most representative,
even though the methodology applies to all. A MIM barrier intro-
duces a contact replacing the vacuum anode, such that the presence
of two closely spaced metal layers complicates the handling of the
image charge terms. If the thickness of the insulator layer W is
large, then a MIM barrier resembles

VM(x) ¼ Vo � Fsx � Vm(x),
Vm(x) � Qs

x þ Qs
W�x ,

(2)

with Fs ¼ Vb=(KsW) with Vb arising from the potential bias across
the insulator and Vm(x) replacing the standard image charge term
Vi(x) ¼ Qs=x. For small x, to leading order, a term (�Qx2=W3)
causes VM(x) to resemble a quadratic potential with a (γ , 0)
term, but as the thickness decreases, an infinite series of images of
image charges are required to maintain boundary conditions,
giving rise to the forms of V(x) encountered in Sec. II C and
Appendix B 3, where, as shall be seen, an analytic form good for all
W is available. The full MIM barrier is shown in Fig. 1(b).

The inclusion of both an image term Qs=x and a quadratic
γx2 or MIM term complicates subsequent derivations but is essen-
tial to accurately portray the tunneling and thermal physics and
factored in the development of the shape factor method.86 Because
the barriers to be treated are several, the following nomenclature to
refer to the types shown in Fig. 1 is used: (i) a linear barrier corre-
sponds to γ ¼ 0 or W ! 1 and is also referred to as a Schottky–
Nordheim (SN) barrier, (ii) a parabolic barrier corresponds to
Ks ¼ 1 (causing Qs ¼ 0) and is also referred to as a Schottky
barrier, (iii) a triangular barrier corresponds to Ks ! 1 and either
γ ¼ 0 or W ! 1 (a finite W case will also be referred to as a trap-
ezoidal barrier), and (iv) a MIM barrier corresponds to finite Ks, a
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distance between the contacts of W, and the inclusion of all image
charge terms due to both contacts.

Consequently, the convention here is that linear, quadratic,
and MIM barriers include image charge terms, whereas triangular,
trapezoidal, and parabolic barriers do not. As a consequence,
Schottky barriers are of the form V(x) ¼ Vo[1� (x=w)]2 without
the image charge term [e.g., Eq. (2.34) of Ref. 70]. The length w is
referred to as the depletion width. The barriers are parameterized in
Appendices B 1 and B 2.

The reliance on the canonical emission equations to treat
quadratic and MIM barriers indicates the lack of an analytic
transmission probability and particularly a closed form solution to
the Gamow factor θ(E) upon which the commonly used JWKB
transmission probability D(E) ¼ e�θ(E) depends. The reliance on
numerical transfer matrix approximation methods58–61 to solve
Schrödinger’s equation for more complex metal–semiconductor

and MIM barriers is often the only recourse, but although enabling
high accuracy, doing so endures the loss of analytical convenience
or computational expediency. Moreover, Fowler and Nordheim had
assumed θ(E) was linear in energy (Appendix A): in fact, θ(E) is
generally more strongly non-linear than it is for the SN barrier,61

and therefore, the use of Fowler Nordheim parameterizations is
even more problematic for non-linear barriers than they are for
thermal-field emission evaluations. The shape factor method,27,61,86

developed as an intermediate technique to evaluating the Gamow
factor θ(E) in pursuit of a general thermal-field equation,87 has
been used to treat non-linear barriers. An analytic approximation
to θ(E) of sufficient accuracy results, from which methods for
finding the modifications to a Fowler–Nordheim-like equation can
then be developed but do not require a linear barrier or the result-
ing Schottky–Nordheim functions. The Gamow factor θ(E) is
defined according to

θ(E) ; 2
ðx2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

�h2
V(x0)� E½ �

r
dx0, (3)

where mn is the effective mass and the roots xj are such that
V(xj)� E ¼ 0. Introduce κ(E) and L(E) such that

κ(E) ;
2mn

�h2
V(xo)� Eð Þ

� �1=2
, (4)

L(E) ; x2(E)� x1(E): (5)

For simplicity, the subscript on the effective electron mass mn will
be discontinued. The root index j is such that xj � x jþ1 and
V(xj)� E ¼ 0, whereas xo is the smallest root of @xV(xo) ¼ 0: for
the linear barrier (Section II A) and MIM modification (Section II C),
there is only one such xo, but a quadratic barrier (Section II B) will
have two. Thus, κ(E) and L(E) are seen to be the boundaries of the
rectangle bounding the integrand of Eq. (3).

The shape factor σ(y) is a dimensionless coefficient relating
the integrand of Eq. (3) to the height κ(E) and width L(E) of the
bounding rectangle enclosing it and is defined by

θ(E) ; 2σ[y(E)]κ(E)L(E): (6)

Although σ(y) depends on the energy E of the tunneling particle, a
dimensionless y(E) that generalizes the argument of the Schottky–
Nordheim functions v(y) and t(y) used by Murphy and Good88 is
the preferable argument, although the form of y(E) will now
depend on the nature of the potential and differ for the various
non-linear barriers. Additionally, the shape factor is independent
of the effective mass mn in the tunneling region: the mass depen-
dence resides in κ(E) and, when different than the rest mass m,
causes κ ! κ

ffiffiffiffiffiffiffiffiffiffiffiffi
mn=m

p
and consequently the same dependence for

θ. The present work will develop flexible and accurate methods of
finding θ(E) using shape factor methods, and from it, linear
approximations to θ(E) needed to enable analytic models of the
current density past non-linear barriers.

The importance of the methods to be developed below is their
requirement for providing accurate evaluations for the current

FIG. 1. Two kinds of non-linear potentials: (a) Quadratic barrier [Eq. (1)] for
parameters Vo � E ¼ 4:4 eV, Ks ¼ 6, F ¼ 5 eV/nm, for quadratic (γ ¼ 1:4
eV/nm2, yellow fill) and linear (γ ¼ 0, gray fill). (†) are the roots of
V (x)� E ¼ 0, and (�) are the maximum xo and minimum xh locations with the
gray S marks at

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
and F=(2γ), respectively, that approximate their loca-

tion. (b) MIM barrier for Vo � E ¼ 2 eV, F ¼ 0:5 eV/nm, and W ¼ 2 nm for the
insulator (Ks ! 1, gray fill) and the dielectric (Ks ¼ 6, yellow fill).
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density in thermal-field conditions (when current due to tunneling
is comparable to that due to thermal, or fly-over, emission) for
which presently used methods are inadequate even for the SN bar-
riers87,89 and, therefore, even more so for the non-linear barriers.
Nevertheless, these methods also significantly modify current
density estimates for common thermal or field emission conditions
in conventional treatments, as shown using two representative
examples based on the ad hoc barriers of Fig. 1 (the MIM barrier
will magnify the inaccuracy). For thermal conditions, the primary
source of error is the incorrect estimate of barrier height by an
amount Δf ¼ 0:0173 eV, equal to the difference in barrier heights
of the “quadratic” and “linear” barriers. If J is the Richardson-
Laue-Dushman (RLD) current for the non-linear barrier, and Jo
that for the linear barrier, then J=Jo � exp(� Δf=kBT), or 82:9%
for T ¼ 1073 K. For field conditions, the primary source of error is
the incorrect estimate of θ(μ). If J is the FN current for the non-
linear barrier and Jo that for the linear barrier, then
J=Jo � exp[θo(μ)� θ(μ)]. Using θ(μ)=θo(μ) � L(μ)=Lo(μ), it is
found that L(μ)=Lo(μ) � 133% for μ ¼ Vo=4. The examples are
pedagogical: MIM barriers and emission into vacuum for typical
material parameters and operating conditions amplify the
discrepancy.

II. SHAPE FACTOR METHOD

The shape factor method is developed for four types of
barriers: (i) trapezoidal and triangular barriers, which are most
commonly used in treating MIM as well as the FN barriers
(Appendix A); (ii) Schottky–Nordheim (SN) barriers, which are
the basis of the thermal, field, and photoemission canonical equa-
tions; (iii) quadratic barriers, which model depletion layers; and
(iv) MIM barriers, which improve upon the trapezoidal barriers by
including rounding effects due to image charges.

The triangular and trapezoidal barriers are the Ks ! 1 limit-
ing case of the SN and FN barriers and will be treated as such.
When fields are high and/or insulator layers are thick, the SN and
trapezoidal barriers are reasonable approximations for zero-
temperature approximations. Consequently, the shape factor analy-
sis will focus on three barrier types: the linear, quadratic, and MIM
barriers. Finally, the notation and methods follow those introduced
in shape factor method’s application to the SN barrier, as treated in
Refs. 51 and 89. Because the extension to non-linear potentials
engenders numerous new terms, a summary of the most important
parameters is given in Table I.

A. Linear barrier

A linear barrier [Eq. (1) with γ ¼ 0] results in the formalism
of Murphy and Good (MG-FN)88 and introduces elliptical integral
functions v(y) and t(y), referred to as the Schottky–Nordheim
functions by Forbes and Deane90 (who also provide the most
usable approximations to them), to account for image charge modi-
fications to an otherwise triangular barrier. The use of the shape
factor methodology27,61,86 gives the same results but without
requiring v(y) and t(y). The method is synopsized here in a
manner expedient to its generalization. The critical factor y(E) will

always be taken to be defined by

y(E) ;
Vo � V(xo)
Vo � E

, (7)

where xo is the location of the maximum of V(x), which does not
change with Vo � E. It is seen that y(E) corresponds to the ratio of
how much the barrier is lowered through the application of a field
compared to how far (in energy) the tunneling electron is below
the maximum. For the standard image charge barrier
V(x) ¼ Vo � Fx � Qs=x, then xo ¼

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
, and therefore, for

γ ¼ 0, σγ(y)! σ0(y) and

y(E) ¼
ffiffiffiffiffiffiffiffiffiffi
4QsF
p
Vo � E

: (8)

The y of the conventional Murphy–Good (MG) formulation is
then seen to correspond to the special case y(μ) ¼ ffiffiffiffiffiffiffiffiffiffi

4QsF
p

=Φ when
Vo ¼ μþ Φ and figures prominently in standard accounts of the
Fowler–Nordheim equation.51,88,90 The limit y! 0 corresponds to
a triangular barrier, and the limit y! 1 describes an inverted
parabolic barrier centered at xo ¼

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
. In terms of xo and xj

given by

xj ¼ Vo

2F
1þ (2j� 3)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

ph i
, (9)

TABLE I. Factors and parameter terms encountered in shape factor methods. μ
and Φ (copper values are shown). See also Table II.

Symbol Definition Relation Unit

θ(E) Gamow factor Eq. (3) …
κ(E) dθ height Eq. (4) 1/nm
L(E) dθ width Eq. (5) 1/nm
σ[y(E)] θ(E) shape factor Eq. (6) 1/nm
σ0[y(E)] Linear shape Eq. (11) 1/nm
σγ[y(E)] Quadratic shape Eq. (18) 1/nm
y(E) Shape ratio Eq. (7) …
ymin Smallest y Eq. (19) …
σ(y) Shape factor Eq. (6) …
μ Chemical potential 7.0 (Cu) eV
F Field factor qjEj eV/nm
T Temperature … Kelvin
Q Image term q2/16πεo eV nm
Qs Dielectric Q Eq. (1) eV/nm
Φ Work function 4.5 (Cu) eV
f Schottky lowered Φ Φ� ffiffiffiffiffiffiffiffiffi

4QF
p

eV
Vγ(x) Quadratic barrier Eq. (13) eV
Vm(x) MIM barrier term Eq. (29) eV
Vo Barrier height μ +Φ eV
G, H MIM barrier factors Eq. (34) …
xj Roots of V(x)− E Eq. (14) nm
xo max [V(x)] location Eq. (15) nm
xh min [V(x)] location Eq. (15) nm
R(a, b, c) θ-integral Eq. (20) …
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then κ(E) and σ0(y) are compactly recast as

�h2κ2

2mn
¼ F

(x2 � xo)(xo � x1)
xo

, (10)

σ0(y) ¼
ðx2
x1

xo(x2 � s)(s� x1)
s(x2 � xo)(xo � x1)

� �1=2ds
L
, (11)

where L ¼ x2 � x1. A triangular barrier corresponds to
σ0(0) ¼ σ4 ¼ 2=3, whereas a parabolic barrier corresponds to
σ0(1) ¼ σ> ¼ π=4. Last, a good approximation to σ0(y) is

87

σ0(y) �
X2
j¼0

Cj
1� y
1þ y

� � j

, (12)

with the Cj given by C0 ¼ π=4, C1 ¼ �0:092 385, and
C2 ¼ (2=3)� C1 � C0.

B. Quadratic barrier

Non-linear potentials introduce more roots and modify the
definition of xo from being the location of the only maximum to
now be the first maximum of V(x). The generalization to the qua-
dratic barrier is then to introduce another root x3, shift xo away
from

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
, and redefine y, after which modifications to σγ(y)

and κ are straightforward extensions of the linear barrier case.
Introducing s ; x þ (F=3γ), the quadratic potential of Eq. (1)

can be rewritten as

Vγ(x) ¼ γ

x
s3 � ps� r
� �

,

p ¼ F2 � 3γVo

3γ2
,

r ¼ Qs

γ
� FVo

3γ2
þ 2F3

27γ3
,

(13)

where the 1=x in the coefficient is for compactness as it does not
affect the roots. The roots of the cubic s3 � ps� r are well known
to be (compare Ref. 91)

sk ¼
ffiffiffiffiffi
4
3p

s
cos

w

3
� 2πk

3

� �
,

cos2 w ¼ 27r2

4p3

(14)

for k ¼ (0, 1, 2). The roots xj are then given by x1 ¼ s2 þ (F=3γ),
x2 ¼ s1 þ (F=3γ), and x3 ¼ s0 þ (F=3γ). Alternately, the xj can be
found to good accuracy using a recursion relation [see Eq. (31) in
Ref. 27]. The locations of the max/min points are found by recur-
sion, with xo being the smaller root of @xV(x) ¼ 0 and xh being the

larger. The recursion relations are

xo  Qs

F � 2γxo

� �1=2
,

xh  Fx2h � Qs

2γx2h
,

(15)

with xo �
ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
and xh � (F=2γ) being the initial estimates.

After five to eight iterations, reasonable convergence is achieved.
Equation (7) for y becomes

y(E) ¼ (F � γxo)xo þ (Qs=xo)
Vo � E

(16)

from which the γ ! 0 case of Eq. (8) is recovered appropriately
because xo !

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
in that limit.

The generalization of Eqs. (10) and (11) to non-linear barriers
is now straightforward, with the quadratic barrier case given by

�h2κ2

2mn
¼ γ

xo

Y3
j¼1

(xj � xo), (17)

σγ(y) ¼
ðx2
x1

xo
s

Y3
j¼1

xj � s

xj � xo

� �" #1=2
ds

x2 � x1
, (18)

where xj and xo must be obtained from Eqs. (14) and (15) first.
Two limiting cases are important. Analogous to Eq. (8), the limit

of (y! 1) corresponds to an inverted parabolic barrier for which x1
and x2 coalesce to xo. Therefore, σγ(1)! σ> ¼ π=4 as shown previ-
ously.27,87 The second limiting case is not the limit of (y! 0) because
that limit is excluded for non-zero γ by Eq. (8): rather, the smallest
value of y, or ymin, is governed by that value of Vo ¼ Vmax for which
the roots x2 and x3 coalesce to xh. Because xo and xh correspond to
zeros of @xV(x) ¼ 0, they are independent of Vo. Consequently,
Vmax ¼ Fxh � γx2h þ (Qs=xh), and therefore, if the zero of energy is
defined by V(xh) ¼ 0 (as shall be chosen below), then

ymin ¼W � V(xo)
W

¼ xh Qs þ x2o(F � γxo)
	 


xo Qs þ x2h(F � γxh)
	 
 , (19)

which approaches (4=27)γF
ffiffiffiffiffiffiffiffiffi
4QF
p

to leading order in γ, entailing that
ymin ! 0 as γ ! 0 as per the discussion surrounding Eq. (8).

The limiting cases for σ[y(E)] when Vo � E approaches either
Vo � V(xo) (maximum or y ¼ 1) or V(xh)� E approaches 0
(minimum, y ¼ ymin) are required. To proceed, define the function
R by

R(a, b, c) ;
ðb
a

(x � a)(b� x)(c� x)
x

� �1=2

dx, (20)

where (a, b, c) will correspond to (x1, x2, x3), respectively, for
which R(a, b, c) becomes proportional to θ with the constant of
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proportionality being 2
ffiffiffiffiffiffiffiffiffi
2mγ
p

=�h [the relationship between the roots
xj and the factors (Vo, F, Qs, γ) is identified in Sec. IV A, specifi-
cally Eq. (63)]. For both limits, two of the roots will approach the
same value: for the maximum (at xo), then a ¼ b, whereas for the
minimum (at xh), then b ¼ c. Consider each in turn:

• Limiting case: y! ymin: Near the apex of the barrier, the roots are
such that b ¼ h� δ and c ¼ hþ δ, where h and δ are defined by
these relations. Separate Eq. (20) into a dominant and a remainder
part, or R(a, b, c) ¼ R(a, h, h)þ ΔR(h� δ, hþ δ, c), where ΔR is
defined by this relation. The integrand of ΔR is crudely trapezoidal,
and because its contribution is small, it may be approximated by
evaluating the integrand at the midpoint h ¼ (aþ b)=2 and multi-
plying it by the width of the integration region, or

ΔR(a, b, c) � (c� b)(b� a)2ffiffiffiffiffiffiffiffiffiffiffi
b� a
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c� b� a
p	 
 ffiffiffiffiffiffiffiffiffiffiffi

aþ b
p : (21)

In the limit that δ ! 0, then ΔR! (h� a)3=2δ=(hþ a)1=2 and,
therefore, vanishes. The dominant term R(a, h, h) is, after a change
of integration terms to x ¼ a cosh2 s and introducing
cosh χ ¼ ffiffiffiffiffiffiffiffi

h=a
p

, then

R(a, h, h) ¼ 2ah
ðχ
0
sinh2 s 1� a

h
sinh2 s

h i
ds: (22)

The integrations are analytic, but because in general h� a, it can
be shown

R(a, h, h) � h2

2
1� a

h
ln

4a
h

� �� �
: (23)

The leading order approximation to κ / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V(xo)=γ

p
and the

approximation xo �
ffiffiffiffiffiffiffiffiffi
Q=F

p ¼ [ah2=(aþ 2h)]1=2 are used to

determine κ � h[1� 2
ffiffiffiffiffiffiffiffiffiffi
2a=h

p
]
1=2

. The width L is simply
L ¼ h� a. As a result, in the limit a=h! 0 and δ ¼ 0, then
R(0, h, h) ¼ h2=2 and σγ(ymin) ¼ σ< ¼ 1=2 ; σ<. It is seen that
the concave-up parabolic σ< is a fourth constant shape factor (in
addition to the rectangular σA, triangular σ4, and inverted para-
bolic σ> cases27) that describes barriers relevant to transport and
emission.

• Limiting case: y! 1: Analogous approximations occur near the
apex of the barrier when y(E) & 1. In the (a, b, c) root notation
of above, then the roots are such that a ¼ h� δ and b ¼ hþ δ,
where again h and δ are defined by these relations. As a result,

R(a, b, c) ¼
ðhþδ
h�δ

(c� x) δ2 � (x � h)2
	 


x

" #1=2
dx: (24)

Substituting x ¼ hþ δ sin s and letting (c� x)=x � (c� h)=h,
then

R(h� δ, hþ δ, c) �¼ π

2
δ2

c� h
h

� �1=2

: (25)

Because h ¼ xo, then κL ¼ [(h� a)(b� h)(c� h)=h]1=2(b� a)
¼ 2δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c� h)=h

p
, and therefore, σγ(1) ¼ π=4 ¼ σ> as observed

above.

For a quadratic barrier, the third root x3 past xh is a means of eval-
uating θ(E) through the tunneling barrier, not a feature of the
depletion barrier itself. Were it to exist, a local minimum or a well
between the x2 and x3 roots would be associated with energy levels.
While such wells may be related to surfaces with coatings,5 the
widths of the energy levels are then related to the nature of the
well,92 but this line of inquiry is not pursued in the present study.

The behavior of σγ(y) will differ from σ0(y) because of the
largeness of the base of the quadratic barrier in Fig. 1, which
imposes a cutoff ymin when Vo � E , V(xh) and transmission
ceases. For example, in the case of field emission, if V(xh) was
above the conduction band minimum of the metal (the zero point
of E ), then the transmission probability D(E) would vanish for
0 � E � V(xh) because L(E)! 1, and therefore, σγ(y) is compre-
hensible only for y � ymin. This creates a need to change the dis-
cussion of how y(E) varies: with the introduction of Ks, a triangular
barrier is properly and exactly recovered in the Ks ! 1 limit, rather
than only approximately for F large for linear barriers in field emis-
sion; moreover, for parabolic depletion barriers of the kind in
Appendix B 1, a fixed Nd is presumed. Consequently, Ks is a more
useful parameter to vary such that Ks ! 1 removes the image
charge contribution altogether (Qs ! 0), and Ks ! 1 recovers the
metal image charge contribution (Qs ! Q). Thus, variations in Ks

will mimic the transition from triangular barriers to Schottky–
Nordheim barriers in field emission. Several representative cases
are considered in Fig. 2, where σγ(y) is compared to σ0(y). Observe
that scaling the x-axis by y! ~y defined by

~y ¼ y � ymin

1� ymin
(26)

causes the σγ(~y) and σ0(y) to overlap, as anticipated by a prior
study,27 except near y * ymin where σγ(~y ¼ 0) ¼ 1=2 but
σ0(y ¼ 0) ¼ 2=3, a consequence of barriers of hyperbolic emitters,
as in Appendix B 2, being more akin to depletion barriers in the
presence of a field in the dielectric, as in Appendix B 1. As a result,
the introduction of σ< has not been needed until now, when shape
factor methods are applied to quadratic barriers.

The realization that σγ(y) � σ0(~y) where ~y ; (y � ymin)=(1�
ymin) is remarkable for two reasons. First, it allows usage to be
made of the far more easily evaluated σ0(y) factor for y . 0:1,
given the later’s convenient representation by Eq. (12). Second,
although σγ(y) varies with energy E, it does so weakly so that the
energy slope factor βF(Em) ¼ �@Eθ(Em) derived from the Schottky
barrier Gamow factor of Eq. (16) is dominated by the variation of
κ(E) and L(E).

C. MIM barrier

An analytically solvable shape factor results when the insulator
is of finite thickness W and the barrier takes on a trapezoidal
shape. When Qs ! 0, then y(E)! 0 as well, and it, therefore,
ceases to be a parameter that monitors the barrier shape. Therefore,
define λ ¼WF=(Vo � E) such that for λ � 1 [for which
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L(E) ¼W], then

lim
Ks!1 σm(y) ; σS(λ) ¼

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λs
p

ds, (27)

whereas for λ . 1 [for which L(E) , W, that is, the barrier is tri-
angular], then σ4 is recovered. Thus, the general trapezoidal
barrier shape factor is

σS(λ) ¼
2
3λ 1� (1� λ)3=2
h i

(λ � 1),

σ4 (λ . 1)

(
(28)

so that at λ ¼ 1, σS(1) ¼ σ4 ¼ (2=3). The behavior is shown in
Fig. 3.

Two metal contacts separated by a semiconductor with a finite
dielectric constant Ks introduce an infinite number of image
charges to describe the potential between the contacts. Beginning
with the widely used formulation of Simmons84 and introducing
the dimensionless length term s ¼ x=W, where W is the width of
the insulator layer, the image charge contribution Vi(x) ¼
�Qs=x ! �Qs=Ws to the barrier in Eq. (2) is now replaced by
Vi(x)! Vm(s),

Vm(s) ¼ � 2Qs

W
1
2s
þ
X1
j¼1

s2

j(j2 � s2)

( )
, (29)

where s ¼ x=W, which is equivalent to, but simplifies, Eq. (31) of
Ref. 84, although it is noted that Simmons implies that the image
charge potential contribution is q2=8πε0x ¼ 2Q=x, whereas the
proper contribution is Q=x (or q2=4x in Gaussian units).61,93

Although Simmons characterized this equation as “extremely
awkward” to work with due to its infinite series, an accurate and
flexible approximation to it can be developed by utilizing
Riemann’s zeta function defined by ζ(p) ¼P1

j¼1 j
�p. By Taylor

expanding the 1=(j2 � s2) term and performing the j summation,
we find

X1
j¼1

1
j(j2 � s2)

¼ 1
1� s2

þ
X1
k¼0

ζ(2kþ 3)� 1½ �s2k: (30)

Owing to the rapidity with which ζ(p) approaches 1 as p increases
as per Eq. (C3), the summation over k can be truncated after only a
few terms. Identifying a ¼ ζ(3)� 1 ¼ 0:202 057 and
b ¼ ζ(5)� 1 ¼ 0:036 927 8, the approximation

Vm(s) � � 2Qs

W
s2

1� s2
þ 1þ 2as2 þ 2bs5

2s

� �
(31)

is found and transformed into Eq. (B12) in Appendix B 3. By way
of comparison, the approximate form suggested by Simmons [Eq.
(33) of Ref. 84] is given by the corrected form Vm(s) �
�0:6931Qs=[Ws(1� s)] and shown as the blue line in Fig. 4.

The MIM shape factor σm(y) with y(E) as per Eq. (7) has
more in common with the linear barriers of Sec. II A than the qua-
dratic barriers of Sec. II B, as the underlying integrations

FIG. 3. Behavior of σS[y(λ)] as in Eq. (28). For L(E) , W, the triangular
barrier σ4 ¼ 2=3 is recovered.

FIG. 2. (top) The shape factor σγ (y) [Eq. (18)] with y and xo determined from
Eqs. (16) and (15), respectively, with F ¼ 5 eV/nm and γ ¼ 1:4 eV/nm2.
(bottom) The same as above, but with y ! (y � ymin)=(1� ymin). The gray
horizontal lines correspond to π=4, 2/3, and 1/2. The line marked σ0(y) is the
linear barrier with ymin ¼ 0 or Eq. (12). Lines are labeled by Ks.
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representing rounded trapezoids are closer in spirit to the rounded
triangular (or Schottky–Nordheim) barriers than they are to the
rounded parabolic (Schottky) barriers. Because of the complexity of
Eq. (18), it may seem that σm(y) requires numerical integration for
its evaluation (or the comparatively crude approximations reviewed
by Simmons84), but good semi-analytic approximations are possible
once the roots and maximum have been determined by the
methods of Appendix B 3.

Methods of varying numerical complexities for the evaluation
of σm(y) based on Eq. (B12) are possible, but an attractive one
makes use of the zeros of Vm[sj(E)]� E ¼ 0, which defines sj(E),
and the location so(E) of its maximum. A change of variables
results in an integrand that is readily and rapidly evaluated by
numerical means using, e.g., low order Gaussian quadrature,
because the resulting integrand is well approximated by a polyno-
mial. Define Z(s) ; s(1� s)[Vm(s)� E] as in Eq. (B17) and its
derivative Z0(s) ¼ dZ=ds as in Eq. (B19). Assume a cubic form
such that Z(s) � Aþ Bsþ Cs2 þ Ds3 with the coefficients deter-
mined by Z(s) and Z0(s) at the zeros s1(E) and s2(E) of the potential
[that is, Vm(sj)� E ¼ 0] to find

1 s1 s21 s31
1 s2 s22 s32
0 1 2s1 3s31
0 1 2s2 3s32

2
664

3
775

A
B
C
D

0
BB@

1
CCA ¼

0
0

Z0(s1)
Z0(s2)

0
BB@

1
CCA, (32)

the inversion of which determines the coefficients exactly.
However, an ansatz based on Eqs. (11) and (18) suggests

Z(s) � G(s� s1)(s2 � s)(H � s), (33)

with G and H parameters to be determined by comparison to the
cubic fit. The terms are dependent on E, but for simplicity, the
dependence will be assumed rather than explicitly shown. It is

found that G ¼ D and s1s2GH ¼ �A, from which

G ¼ Z0(s2)þ Z0(s1)
(s2 � s1)

2 ,

H ¼ s1Z0(s2)þ s2Z0(s1)
Z0(s2)þ Z0(s1)

:

(34)

Asymptotic approximations are available in the y! 0 (trapezoidal
or triangular shape) and y! 1 (inverted parabolic shape) limits.
In the former, let s2 ! 1 and s1 ! 0 to find

G0 ¼ FW � 0:044 06
Qs

2W

� �
,

H0 ¼ 2(VoW þ Qs)
2FW2 � 0:044 06Qs

,

(35)

where 4ζ(5)þ 4ζ(3)� 9 ¼ �0:044 06 [as per Eq. (31)]. In the
latter, direct computation reveals G1 � G0 and H1 � 1. A compari-
son of Z(s) using the actual and approximate G and H is shown in
Fig. 5, showing that using G0 in general, and approximating H by
H0 for small y and 1 for a small (1� y), results in reasonable
general choices. As a result, and given the polynomial-like nature
of Z(s) in Eq. (33), very rapid numerical algorithms are possible for
the evaluation of σm(y) making use of the analytical form of Z(s)
given in Eq. (33).

The shape factor σm(y) for the MIM barrier can now be sim-
plified. Using Z(s), it follows:

σm(y) ¼ 1
s2 � s1

ðs2
s1

Z(s)so(1� so)
Z(so)s(1� s)

� �1=2
ds: (36)

If Eq. (33) is used as an approximation for Z(s), then the value of
G is not required because Z(s) and Z(so) occur in ratios, and

FIG. 5. Behavior of Z(s) approximated by Eq. (33) using Eq. (34) (marks) com-
pared to using G! G0 and H ! H0 [Eq. (35), thick line] and using G! G0
and H ! 1 (dashed line) for the parameters Vo � E ¼ 2 eV and Ks ¼ 6, with
y(E) ¼ [Vo � V(xo)]=(Vo � E). The lines are labeled by F.

FIG. 4. For the same parameters as Fig. 1, evaluation of V (x) using Eq. (29)
(†) for the image charge contribution Vi (x), to that using the approximate form
[Eq. (31)] (red line). Also shown is V (x) using the form Vi (x) �
�0:6931Qs=[Ls(1� s)] based on Simmons84 (blue line).
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therefore, the approximate constancy of G allows for its neglect.
Making the replacement s ¼ sa þ Δ sin θ, where sa ¼ (s2 þ s1)=2,
Δ ¼ (s2 � s1)=2, and p ¼ (sa � so)=Δ, then

σm(y) ; Cσ

ðπ=2
�π=2

fσ(θ) cos
2 θ dθ, (37)

where the factors Cσ and fσ(θ) are defined by

Cσ ¼ 1
2

(sa þ pΔ)(1� sa � pΔ)
(1� p2)(H � sa � pΔ)

� �1=2
,

fσ(θ) ¼ (H � sa � Δ sin θ)
(sa þ Δ sin θ)(1� sa � Δ sin θ)

� �1=2
:

(38)

The integrand of Eq. (37) is polynomial-like and vanishes at the
limits of integration, allowing for its rapid evaluation by numerical
means, e.g., using Gaussian quadrature or a summation based on
Simpson’s rule. Identifying its asymptotic limits is useful for identi-
fying under what conditions the shape factor is triangular-like (σ4)
or parabola-like (σ>):

1. The triangular limit (y! 0) occurs for 4FQs 	 V2
o (that is,

small F and/or large Ks). Under such conditions, Δ � 1=2 and
sa � 1=2, leading to a behavior of fσ that mimics fσ( sin θ) �
fσ(0)=cos(θ) near the origin, leading to

σm(y) � 2Cσ fσ(0) � 2H � 1
2H � 2so

� �1=2
, (39)

where the approximation on the right-hand side is the limit of
Δ! 1=2 and sa ! 1=2. Using the Qs ! 0 limit of Eq. (35),
then σm(y) � (1� λ=2)1=2 and has the same small λ limit as the
triangular part of Eq. (28).

2. The parabolic limit (y! 1) occurs for 4FQs � V2
o (that is, large

F and/or small Ks ), allowing for the approximation fσ( sin θ) �
fσ(0) (because cos2 θ is an even function, the linear dependence
of fσ(θ ) on sin θ does not survive), giving

σm(y) � π

2
Cσ fσ(0) � π

4
, (40)

where the right-hand side is the limit of sa ! so as y! 1,
recovering σm(1) � σ> ¼ π=4, as encountered in the discussion
of Eq. (25), because the barrier is parabolic.

A comparison of σm(y) as evaluated using Eq. (37) is shown in
Fig. 6, compared to the limiting values given by Eqs. (39) and (40)
(lines). Also shown is an albeit crude but analytic approximation
based on Eq. (28) for λ(E) � 1 and the approximate linearity of
σm(y) for λ(E) . 1, given by

σλ(y) ;
2
3λ 1� (1� λ)3=2
h i

(λ � 1),

2
3þ π

4 � 2
3

� � y�y1
1�y1

h i
(λ . 1),

8<
: (41)

where y1 ¼ (Vo � V(xo))=WF [that is, the value of y(E) when
λ ¼ 1 or σλ(y1) ¼ 2=3]. The approximation is an ad hoc means to

take into account the transition of the barrier shape from a triangu-
lar (σ4) to an inverted parabola (σ>) as y! 1 on a path almost
linear in y for λ . 1. Its accuracy is dependent upon how closely
σm(y1) approaches 2=3. The approximation is useful precisely
because it is completely analytic and relies on only the parameters
(Vo, F, W, Ks) and the energy E at which y(E) is considered. Its
efficacy is analyzed in Sec. IV B.

III. GENERAL THERMAL-FIELD METHODS

A brief review of methods60,61,94 leading to the general
thermal-field (GTF) current density51,87 is given to prepare the gen-
eralization of JGTF , applicable as is for Schottky barriers, to MIM
structures. As with the shape factors, the notation follows Refs. 51
and 89, with terms given in Table II.

A. Current density

A statistical model of the current density J specifies current
past a barrier as the product of the charge of the carrier q, the

FIG. 6. Evaluation of σm(y) [Eq. (37)]. (a) Using the parameters W ¼ 2 nm,
F ¼ 4 eV/nm, L ¼ 2 nm, with Ks as shown. Dashed lines correspond to
2Cσ fσ (0) [Eq. (39)] and (π=2)Cσ fσ (0) [Eq. (40)]. Solid lines correspond to the
analytic σλ(y) of Eq. (41). (b) Same as (a) but now using Ks ¼ 6 and
F ¼ (0:5, 1:0, 2:0) eV/nm as shown. See also Fig. 8.
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density ρ of the gas of particles, and the average velocity of the par-
ticles vzh i. The relevant distribution function from which ρ and
vzh i are evaluated is that of the particles that have successfully
moved past the barrier by tunneling or fly-over and, therefore, goes
as a tunneling probability D(kz) and a supply function f (kz), and
therefore,

Jz ¼ qg
2π

ð
�hkz
m

D(kz)f (kz)dkz , (42)

where a factor of g ¼ 2 in the numerator of the coefficient accounts
for electron spin. The probability of emission is

D(kz) ;
jtrans
jinc

,

jk ;
�h

2mi
ψ
y
k @zψk � ψk@zψ

y
k


 �
,

(43)

where inc and trans refer to the incident (left) and transmitted
(right) wave functions ψk, respectively. The supply function is
obtained from the Fermi–Dirac distribution fFD(Etot) and
Etot ¼ �h2(k2z þ k2?)=2m, where kz is the normal component into the
surface barrier and k? the transverse component that is perpendic-
ular to kz , by integrating over the transverse or ~k? components,
giving

f (Ez) ¼ mkBT

π�h2
ln 1þ eβT (μ�Ez)
	 


, (44)

where the thermal energy slope factor βT ; 1=kBT . As the compo-
nents are now descriptive of one-dimensional transmission along
the ẑ-direction, it is common to (i) transform the integrals to
normal energy Ez by using kz ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mEz
p

=�h and (ii) discontinue
usage of the z-subscript, resulting in, for Schottky and Schottky–
Nordheim barriers, the current density given by

JS ¼ q
2π�h

ð1
0
D(E)f (E)dE: (45)

Such an equation presupposes no incident current from the right
boundary, contrary to what occurs in an interface or MIM struc-
ture. An intuitive generalization to Eq. (45) is then to introduce a
supply function for the right boundary, resulting in the Tsu–Esaki
formula95,96 (also known as the Landauer formula) for the current
density given by

JM ¼ q
2π�h

ð1
0
D(E) f (E)� f (E þ Vb)½ �dE (46)

for MIM and interface barriers [compare Eq. (7) of Ref. 84], where
the right-hand side of the barrier is held at a lower value Vb. Under
conditions where the Fermi level μ is negative [e.g., semiconductors
with weak to moderate doping levels (&1018 cm�3)], then the
Maxwell–Boltzmann approximation to Eq. (44) is useful, resulting
in a relation for thermal emission-dominated conditions (that is,
when tunneling is not significant) given by

f (E)� f (E þ Vb) � f (E) 1� e�βTVb
� �

: (47)

At low temperatures, or when tunneling is significant, subtracting
the left and right directed currents results in greater complexity as
considered by Simmons and for which new theory is developed
below.

The development of the GTF equation requires further
approximation to the Kemble form of the transmission probability,
given by5,88,97

D(E) ¼ 1
1þ eθ(E)

, (48)

where the Gamow factor θ(E) is approximated by its tangent line,

θ(E) � θ(Em)� βF(Em)(Em � E), (49)

where Em is the location of the maximum of the D(E)f (E) inte-
grand of Eq. (45), that is,

d
dE

D(E)f (E)½ �
����
E¼Em
¼ 0: (50)

JS(F, T) is approximated by the general thermal-field approxima-
tion,

JGTF(F, T) ¼ ARLDT
2N(n, s),

n(F, T) ¼ βT
βF(Em)

,

s(F, T) ¼ θ(Em)� βF(Em) μ� Emð Þ,

(51)

where ARLD is as in Appendix A, and the function N(n, s) is given
by

N(n, s) ¼ n
ð1
�1

ln 1þ en(x�s)
	 

1þ ex

dx (52)

TABLE II. Factors and parameter terms encountered in the GTF equations. See
also Table I.

Symbol Definition Relation Unit

D(E) Transmission probabiity Eq. (48) …
f(E) Supply function Eq. (44) 1/nm3

JS Current density Eq. (45) A/cm2

JGTF Thermal-field J Eq. (51) A/cm2

βT Thermal slope factor 1/kB T 1/eV
βF Field slope factor Eq. (53) 1/eV
n(F, T) Energy slope ratio βT/βF …
s(F, T) θ-expansion factor Eq. (51) …
Em max [dJ(E)] location Eq. (50) eV
N(n, s) dJ integral (linear θ) Eq. (52) …
Σ(x) N(n, s) function Eq. (C2) …
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and admits of further approximations that separate into thermal-
dominated and field-dominated components described in
Appendix C. Approximations to N(n, s) suitable for numerical
work are given by Eq. (C1). In the integral form of Eq. (52), the
numerator of the integrand arises from the supply function and the
denominator from the Kemble approximation using the linear
Gamow factor of Eq. (49). Finding Em requires additional methods
previously developed.89 The impact of the non-linear barriers [that
is, Vγ(x) and VM(x)] on J(F, T), therefore, manifests itself in the
changes to θ(Em) and βF(Em) of Eq. (51): the current through a
depletion layer and an MIM barrier will be modified in the same
way that JGTF(F, T) replaces the canonical Fowler–Nordheim and
Richardson–Laue–Dushman equations of field and thermal emis-
sion, respectively.

B. Linear barrier energy slope factor

The quadratic and MIM barriers will undermine the linear
approximation of Eq. (49), as the non-linearity of θ(E) is more pro-
nounced for the non-linear barriers, in three ways: (i) compared to
the Bethe thermal emission or the Schottky emission model, the
barrier height is raised for the depletion barrier and lowered for the
MIM barrier; (ii) compared to the Fowler–Nordheim tunneling
model, the barrier height and tunneling width at the Fermi level
are both increased for the depletion barrier and reduced for the
MIM barrier; and (iii) in the general thermal-field model, both the
aforementioned effects result in changes to θ(Em) [and, therefore,
s(F, T)] and βF(Em) [and, therefore, n(F, T)]. The complications in
the thermal-field (TF) θ(E) due to its non-linearity have already
been encountered, and successfully addressed, for the standard
linear barrier model of Eq. (1) culminating in Eq. (52). What is
important in the present treatment is the determination of Em and
βF(E) ; �@Eθ(E), which requires having to consider both Eq. (3)
for θ(E) and its derivative βF(E) ¼ �@Eθ(E). As a matter of com-
putational expediency, this is undesirable, as requiring numerical
integrations in emission models results in an excessive computa-
tional burden in both simulations and beam optics codes. An
approximate solution is suggested by the shape factor methods.
Observe that

βF(E) ¼ �σ(y)@E[2κL]� 2κL@Eσ(y): (53)

An approximate method based on the weak variation of σ[y(E)]
compared to that of 2κ(E)L(E) is computationally expedient, as the
later can be determined directly from Eqs. (4) and (5) without the
need for integration and the former is well approximated by
Eq. (12) for y(E) given by Eq. (7). Write Eq. (53) as

βF(E) ¼ �2σ(y)@E(κL) 1þ @E ln [σ(y)]
@E[ ln (κL)]

� �

; βoF(E) 1� Rβ(y)
	 


,

(54)

where βoF(E) is the constant shape factor approximation to βF(E)
and Rβ(y) is expected to be small. For the shape factors of Sec. II A,

Eqs. (9) and (10) give

κL ¼ 4
�h

m2Q3
s

F

� �1=4 (1� y)(1� y2)
y3

� �1=2
, (55)

where the form of σ0(y) can be obtained from Eq. (12), and then it
is found that

βoF(E) ¼
2
�h

m2Q
F3

� �1=4 (y þ 3)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y(1þ y)

p σ0(y), (56)

Rβ(y) ¼ 2y(1� y2)
y þ 3

@y[ ln (σ0(y))], (57)

which is equivalent to Eq. (28) of Ref. 87. By taking derivatives of
logarithms, the constant coefficients of

ffiffiffiffiffiffiffi
2m
p

=�h that accompany κL
do not appear in Rβ . Invoking Eq. (8) gives as a reasonable approxi-
mation

Rβ(y) � 0:1865
y(1� y)(y þ 3:655)

(y þ 0:5985)(y þ 1:308)(y þ 3)
(58)

for which the absolute value is maximum at Rβ(0:3107) ¼ 0:032 51.
Therefore, a constant-σ approximation, in which βF(E) � βoF(E),
may be adequate for numerical work, even though the inclusion of
Rβ(y) is not difficult, as it allows for a reasonably accurate determi-
nation of Em in a straightforward manner. Such an approximation,
however, will not be used in the analyses below.

C. Nonlinear barrier energy slope factor

A similar expectation arises for σγ(y) and σm(y) [e.g., the dis-
cussion attending Eq. (26)] but must be demonstrated. To do so,
rewrite Eq. (53) as

� βF(E)
θ(E)

¼ @E ln {σ[y(E)]}þ @E ln [κ(E)L(E)], (59)

where the ratio of the first and second terms is equivalent to
�Rβ(y) in Eq. (58). Evaluating the integrals defining σ(y) numeri-
cally, and using finite difference approximations for the derivatives
with respect to E, the comparison is shown in Fig. 7 for several rep-
resentative parameters (Vo ¼ 4 eV, γ ¼ 0:001 eV/nm2, 0 � Ej �
Vo �

ffiffiffiffiffiffiffiffiffiffi
4QsF
p

for N ¼ 80 points). The choice of such parameters
remains comparable to Fig. 1: if L! αL, F ! αF, Qs ! Qs=α, and
γ ! γα2, then the leading order behavior of the factors
V(xo) � Vo �

ffiffiffiffiffiffiffiffiffiffi
4QsF
p

, so �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qs=FL2

p
, and sh � F=2γL do not

noticeably change, and therefore, σ(y) and κL do not noticeably
change, meaning that changing F by a factor of 1/10 suggests
changing γ by a factor of 1/100. Except near the base of the barrier
where y(E) is small, the relative smallness of �Rβ(y) demonstrates
that the constant-σ approximation is reasonable: for the parameters
of Fig. 7, the minimum value of y is 0.0458–0.1122. Numerical
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derivatives for a general function f (E) are evaluated according to

f (Ej)� f (E j�1)
Ej � E j�1

¼ fj � f j�1
Ej � E j�1

; f 0j�1=2, (60)

with f corresponding to ln σ(y) or ln (κL) here with the conse-
quence that small departures from the analytic result of Eq. (58)
are visible near y � 1.

The approximate adequacy of the constant-σ approximation
entails that βoF(E) may be used in place of βF(E) for energies near
the middle of the quadratic barrier (or higher) and certainly for
emission in the thermal-field regime. As the current density is
rapidly suppressed for smaller energy [greater Vo � E and, there-
fore, smaller y(E)], an advantage to simulation and evaluation
becomes apparent due to the availability of reasonable analytic
approximations to σγ(y), thereby avoiding numerical integration
compared to the simple function calls required to evaluate κ(E)
and L(E), as they depend only on the values of (xo, xh) (maximum/
minimum location) and x1,2 (root location), are the largest contri-
bution to βF(E), and can be interpolated to intermediate values of
E with ease.

The analysis is now repeated for the MIM barrier σm(y)
factor. As before, finding what conditions βoF(E) is a reasonable
approximation to βF(E) requires comparing d ln (σ(y))=dE to
d ln (κL)=dE. Approximate the derivatives numerically using finite
difference methods. For MIM barriers, two limiting cases exist, the
trapezoidal case where L(E) ¼W and the triangular case where
L(E) ¼ (Vo � E)=F. They result in the Ks ! 1 limiting cases of

lim
Ks!1 κ(E)L(E) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mFW3
p

�h

 λ�3=2 (λ � 1),

λ�1=2 (λ . 1),

�
(61)

where λ(E) ¼ FW=(Vo � E). Consequently, d ln (κL)=dE is com-
pared to the limiting cases of �(3=2)d ln (λ)=dE and

�(1=2)d ln (λ)=dE, the four cases being shown in Fig. 8, demon-
strating that using σ(y) � 2Cσ fσ(0) is good for small y, and that for
larger y, the growth of κ(E)L(E) diminishes its relative importance.

The common use of the Fowler–Nordheim equation of
Appendix A, even for potentials that are demonstrably non-linear,
however, owes much to the comparative simplicity of Eq. (A5) [or
Eq. (A7) if the image charge contribution is included]. The require-
ment to obtain x1, x2, xo, and xh, even by approximate means, so
as to use Eq. (36) [or Eqs. (39) and (40)] for the approximation of
βF(E) may, therefore, be an impediment for the adoption of shape
factor methods in simulations of MIM barriers. Therefore, consider
the purely analytic and easily evaluated σλ(y) of Eq. (41) as a heu-
ristic alternate. Its performance for common values of Ks ¼ 6 at
relatively large and small fields of F ¼ 0:5 and 4 eV/nm, compared
to using σm(y) [Eq. (36)] or its approximation by Eq. (39), is
shown in Fig. 9. It is seen that for small y, where d ln (κL)=dE is
comparable to d ln (σ(y))=dE, the approximation is good.
Conversely, when y is closer to unity, then some conditions allow
the approximation σλ(y) to be good, but the comparative largeness
of d ln (κL)=dE signifies that even in this regime, the impact on
βF(E) is the (as previously observed) marginal.

FIG. 7. Evaluation of �Rβ (y) ¼ @E ln (σγ )=@E ln (κL). The legend (F=Ks) indi-
cates values of 100
 F (with F in units of eV/nm) and Ks. For numerical evalu-
ation, Vo ¼ 4 eV and γ ¼ 0:001 eV/nm2. σγ (y) integrations and derivatives
with respect to E are numerically performed.

FIG. 8. Evaluation of d ln (σ)=dE for σ(y) for the conditions of Fig. 6, where
symbols ( � , □, S ) use σm(y) of Eq. (36) and the thick solid lines use
2Cσ fσ (0) of Eq. (39). Also shown are the limiting cases d ln (κL)=dE when κL
is given by Eq. (61) (dashed lines). (a) Variation with Ks. (b) Variation with F.
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IV. ANALYSIS

The effects of non-linearity of the barrier on the Gamow
factor θ(E) and the energy slope factor βF(E) affect the evaluation
of the current density JS by affecting the integrand dJ(E) ¼
D(E)f (E) of Eq. (45) [and analogously for JM and Eq. (46)]. The
present section shall compare the integrands using Eq. (44) for
f (E) and Eq. (48) for D(E), with the analysis focusing on the conse-
quences of the approximations used for θ(E). The rapidity of the
evaluation of dJ(E) is substantially increased through the usage of
the analytic approximations to σ(y) that are available [Eq. (12) for
σ0(y) and σγ(~y) and Eq. (41) for σλ(y)], and which crucially
enables the rapid determination of Em on which the linear Gamow
approximation of Eq. (49) on which N(n, s) depends. Clearly, the
behavior of σm(y) in Fig. 6 suggests that simple and useful interpo-
lative or approximate schemes of good accuracy can be tailor-made
for conditions, but the usage of the analytic models, even if less
accurate, enables reproducibility, and so shall be used instead. A
comparison of three methods to find dJ(E) will, therefore, give rise
to the four forms of the Gamow factor and the tunneling
probability:

1. an “exact” form using Eq. (6) for θ(E) and analytic forms of
σ[y(E)] as specified,

2. a “linear-θ” form using Eq. (49) with Em requiring determina-
tion and βF(E) from θ(E) using finite difference methods,

3. a “conventional” form using the Fowler–Nordheim [Eq. (A6)]
form of D(E) as commonly done for depletion and MIM-like
barriers, and

4. a “conventional” form using the Richardson/Bethe
(Θ[E � V(xo)]) form of D(E) as commonly done for depletion
and MIM-like barriers

for which Forms 3 and 4 are both cases of the “conventinal” form
but are treated separately. For convenience, the current integrand of
JS(F, T) [Eq. (45)] is treated for simplicity; the treatment for JM
proceeds analogously. The final evaluation of JS(F, T) using Form 1
requires numerical integration, whereas Forms 2 and 3 allow for
using Eqs. (51), (C4), or (C5) as circumstances allow or numerical
integration if convenient.

A. Depletion barrier: Tunneling

Consider conditions where dJ(E) is dominated by tunneling
contributions for the depletion barrier of Eq. (13) with Vo ¼ μþ Φ
over a range of energies E (thermal emission studies are deferred to
Sec. IV B because here, near the apex, the depletion barrier resem-
bles a Schottky–Nordheim barrier and, therefore, inferences based
on general thermal-field analyses are sufficient). The evaluation of
V(xo), κ(E), and L(E) all rely on numerically determining the roots
xj(E) and the location of the maximum xo. For E ¼ 0,
x2(0) ¼ x3(0) ¼ xh. For ENþ1 ¼ V(xo), θ(ENþ1) ¼ 0 and βF(ENþ1)
is given by Eq. (56) with y ¼ 1. As a computational matter, it is
more convenient to specify the roots x1(0) and x2(0) for a given Ks

(and hence Qs ¼ Q=Ks) rather than specify Vo and F and deter-
mine the roots thereafter, as the potential barrier factors are quickly
and explicitly determined by equating Eq. (1) to

Vγ(x) ¼ γ

x
[x1(0)� x][x2(0)� x][x3(0)� x], (62)

a form implicit in Eqs. (17) and (18). It follows:27

γ ¼ Qsx1x2x3,

F ¼ γ(x1 þ x2 þ x3), (63)

Vo ¼ γ(x1x2 þ x1x3 þ x2x3),

xo ¼ Qs

F � 2γxo

� �1=2
,

where xj(0)! xj for convenience, x2 ¼ x3 ¼ xh is understood, and
the equation for xo may be solved by iteration starting from an
initial value of xo �

ffiffiffiffiffiffiffiffiffiffi
Qs=F

p
with convergence achieved after five to

eight iterations. Three examples are shown in Fig. 10.
To evaluate θ(E) on a set of Ei ¼ i V(xo)=(N þ 1) and

i [ (0, 1, 2, . . . , N), the roots xj(Ei) must first be identified.
Although the Ei so defined is equi-spaced, that is not required.
A rapid and systematic method to do so is by Newtonian iteration,
for which the roots for E0 ¼ 0 have already been specified
by x2(0) ¼ xh and x1(0). Letting xj(0) ¼ xj for j [ (1, 2, 3), then

FIG. 9. Evaluation of d ln (σ)=dE for σm(y) [Eq. (36), †) compared to 2Cσ fσ (0)
[Eq. (39)] and σλ(y) [Eq. (41)]. In both cases, Ks ¼ 6. Also shown are
d ln (κL)=dE (S) and its limiting cases [Eq. (61)] (dashed lines). Axes of (a)
and (b) plots are at different scales. Compare with Fig. 6.
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from Eq. (62),

V 0(x) ¼ γ

x2
[x1x2x3 � (x1 þ x2 þ x3 � 2x)x2], (64)

where x2(0) ¼ x3(0) ¼ xh in the present case. The solution of
V[xj(Ei)]� Ei ¼ 0 defines xj(Ei) and is found by repeatedly per-
forming

�x  �x � V(�x)� Ei
V 0(�x)

(65)

until convergence, using �x ¼ xj(Ei�1) as the initial value. After con-
vergence, then �x ! xj(Ei). For closely spaced Ei, convergence is
very rapid, with convergence after three iterations being adequate.
For finding the smaller root, the iteration for x1(E1) can begin with
�x ¼ x1(0), but not so for x2(E1) because V 0[x2(0)] ¼ 0 by defini-
tion. Therefore, for the larger root starting value, the parabolic
nature of V(x) near x ¼ xh allows the initial �x to be taken as
�x ¼ xh � δ with δ small (e.g., δ ¼ 0:02) from which
x2(E1) ¼ xh � δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1=V 0(�x)

p
. Because x1(Ei) monotonically and

smoothly increases with i and x2(Ei) monotonically decreases, in
practice, Ei need not be finely spaced, and interpolation to interme-
diate values can be used to reduce computational overhead, but
because the convergence is rapid already, this approach is not used
in the present study. Parenthetically, it is observed that the process
could just as well begin starting at j ¼ N with x1(ENþ1) ¼
x2(ENþ1) ¼ xo and find the (j� 1)th roots from the jth roots, as
would be advantageous if only a small energy range below the
Fermi level is desired.

With the roots in hand, then a straightforward evaluation
yields

κ(Ei) ¼ 2m

�h2
(V(xo)� Ei)

� �1=2
,

L(Ei) ¼ x2(Ei)� x1(Ei),

σ[y(Ei)] � σ0[~y(Ei)],

(66)

where Eq. (12) is used for σ0(y), ~y(E) ¼ (y � ymin)=(1� ymin) as
per Eq. (26), and ymin ; [Vo � V(xo)]=Vo [a simplification
of Eq. (19) when V(xh) ¼ 0]. From these components, then
θ(E) ¼ 2σ(y)κ(E)L(E) provides the Gamow factor (Form 1), and

βF(Ei) � �
θiþ1 � θi�1
Eiþ1 � Ei�1

(67)

[compare Eq. (60)] is the finite difference approximation to the
derivative, giving the slope factor βF(E) [an upwind/downwind
second order difference +(3θi � 4θi+1 þ θi+2)=2 is used for the
end points i ¼ 1 and i ¼ N þ 1]. Observe that this method incor-
porates the weak dependence of σ(y) on E; that is, the constant-σ
approximation is not used. The performance of Forms 2 and 3 can
now be compared to Form 1.

Using the parameters of Table III, the integrand dJ(E) is
shown using the exact θ(E) (Form 1, symbol �) compared to the
linear-θ (Form 2, red line) and the FN (Form 3, blue line) in
Fig. 11. The Metal-B case results in parameters typical of tungsten.
The Semi-A/B cases are typical of semiconductor parameters. The
area of the light gray shaded region is proportional to JS (Jθ and JFN
would likewise correspond to the areas under their respective
curves). The closer μ is to V(xo), the better JFN approximates JS,
but several mitigating factors are apparent. Normally as the temper-
ature increases, more of the integrand enters the energy range
between μ and Vo (the TF regime), making agreement between JFN
and JS seemingly improved when in fact the shapes of the inte-
grands have significantly diverged. In the case of Semi-B, the TF

FIG. 10. Barriers Vγ (x) constructed using the (Ks, x1(0), xh) parameters of
Table III with x2(0) ¼ x3(0) ¼ xh. Thin red and blue dashed lines correspond
to γ ¼ 0 (linear barrier). The thin horizontal gray line corresponds to
μ=Vo ¼ 0:5 (Metal A and Semi-A/B) and the thin horizontal gray dashed line to
μ=Vo ¼ 0:65 (Metal B).

TABLE III. Metal-like and semiconductor-like parameters. Column labels correspond
to labeling in Fig. 11.

Term Metal A Metal B Semi-A Semi-B

Independent terms
T (K) 300 1600 300 230
Ks 1 1 6 12
x1 (nm) 0.02 0.02 0.06 0.03
xh (nm) 4 4 4 10
μ/Vo 0.50 0.65 0.50 0.50
Dependent terms
Vo (eV) 18.18 18.18 1.03 1.01
xo (nm) 0.205 0.205 0.362 0.395
V(xo) (eV) 14.62 14.62 0.690 0.853
F (eV/nm) 9.022 9.022 0.504 0.200
γ (eV/nm2) 1.125 1.125 0.0625 0.010
ymin 0.196 0.196 0.330 0.153
Jθ/JS 1.028 1.042 1.099 1.288
JFN/JS 16.94 2.045 1.938 1.209
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regime has been entered even though the temperature appears
small, and therefore, Jθ is larger than it should be (larger, in fact,
than JFN , even though the FN approximation is clearly worse).
Methods to account for the over-estimation in the TF regime for

the linear barrier model89 can be used to correct the overestima-
tion. The ratios between Jθ and JFN with JS are shown in Table III.
In all cases (even the seemingly worse Semi-B), the estimate of the
current density using the linear-θ (Form 2) approximation is supe-
rior to the Fowler–Nordheim (Form 3) approximation.

B. MIM barrier

The analysis is now repeated for the case of the more complex
MIM-like barrier in which Vm(x) of Eq. (2) is given by Eq. (31)
with s ¼ x=W . Two kinds of comparisons are made: first, in a tun-
neling regime and second, in a thermal regime. For purposes of
comparison, the Fermi level is set to a fraction of the barrier height
parameter via a ratio factor r, as in μ ¼ rVo, with r ¼ 1=2 being
the default choice so that the work function is Φ ¼ (1� r)Vo.

The investigation of thermal emission requires addressing how
D(E) behaves as E exceeds Vo. Theoretical models5 indicate that
θ(E) and βF(E) are continuous across the boundary E ¼ V(xo), and
therefore, a reasonable approximation is to set

θ[V(xo)� Δ] ¼ �θ[V(xo)þ Δ], (68)

where Δ ¼ jV(xo)� Ej, for which the Kemble approximation sug-
gests D[V(xo)] ¼ 1=2, a relation exact for parabolic potentials but
requiring modification for triangular and rectangular ones: the
apex of depletion and MIM barriers including image charge modi-
fications are approximately parabolic and, therefore, amenable to
the approximation. As before, the analysis is undertaken by exam-
ining the behavior of dJ(E), but now the energy range is extended
to above the barrier maximum V(xo) so as to examine the thermal
regime. In contrast to the depletion barriers, however, at low fields
where FW , Φ, the Fowler–Nordheim parameterization will sig-
nificantly overestimate θ(E) because it assumes values of L(E) that
are larger than the width W of the MIM barrier; at high fields
where FW . Φ, the correspondence will be analogous to the find-
ings of Sec. IV A and, therefore, have already been treated.
Consequently, for the MIM barrier treatment, the analysis will shift
to examine the accuracy of the purely analytic approximation
σm(y) � σλ(y) of Eq. (41), for which no factors must be pre-
calculated. The asymptotic behavior of Eqs. (39) and (40), however,
suggests a final “semi-analytic” form that modifies σλ(y) of
Eq. (41) through the evaluation of σm(y) at only two values of y,
but which enables a relatively good approximation with otherwise
minimal effort, given by

σ,(y) ¼ π

4
� π

4
� σN


 � 1� y
1� yN

� �
,

σ.(y) ¼ 1þ [σ1 � 1]
y
y1

� �
,

σa(y) ; max σ,(y), σ.(y)½ �, (69)

where σ1 and σN could be approximated using Eqs. (39) and (40)
but (as shall be done here) are better given by σm(y1) and σm(yN ),
respectively, where yj ¼ j=(N þ 1) and N is the number of points
used for the coarse-gridding of Ej from which the spline approxi-
mation to θ(E) is constructed: such an approach requires only two

FIG. 11. Comparison of the exact, linear-θ, and FN forms of θ(E) as used in
dJ(E) for the parameters of Table III, normalized to dJS(Em). Observe that in
Semi-B, conditions are such that the TF regime has been entered. The gray
area is proportional to JS; Jθ and JFN correspond to the area under the red and
blue curves, respectively.
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numerical integrations rather than N , and the resulting form
enables the rapid evaluation of Em needed for constructing dJ(E). A
comparison of θ(E) via Eq. (6) evaluated using numerically deter-
mined values of κ(E) and L(E) is shown in Fig. 12 with σ(y) given
by the exact σm(y) [Eq. (36)], the purely analytic σλ(y) [Eq. (41)],
and the semi-analytic σa(x) [Eq. (69)].

Rapid and repeated evaluations of dJ(E) to find Em from
which θ(Em) and βF(Em) are obtained and from which JGTF(F, T)
is determined are now possible because the requirements for
numerical integration in the evaluation of σm(y) have been elimi-
nated. Although the search algorithms [to find the roots sj ¼ xj=W
on which κ(E) and L(E) depend] are rapid, the execution speed
can be enhanced further by evaluating κ(E)L(E) on a coarse grid of
Ej values: the smoothness of θ(Ej) then allows for either a rapid
spline-fitting algorithm to construct θ(E) ¼ 2σκL for arbitrary
values of energy (the method used below) or an approximation of
θ(E) ¼Pj CjE j by a cubic equation for which the coefficients Cj

are determined by θ(E) and βF(E) at E ¼ μ and E ¼ V(xo) as for
the simple GTF model.27,98 As a result, the determination of Em,
θ(Em), and βF(Em) can be made in a computationally expedient
manner. Three sample cases are considered to demonstrate the per-
formance: (i) a field-dominated (low temperature) condition, (ii) a
temperature-dominated (high temperature) condition, and (iii) a
mixed (intermediate temperature) condition.

In particular, case (iii) demonstrates how reliance on either a
Fowler–Nordheim characterization when tunneling is presumed
dominant or a Richardson/Bethe characterization when thermal
transport is presumed dominant can substantially overlook effects
that contribute, apart from the other issues identified with their
usage described previously.

A comparison of the numerically intensive evaluation of
dJ(E)=dE ¼ D(E)f (E) (the integrand of Eq. (45); for convenience,
JS rather than JM is treated) using the exact evaluation of σm(y) is

compared to that obtained using the approximate σa(y) and ana-
lytic σλ(y) in Fig. 13 for temperatures for which field (300 K),
thermal (1000 K), and mixed (720 K) conditions dominate. The
small differences between θ(E) and its approximations are more
clearly visible in the dJ(E) behaviors. The gray area is, as with

FIG. 12. Comparison of the exact [Eq. (36)], analytic [Eq. (41)], and approxi-
mate [Eq. (69)] forms of θ(E) over the range for which dJ(E) as a function of
temperature will be evaluated in Fig. 13 for the parameters Vo ¼ 2:5 eV,
F ¼ 0:1 eV/nm, W ¼ 2 nm, and Ks ¼ 6. Gray horizontal line is at θ ¼ 0, and
the gray vertical line is at E ¼ V (xo).

FIG. 13. Evaluation of dJ(E) for the θ(E) factors and parameters of Fig. 12
using the exact [Eq. (36)], analytic [Eq. (41)], and approximate [Eq. (69)] forms
of θ(E). The green region (when visible) shows the Richardson/Bethe (R/B)
model, for which D(E) ¼ Θ[E � V(xo)]. The gray region is proportional to JS.
The Fermi level μ ¼ Vo=2 ¼ 1:25 eV.
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Fig. 11, proportional to the current density: it is apparent that even
if the integrated areas are comparable, the underlying behavior of
the integrands can be substantially different: these differences
would, for example, affect the distribution of energies required in
beam optics simulations discussed in Sec. I. In the case of the
mixed conditions, moreover, a purely thermal (Richardson/Bethe)
or field (Fowler–Nordheim) model would completely miss contri-
butions: the behavior of dJ(E) for the MIM barrier in these cases
exhibits behavior more extreme than that found in the Schottky–
Nordheim potentials often assumed in the canonical equations, for
which the energy distributions, both theoretically87–89,99 and exper-
imentally,100,101 are characterized by a single peak that broadens in
the thermal-field regime (the beginnings of which is seen in the
“Semi-B” figure of Fig. 11). The double-peak behavior in the
thermal-field (TF) regime indicates that although the linear
Gamow approximation of Eq. (49) is useful in either the thermal or
field regimes for the MIM barrier, in the TF regime, the full non-
linear behavior of θ(E), evident in Fig. 12, becomes consequential
near the barrier maximum: the development of an analytic equa-
tion for JS (or JM) in the TF regime will require methods for
accounting for the non-linear features of θ(E) beyond those of
Appendix C and the usage of Lorentzian correction factors for the
Schottky–Nordheim barrier.89

The suggestion in Fig. 13 that the analytic model performs
reasonably if not adequately in the TF regime needs qualification.
In the TF regime of different conditions, such as a higher field, the
departures can become more pronounced, an example of which is
shown in Fig. 14, which highlights two kinds of defects in the ana-
lytic model of Eq. (41) that require attention in the TF regime, but
for which the approximate model [Eq. (69)] remains good. First,
the discontinuity in the slope of σλ(y) at λ ¼ 1, readily apparent in
Figs. 6 and 9, results in the overestimation of σ(y) even if κL is
evaluated well: this defect is responsible for the plateau-like

behavior for μ & E & V(xo). Second, the change in the slope
results in ripples in the spline approximation visible near E ¼ μ:
the ripples are increasingly suppressed as the number of spline
points is increased, and therefore, these ripples are a purely numer-
ical artifact of the spline approach, not a defect of the analytic
model itself. It may be concluded that the analytic equation (41) is
sufficient for preliminary investigations of the behavior of dJ(E),
but that accuracy requires usage of the slightly more demanding
approximate equation (69), with the caveat that the TF regime
requires particular attention. Under many conditions, however, the
narrow TF regime is expected to be but a small part of the perfor-
mance conditions under which devices involving MIM barriers
may be required to operate.

Compared to the Schottky–Nordheim and depletion barriers,
the behavior of the MIM barriers (and barriers like them) contains
more abrupt transitions caused by the passage of FL from smaller
than Vo � E to larger (i.e., from λ , 1 to λ . 1), and this results
in greater complexity of the shape factor σ(y): the TF regime is
approached when L(E) begins to vary rapidly with E instead of
being close to W. As a result, the linear Gamow approximation of
Eq. (49) and its usage in evaluating J(F, T) in the GTF formalism
of Sec. III and Appendix C requires greater care. Such consider-
ations are of even greater consequence if the incident distribution,
or supply function, of electrons is a consequence of thin layer pro-
cesses in MOS and semiconductor field emitters102 and nanogaps,
or excitation and generation as occurs for photoemission4 and
detectors.29,103 In such cases, usage may be made of the approxima-
tion approach behind Eq. (69) and its usage with κ(E)L(E) found
numerically, which, though requiring more computations than con-
ventional methods based on FN and R/B behavior, nevertheless
performs with sufficient rapidity to enable simulation of current
flow under more complicated conditions. Efforts to do so shall be
reported separately.

V. CONCLUSION

A recent formalism based on the shape factor5,104 and
thermal-field methods86,87,89 has been used to accurately model
emission through and over barriers associated with depletion
layers, nanotip barriers, and MIM/MIS/MOS structures. The trans-
mission probability is accurately modeled as the electron energy
approaches and surpasses the barrier height using analytically
motivated approaches useful to simulation codes. The methods
have applications to more general barriers and are designed to
satisfy the need for rapid but accurate models when a range of
energies and/or a large distribution of contributing particles are
present (e.g., thermal-field conditions, photoexcited distributions,
etc.), as for device modeling needs and electron beam codes.
Importantly, the analytical models of the transmission probability
are designed to supersede the canonical emission equations used by
depletion and MIM barrier studies. By separating the Gamow tun-
neling factor θ(E) into the product of a dimensionless shape factor
σ(y) and an easily evaluated tunneling integrand height and the
width factor 2κ(E)L(E), the dominant contribution of the later to
the Gamow factor θ(E) and the energy slope factor βF(E), which
are the primary determinants of transmission probability, can be
identified and isolated, thereby enabling methods that ease

FIG. 14. Same as Fig. 13 but for F ¼ 0:6 eV/nm and T ¼ 900 K, showing the
conditions under which the analytic form of σ(y) degrades, but for which the
approximate form is adequate. The ripples in the analytic form are a conse-
quence of the low number of points (24) used to construct the spline interpolant
and not a defect of the analytical model itself.
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numerical demands that complicate theoretical methods of acquir-
ing θ(E). In this work, we have provided rapid means to analyze
two classes of barriers defined by zeros of a polynomial function,
have shown how to calculate the roots of those polynomials
quickly, and have described the resultant linearized Gamow factors.
From those factors, the impact on the current density through,
over, or past the non-linear barriers was examined in a manner
that is computationally advantageous to device simulation and
emitter characterization for technologically interesting barriers
characteristic of a range of emergent technologies.
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APPENDIX A: FOWLER NORDHEIM BARRIER

The triangular barrier model of Fowler and Nordheim47 is the
simplest leading order approximation to depletion
barriers64,67,105–107 and metal–insulator–metal (MIM) or metal–
insulator–semiconductor (MIS) and metal–oxide–semiconductor
(MOS) barriers94,108–110 subject to a high bias potential.
Approximations used in the development of the Fowler–Nordheim
Equation (FNE),47 therefore, retain a presence in the shape factor
analysis of Sec. II A. Those approximations are briefly recounted.

The triangular barrier is characterized by a potential of the
form V(x) ¼ Vo � Fx with Vo ¼ μþΦ for metals; and therefore,
the associated Gamow factor θ(E) is the y ¼ 0 limit of Eq. (6) for
which σ(y)! σ(0) ¼ σ4 ¼ 2=3 as in Eqs. (12) and (28). From the
relations �h2κ(E)2=2m ¼ Vo � E and L(E) ¼ (Vo � E)=F, it follows
that

θ(E) ¼ 4
3
κ(E)L(E) ¼ 4

3�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(μþ Φ� E)3

q
: (A1)

The Fowler–Nordheim equation for the current density JFN (F)
choses Em ¼ μ in Eq. (49), leading to

θ(μ) ¼ 4
3�hF

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΦ3

p
: (A2)

Likewise, the energy slope factor βF(E) ¼ �@Eθ(E) of Eq. (53) gives

βF(E) ¼
2
�hF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m(μþΦ� E)

p
(A3)

so that βF(μ) ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2mΦ
p

=�hF. Finally, the low-temperature limit of
Eq. (51) sets n� 1, and therefore, Eq. (51) returns,51,61

lim
T!0

JGTF(F, T) ¼ ARLDT
2 βT
βF(Em)

� �2
e�θ(Em): (A4)

Using ARLD ; mqk2B=2π
2�h3 ¼ 120:173 Amp/K2 cm2 and βT ¼

1=kBT and Em � μ, this becomes

JFN (F) ¼ qF2

16π2�hΦ
exp � 4

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΦ3
p

3�hF

 !
(A5)

and is equivalent to the original Fowler Nordheim equation47 when
F ! qE, apart from a coefficient P(μ, Φ) ¼ 4

ffiffiffiffiffiffi
μΦ
p

=(μþΦ) of
order unity (P ¼ 2 if μ ¼ Φ ).47,61,90

For non-zero y, that is, when the Schottky–Nordheim barrier
is used, then JGTF(F, 0) is equivalent to the Murphy and Good
JMG(F) version, as can be shown.51,61 Briefly, in a conventional
Fowler–Nordheim analysis, θ(E) is approximated by

θFN (E) ¼ θ(μ)� βF(μ)(E � μ),

θ(μ) ¼ 4
3�hF

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΦ3

p
v(y),

βF(μ) ¼
2
�hF

ffiffiffiffiffiffiffiffiffiffi
2mΦ
p

t(y)

(A6)

using the Schottky–Nordheim parameters v(y) and t(y)51,61 {in the
reformulated GTF approach, these factors are displaced in favor of
σ[y(E)], but for E ¼ μ, the results are equivalent87—see Eqs. (A4)
and (A5) of Ref. 86 for the connection}. Using the Forbes–Deane
approximations111 to v(y) and t(y), JMG can be expressed as
[compare Eq. (B2) of Ref. 89 and discussions therein]

JMG ¼ qF2

16π2�hΦt2o

e3

y(μ)

� �2ν
exp � 4

ffiffiffiffiffiffiffiffiffiffiffiffi
2mΦ3
p

3�hF

 !
, (A7)

with ν ¼ (8Qs=9�h)
ffiffiffiffiffiffiffiffiffiffiffiffi
2m=Φ

p
, t(y) � to ¼ 1þ (1=6e) ¼ 1:0613, and

y(μ) from Eq. (8), with the rendering purposely intended so as to
preserve the visual similarity to Eq. (A5), although it obscures that
the power p of F p in the coefficient is p ¼ (2� ν) rather than 2
because of the field dependence of y(μ). For example, for Ks ¼ 1
and Φ ¼ 2 eV, then ν ¼ 0:1932.

APPENDIX B: QUADRATIC BARRIERS

1. Doping and depletion

A simple doping profile Vd(x) is obtained for a dielectric of
thickness L and dielectric constant Ksε0 subject to a vacuum field
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by solving Poisson’s equation,

@2
xVd(x) ¼ q2Nd

Ksε0
¼ 8πQ

Ks
Nd ; 2γ, (B1)

where the units of Vd(x) are in eV as a result of multiplying both
sides by the electron charge (�q) so that the customary negative
sign is absent, and similarly, F ¼ �qE is in units of eV/nm. Subject
to the conditions

1. Vd(x) is equal to Vo at the origin and vanishes at the depletion
width w,

2. the gradient of Vd(x) is continuous at x ¼ w and equals
(Fvac=Ks) ; �F at x ¼ L,

3. dopants are only ionized for x � w such that Nd is a constant,
and therefore, Vd(0 � x � w) ¼ Aþ Bx þ Cx2 and
Vd(w , x � L) ¼ Dþ Gx,

then Eq. (B1) can be cast as a matrix equation given by

0 0 1 0 0
1 w �1 �w �w2

0 1 0 �1 �2w
0 1 0 0 0
0 0 0 0 2

2
66664

3
77775

A
B
C
D
G

2
66664

3
77775 ¼

Vo

0
0
�F
2γ

2
66664

3
77775: (B2)

Inverting and collecting, Vd(x) is given by

Vd(x) ¼ Vo � (F þ 2γw)þ γx2 (x � w),
Vo � γw2 � Fx (x . w):

�
(B3)

The depletion width w where Vd(w) ¼ 0 is given by

w(F) ¼ 2Vo

F þ ffiffiffiffiffiffiffiffiffiffi
4γVo
p : (B4)

For F ¼ 0, the usual depletion width w(0) ¼ ffiffiffiffiffiffiffiffiffiffi
Vo=γ

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ksε0Vo=q2Nd

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsVo=8πNdQ

p
is obtained. If the right

contact is held at Va instead of subject to a vacuum field term Fvac,
then Va is the solution to Va ¼ Vo � γw2 � FL. An example for
generic parameters is shown in Fig. 15.

2. Prolate spheroidal emitter

The potential barrier associated with field emission from a
prolate spheroidal emitter75,77 is well modeled by a quadratic
potential.27 The prolate spheroidal diode equipotentials are gov-
erned by hyperbolic surfaces of υ in prolate spheroidal coordinates
(υ, η), related to cylindrical coordinates (ρ, z) by

ρ ¼ L sinh (η)sin(υ),
z ¼ L cosh (η)cos(υ),

(B5)

in which Laplace’s equation becomes

sin υ @2
υ þ cos υ @υ

� �
Vh(υ) ¼ 0, (B6)

where the anode is specified by υ ¼ π=2 and the emitter surface by
υo. Solutions are

Vh υð Þ ¼ Vo 1� Q0( cos υ)
Q0( cos υo)

� �
,

Q0(s) ;
1
2
ln

1þ s
1� s

� �
,

(B7)

where Q0(s) is a Legendre polynomial of the second kind. Electrons
that follow the field lines (along constant η) tunnel through a
potential given by

V[x(η, υ)] ; μþΦþ Vh(υ)� Q
x(η, υ)

(B8)

� μþ Φ� Fη x þ γη x
2 � Q

x
, (B9)

where a different Fη and γη is required for each emission site along
the surface, and

x(η, υ) ¼ L
ðυ
υo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2 ηþ sin2 u

q
du (B10)

such that x(η, υo) is on the emitter and x(η, π=2) terminates on the
anode plane, with the notational choice of x(η, υ) to reinforce that
it is analogous to the distance from the surface in a 1D tunneling
problem. For simplicity here, consider the on-axis trajectory, and
let Fη ! F and γη ! γ. Consequently, for (η ¼ 0), x(υ, 0) ¼
L( cos υo � cos υ) and

F ¼ Vo

Lsin2υo Q0 cos υoð Þ , (B11)

FIG. 15. The behavior of Vd (x) given by Eq. (B3) for generic semiconductor
parameters of Ks ¼ 6, Vo ¼ 3 eV, Nd ¼ 1016 cm�3, L ¼ 0:6 μm, and fields of
Fj ¼ 0:01j=Ks (eV/nm). The lines are labeled by the values of FjL. Black �’s
are locations of Vd [w(Fj )] via Eq. (B4), for which w(0) ¼

ffiffiffiffiffiffiffiffiffiffi
Vo=γ

p
.
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with γ as determined by the methods of Refs. 27 and 61.
Comparisons of Eqs. (B8) and (B9) and the Schottky–Nordheim
(γ ¼ 0) barrier (labeled “PL,” “Quad,” and “SN,” respectively) are
shown in Fig. 16 for two values of the apex radius a ¼ 12 nm and
4 nm each. In both cases, the quadratic model is visibly superior to
the linear model, particularly near the Fermi level, although the
analytic nature of Eq. (B9) would allow using shape factor methods
directly on V[x(η, υ)].

3. Metal-insulator-metal

The designation of the “MIM barrier” is taken to refer to the
metal–insulator–metal, metal–oxide–semiconductor, and other
related barriers in which a thin layer is sandwiched between con-
tacts, all of which may have different properties affecting the
barrier height and supply functions. For the MIM barrier, the mul-
tiple image charge contribution Vi(x) replaces the standard image

charge term Qs=x. Recast Eq. (31) as

VM(s) ¼ 2Qs

W
v(s)

s(1� s)
, (B12)

which reproduces the approximation of Simmons84 if v(s) is
replaced by a constant. Recall that the notation x ¼ sW is used and
(0 � s � 1). The new function v(s) is defined by

v(s) ;
(1� s2)(2bs5 þ 2as3 þ 1)þ 2s3

2(sþ 1)
(B13)

and exhibits a concave up behavior for which v(0) ¼ v(1) ¼ 1=2
with a minimum of 0.346 539 at s ¼ 0:500 297. The zeros of VM(s)
are the same as those of VM(s)s(1� s) and are always found using
a combination of a bisection search to arrive in the vicinity of the
root, followed by the Newtonian iteration for accuracy. The three
quantities of the greatest importance are the roots s1 and s2 and the
location of the maximum so.

a. Smallest root

Although the number of bisections and iterations required is
typically small, for convenience, alternate iterative methods that are
generally acceptable are possible. The first zero x1 of VM(xj) ¼ 0
may be obtained through iteration and is x1 ¼WsN , where

s jþ1 ¼ 2Qsv(sj)

W(1� sj)(Vo �WFsj)
, (B14)

with s0 ¼ Qs=LVo. The convergence is rapid so that N * 5 pro-
vides a six digit accuracy.

b. Maximum location

The maximum xo of VM(x) is the same as the zero of
P(s) ¼ (W=Qs)[s(1� s)]2@sVM(Ws), which varies between +1
with a single root. A robust method to find xo is by using a bisec-
tion on P(s) followed by a Newtonian iteration in which
s jþ1 ¼ sj � P(sj)=@sP(sj). If the barrier shape is not too trapezoidal,
an iterative approach is possible by introducing

P(s) ¼ h(s)� FW2

Qs
s2(1� s2),

h(s) ¼ �(1� s)2[1� 4as3 � 8bs5]� 4s3

(1þ s)2

(B15)

and then iterating

s jþ1 ¼ Qs

FW2

� �1=2 ffiffiffiffiffiffiffiffiffi
h(sj)

p
1� sj

(B16)

starting from the initial value of s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qs=FW2

p
until convergence

is achieved.

FIG. 16. (top) V (x) as given by Eq. (B8) ( � , †), compared to Eq. (B9) (red
and blue lines) apex radii of 4 nm and 12 nm, respectively, and the Schottky–
Nordheim barrier (orange and green lines) for μ ¼ 4 eV, Φ ¼ 4 eV, F ¼ 4 eV/
nm and γ ¼ 0:264 and 0.559 eV/nm2, respectively. (bottom) The same as top,
but for μ ¼ 2 eV, Φ ¼ 2 eV, F ¼ 2 eV/nm, and γ ¼ 0.130 and 0.270 eV/nm2,
respectively. Gray lines are μ.
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c. Largest root

Last, the larger zero x2 of VM(xj) ¼ 0 is found herein using a
bisection on VM(x) for xo , x , 1 followed by a Newtonian itera-
tion for a rugged procedure, but given the relative linear nature of

Z(s) ¼ s(1� s)VM(s), (B17)

a good initial choice rapidly returns the root via

s jþ1 ¼ sj � Z(sj)

Z0(sj)
, (B18)

where

Z0(s) ¼ (1� 2s)(Vo � FWs)

� 2Qs

W
v0(s)�WFs(1� s)

(B19)

and where v0(s) ¼ dv=ds is the derivative of Eq. (B13). Letting s0 ¼
0:5 if VM(xo) , FW and s0 ¼ 0:99 if VM(xo) . FW generally (but
not always) provides a good initial guess depending on parameters.
Subsections 3 a–3 c of Appendix B assumed E ¼ 0, but the analysis
proceeds identically when Vo ! Vo � E.

APPENDIX C: GENERAL THERMAL-FIELD FUNCTION

Under conditions where both n and s are large, a common sit-
uation for thermal and field emission from metals, then an approx-
imation to N(n, s) of Eq. (52) takes the form87

N(n, s) � e�sn2Σ
1
n

� �
þ e�nsΣ(n), (C1)

where the first term is identified with field-dominated emission
and the second with thermal-dominated emission.51,87 For x , 1,

Σ(x) ¼ 1þ x2

1� x2
þ 2

X1
j¼1

1� 21�2j
� �

ζ(2j)� 1
	 


x2j: (C2)

In practice, the first two terms of the sum in Σ(x) of Eq. (C1) are
sufficient (and even neglected), particularly when x is small,
because ζ(2j) approaches unity rapidly, as can be seen by

ζ(p) ¼ 2 p � 1
2 p � 2

þ 1
(1� 21�p)Γ(p)

ð1
0

x p�1dp
e2x(1þ ex)

, (C3)

where Γ(p) is the Gamma function. The first term dominates for
large p and is close to unity.

It is seen that either Σ(1=n) or Σ(n) has an argument that
exceeds unity, and therefore, in such cases, Eq. (C2) has divergent
behavior as its argument becomes large, but the divergence is only
as a power. The approximation of Eq. (C1), therefore, relies on the
exponential smallness of e�s or e�ns, respectively, to suppress the
diverging power behavior and retain a reasonable accuracy. For
extremely high fields, e.g., when y(E)! 1 in Eq. (16), the exponen-
tial arguments may not be sufficiently small, and the suppression

of Σ(n) is not reliable. In such cases, the usage of Eq. (C2) causes
N(n, s) to begin decreasing and become negative as y! 1. An
expedient recourse is to approximate N(n, s) by the larger of
Eq. (C1) and n2e�s, as discussed in Ref. 89.

The connection to the canonical equations as limiting cases is
trivially demonstrated when the linear Gamow approximation of
Eq. (49) is used:

• Field emission Letting Em � μ, in the zero-temperature limit, the
supply function f (E)/ (μ� E) and D(E) � e�X , where
X ¼ θ(μ)þ βF(μ)[μ� E], and as a result,

J / e�θ(μ)
ðμ
0
e�βF (μ)(μ�E)(μ� E)dE

¼ e�θ(μ)

βF(μ)
2 , (C4)

where the integral
Ð α
0 e�xxdx � 1 for a large α; therefore, J /

T2n2e�s with s ¼ θ(μ) and Σ(1=n)! 1.
• Thermal emission Letting Em � μþ f, in the low field limit,
the transmission probability D(E) � Θ(E � μ� f) and
f (E)/ eβT (μ�E)=βT , and as a result,

J / 1
βT

ð1
μþf

eβT (μ�E)dE ¼ e�βTf

β2T
; (C5)

therefore, J / T2e�ns with s ¼ βFf and Σ(n)! 1.
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