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1. INTRODUCTION

The theoretical treatment of the optical properties of organic molecules with
delocalized electronic states, such as conjugated polymers, is complicated by strong
Coulomb interaction between electrons [1,2] and by polaronic effects reflecting strong
electron-phonon interactions [3]. Both effects are enhanced by low dimensionality
[4,5]. The problem is complicated even for the purely electronic system, where the
coupling to nuclear degrees of freedom is neglected. This finite many-electron problem
can be treated using approximate many-body techniques [6]. These methods can be
classified into two types, depending on the way they treat the perturbation induced by
the optical field. The first is based on a variational and perturbative treatment of the
ground state in the presence of the electric field (for example, the Coupled-Perturbed
Hartree-Fock (CPHF) procedure [7]). The second type uses time-dependent pertur-
bation theory, which relates the optical response to the properties of excited states
e.g. the Configuration-Interaction / Sum-over-States (CI/SOS) method [2]). An-
other example of the latter methods is the Time-Dependent Hartree Fock (TDHF)
[8,9] which works well for both the linear and the non-linear response of conjugated
polymers [10]. For linear response the TDHF is equivalent to the Random Phase Ap-
proximation (RPA). In this approach one solves equations of motion for the elements
of the reduced single-electron density matrix, which represents a set of parameters
that characterize the electronic system. As demonstrated in [11], the solutions of the
TDHF equations can be viewed as “classical trajectories” in the phase space of the
generalized coherent states [12] represented by single Slater determinants. In that
sense the TDHF provides a classical-like description of the quantum many-electron
system [11]. The terms “classical” and “quantum” used here do not refer to the con-
ventional expansion in h̄ but rather describe the strength of electronic correlations.
“Classical” means a system with no correlations, so that its wavefunction can be



represented by a single Slater determinant.
Infrared spectra, vibronic structure of optical spectra, and Raman scattering

depend on the combined effect of nuclear motions and electronic correlations. Theo-
retical investigation of these spectroscopies usually require calculation of excited state
adiabatic surfaces. This task is computationally expensive and possible only for small
molecules [13]. When the optical field is off-resonant with respect to the electronic
transitions, both vibrational and electronic degrees of freedom can be treated classi-
cally. A straightforward generalization of the TDHF theory then yields a system of
coupled classical equations of motion in the joint phase space of electronic and vi-
bronic degrees of freedom. This approach, however, fails to reproduce the vibrational
structure of electronically resonant spectroscopy. For these applications a semiclas-
sical procedure needs to be developed which treats the electronic motions classically
whereas the vibrational degrees of freedom are accounted for quantum-mechanically.
This can be achieved by deriving a semiempirical effective quantum model where the
electronic degrees are represented by a set of weakly coupled harmonic oscillators
and whose electronic optical response reproduces the TDHF approximation for the
original system.

We propose a new semiclassical method for computing the vibronic structure
of the optical response. By treating electronic degrees of freedom in the TDHF
approximation and including vibrational degrees of freedom explicitly within the
Born-Oppenheimer approximation, we derive an effective Hamiltonian that describes
the coupled electronic and nuclear motions. In this paper we derive the harmonic
part of the effective Hamiltonian and apply it to compute the linear absorption and
fluorescence spectra of small polyenes.

2. SEMICLASSICAL OSCILLATOR REPRESENTATION
OF THE ELECTRON-PHONON SYSTEM

We start with the Pariser-Parr-Pople (PPP) Hamiltonian [14] which describes
the system of π-electrons in conjugated molecules:

Ĥ =
∑
m̄n̄

t̄m̄n̄(R̂)ĉ†m̄ĉn̄ +
∑
m̄n̄k̄l̄

V̄m̄n̄k̄l̄(R̂)ĉ†m̄ĉ†n̄ĉk̄ ĉl̄ + Ĥnucl. (1)

Here ĉ(ĉ†) are the fermionic annihilation (creation) operators. Indices with over-
bars m̄ = (m

′
, m

′′
) label the π-orbitals of carbon atoms (m

′
) and the electron spin

(m
′′
). t̄m̄n̄ = δm

′′
n
′′ tm′

n
′ is the hopping matrix and V̄m̄n̄k̄l̄ = δm̄l̄δn̄k̄Vm

′
n
′ represents

Coulomb interaction between electrons. The dependence of all matrix elements on
the nuclear coordinates R̂ describes the adiabatic interaction with the vibrational
degrees of freedom, the last term represents the vibrational Hamiltonian. The total
Hamiltonian of the system interacting with the classical external optical field E(r, τ)
through the polarization operator P(r) is [11]

ĤT (τ) = Ĥ −
∫

dr E(r, τ)P(r), P(r) ≡
∑
m̄n̄

µm̄n̄(r, R̂)ĉ†m̄ĉn̄ − µ′(r, R̂). (2)

µ and µ′ in Eq. (2) represent the electronic and the nuclear dipole densities, respec-
tively. Our first goal is to derive an effective classical Hamiltonian which is a classical



function of a set of parameters (the elements of the single-electron density matrix ρ
as well as the nuclear coordinates R and momenta P ). This function defined on a
closed manifold always has a minimum, which corresponds to the stationary point
(R(0),ρ̄) of the classical dynamics for ρ(t) and R(t). We next introduce canonical
variables that describe the classical dynamics of the system around this stationary
point. Finally, we quantize the resulting Hamiltonian to arrive at an effective quan-
tum Hamiltonian that describes the coupled electronic and vibrational degrees of
freedom.

To achieve this goal we employ the scheme of [11] which is based on generalized
coherent states [12]. We define the classical phase space of the system M as the space
of coherent states; M has a form of the direct product M = M0 ×M1 where M0

is the phase space of nuclear coordinates R and their conjugate momenta P . M1

is the set of single Slater determinants represented by the Grassman manifold [11]
M1 = G(M, N, C), where M is the number of electrons and N is the number of single-
electron basis functions. M1 can be viewed as the space of N ×N hermitian complex
matrices ρ̂ with ρ̂2 = ρ̂ and rank(ρ̂) = M . Therefore, a point in M is characterized
by (P, R, ρ̂). The Poisson bracket on M0 is canonical, the Poisson bracket on M1 is
defined in [11]. The classical Hamiltonian is a function on the space M of coherent
states; according to [11] its value on a coherent state η is defined as the expectation
value of Ĥ on η. Following [11], we introduce a basis set σ̂m of functions on M1

defined as σ̂m(ρ̂) ≡ Tr(σ̂mρ̂). The classical Hamiltonian then becomes:

Ĥ(P, R) =
∑
m

tm(R)σ̂m +
∑
mn

Vmn(R)σ̂mσ̂n + Ĥnucl(P, R), (3)

with
P(r) =

∑
m

µm(r, R)σ̂m − µ(1)(r, R). (4)

In Eq. (3) Ĥ(P, R) for each value of P and R is treated as a function on M1.
Expressions for the parameters tm, Vmn, and µm in terms of the original parameters
t̄m̄, V̄m̄n̄k̄l̄, on µm̄n̄ are given in [11]. Minimization of Ĥ [Eq. (3)] on the phase space
M is equivalent to solving the stationary Hartree-Fock (HF) equation together with
geometry optimization.

We next choose a system of local coordinates on M in the vicinity of the sta-
tionary point. We use R and P as canonical coordinates on M0. The coordinates
on M1 are the matrix elements of ρ̂. The full set of matrix elements is, however,
overcomplete due to the constraint ρ̂2 = ρ̂. To define a complete set of canonical
coordinates we use the decomposition of the density matrix ρ̂ = ρ̄+ ξ̂ +T (ξ̂) [11] into
the particle-hole part ξ̂ and the remainder T (ξ̂) that contains no particle-hole matrix
elements and constitutes a function of ξ.

Expanding ξ̂ in the eigenmodes ξ̂α, ξ̂†α of the Liouville operator L, Lξ̂α = Ωαξα,
Lξ̂†α = −Ωαξ̂α, we obtain the variables which are canonical to first order in ξ̂. Ex-
pressions for the electronic Hamiltonian in terms of these variables as well as the
Liouville operator L which determines the linearized TDHF equation were given in
[11]. These can be transformed to canonical variables order by order in ξ̂. Denot-
ing the canonical variables B̂α and B̂†

α, and neglecting some unimportant constant



terms, we can recast the Hamiltonian in a form Ĥ = Ĥe + Ĥph + Ĥint, where Ĥe is
the electronic Hamiltonian, written in terms of excitonic canonical variables

Ĥe ≡
∑
α

ΩαB̂†
αB̂α +

m+n>2∑
mn

∑
α1...αm

∑
β1...βn

Aα1...αm,β1...βn
B̂†

α1...B̂
†
αm

B̂β1...B̂βn
, (5)

Hph is the vibrational Hamiltonian,

Ĥph ≡ Ĥnucl + Tr
{
t̂(R(0) + q)ρ̄

}
+ Tr

{
ρ̄V (R(0) + q)ρ̄

}
, (6)

where q ≡ R−R(0) is the deviation of the nuclear positions R from their equilibrium
values R(0). The nuclear Hamiltonian under the harmonic approximation can be
expanded in the nuclear eigenmodes:

Ĥnucl =
3K−6∑
j=1

p2
j

2mj
+

mjω
2
j q2

j

2
. (7)

Here K is the number of nuclei, and qj , pj , and mj represent the coordinate, the
momentum, and the mass of the j-th nuclear mode, respectively. Ĥint represents the
interaction between electron-hole pairs and the vibrational modes.

Ĥint ≡
m+n>1∑

mn

∑
α1...αm

∑
β1...βn

A
(1)
α1...αm,β1...βn

(q)B̂†
α1...B̂

†
αm

B̂β1...B̂βn
(8)

In Eqs. (5)—(8) we have used the notation introduced in [11]. t̂(R) is a vector in a
single-electron Liouville space, whereas V (R) is an operator in the same space (i.e.,
a superoperator).

t̂(R) ≡
∑
m

tm(R)σ̂m , V (R)η̂ ≡
∑
mn

VmnTr(σ̂nη̂)σ̂m. (9)

Expressions for the coefficients A and A(1) will be given below. The Poisson bracket
has the canonical form {pi, qj} = δij ,{B̂α, B̂†

β} = iδαβ , and the polarization operator
is given by

P (r) ≡
∑
mn

µα1...αm,β1...βn
(r, R(0) + q)B̂†

α1...B̂
†
αm

B̂β1...B̂βn
. (10)

We have thus succeeded in rewriting the Hamiltonian of Eq. (3) using canonical
vari*ables with classical commutation relations.

Within the classical approximation, the linear response is obtained by retaining
the harmonic terms in B̂ and B̂† in Heff

Ĥeff =
∑
α

ΩαB̂†
αB̂α + Ĥph +

∑
αβ

A
(1)
α,β(q)B̂†

αB̂β



+
∑
α1α2

A(1)
α1α2,(q)B̂

†
α1

B̂†
α2

+
∑
β1β2

A
(1)
,β1β2

(q)B̂β1B̂β2 , (11)

and linear terms in the expression for polarization:

P (r) =
∑
α

µα(r, q)(B̂α + B̂†
α). (12)

To derive the effective quantum Hamiltonian we quantize the simplified classical
Hamiltonian given by Eqs. (11) and (12) by treating the variables p̂j , q̂j , B̂†

α, and
B̂α in Eqs. (5) through (8) and (10) as operators with the commutation relations
that follow from classical Poisson bracket: [p̂i, q̂j ] = −iδij , [B̂α, B̂†

β] = δαβ . Since
the parameters of the effective Hamiltonian are not changed by the quantization
procedure, they can be evaluated using the classical (TDHF) approach developed in
[11], which yields

A
(1)
α,β(q) ≡ 1

2
Tr

{
Ŝ(q)[[ξ̂†α, ρ̄], ξ̂β]

}
+

1
2
Tr

{
Ŝ(q)[[ξ̂β, ρ̄], ξ̂†α]

}
+Tr

{
ξ̂†αU(q, ξ̂β)

}
+ Tr

{
ξ̂βU(q, ξ̂†α)

}
, (13)

A(1)
α1α2,(q) ≡

1
2
Tr

{
Ŝ(q)[[ξ̂†α1

, ρ̄], ξ̂†α2
]
}

+ Tr
{
ξ̂†α1

U(q, ξ̂†α2
)
}

(14)

A
(1)
,β1β2

(q) ≡ 1
2
Tr

{
Ŝ(q)[[ξ̂β1 , ρ̄]ξ̂β2 ]

}
+ Tr

{
ξ̂β1U(q, ξ̂β2)

}
(15)

µα(r, q) ≡ Tr
{
[ρ̄, µ(r, R(0) + q)][ξ̂α, ρ̄]

}
. (16)

We have introduced the notation

U(q, η̂) ≡ V (R(0) + q)η̂ − V (R(0))η̂, (17)

Ŝ(q) ≡ t̂(R(0) + q) − t̂(R(0)) + 2U(q, ρ̄). (18)

Eqs. (11) through (18) express the effective Hamiltonian and the polarization in
terms of the parameters of the original Hamiltonian [Eq. (3)] and the normal modes
ξα of the linearized TDHF equation. The effective Hamiltonian describes a system
of harmonic oscillators representing excitons interacting with phonons. The effective
Hamiltonian represents a quantum model which is obtained by quantizing the har-
monic (with respect to electron-hole operators) part of the classical counterpart of
the original Hamiltonian. Neglecting the anharmonic terms for the linear response is
justified on the classical level only, this implies that the formally completely quantum
effective model constitutes a classical approximation with respect to the electronic
degrees of freedom. The formal aspects of the semiclassical approximation as well
as a systematic procedure of deriving the effective Hamiltonian which reproduces
optical nonlinearities is developed in [15]. The effective model still represents a
complicated many-body system. However, its complexity is only related to exciton-
phonon interactions; the many-body problem of electron correlations has been taken



care of within the TDHF technique, which results in the formation of excitons. Di-
rect exciton-exciton interaction will show up in nonlinear response functions only.
Eq. (11) is an important result which allows us to develop various approximations
for the system described by the effective Hamiltonian. First, provided the phonon
energies and the exciton-phonon interaction are much smaller than the optical gap,
the last two terms in the r.h.s. of Eq. (11) can be neglected. We can then retain
only quadratic terms in the expansion of Ĥph, and linear terms in the expansion
of A

(1)
α,β(q). Introducing the vibrational normal modes qjα with frequencies ωα and

creation (annihilation) operators b̂†α(b̂α), we obtain the effective Hamiltonian

Ĥ =
∑
α

ΩαB̂†
αB̂α +

∑
β

ωβ b̂†β b̂β +
∑
µνβ

Sµν,βB̂†
µB̂ν(b̂β + b̂†β), (19)

where Sµν,β ≡
∑

j

δA
(1)
µ,ν(q)
δqj

qjβ . (20)

In order to treat higher-order response functions we need to retain higher-order terms
in powers of B and B† in the effective Hamiltonian. To that end, we make use of the
expansion of the classical Hamiltonian [Eqs. (5)—(8)]. The only remaining problem is
how to order the B and B† operators in the expansion (since in the classical limit they
commute). This problem can be solved in principle by starting with the canonical
Poisson bracket and extending it to canonical boson commutation relations in the
quantum case.

3. APPLICATION TO SMALL POLYENES

We have performed numerical simulations for trans-1,3,5-hexatriene and trans-
1,3,5,7-octatetraene. Starting with ab-initio restricted Hartree-Fock 6-311++G**
calculation for the ground-state vibrational normal modes. We have used the PPP
Hamiltonian Eq. (1) [10] which has been parametrized as follows: The size of basis
set K̃ is equal to the number of carbon atoms. The PPP Hamiltonian contains only
the nearest-neighbor and the diagonal transfer integrals tn′±1,n′ (R) = β − β1∆r

′
n,

tn′n′ =
∑′

m Vn′m′ (R), with Coulomb interaction given by Ohno’s formula

Vn
′
m

′ (R) =
U√

1 + (rn′m′/a0)2
. (21)

Here U = U0/ε is the on-site Hubbard repulsion, ε is the static dielectric constant,
and rnm is the distance between the n-th and m-th carbon atoms. Following [10] we
use the following values of parameters β0 = −2.4 eV, β1 = −3.0 eVÅ−1, U0 = 11.13
eV, ε = 1.5, a0 = 1.2935 Å.

In Fig. 1 we show the dominant oscillator strengths fν in the linear response
of hexatriene and octatetraene. The electronic and vibrational normal modes were
used for calculating electronic-vibrational coupling matrix Sµν,β in Eqs. (19) and (20).
This can be recast in the following form which is suitable for numerical applications

Sµν,β = Tr
{(

δt(R(0) + q)
2δqβ

qβ +
δV̄ (R(0) + qβ)ρ̄

δqβ
qβ

)(
[[ξ̂†µ, ρ̄], ξ̂ν] + [[ξ̂ν , ρ̄], ξ̂†µ]

)}



+Tr

{
ξ̂†µ

δV̄ (R(0) + qβ)ξ̂ν

δqβ
qβ

}
+ Tr

{
ξ̂ν

δV̄ (R(0) + qβ)ξ̂†µ
δqβ

qβ

}
. (22)

Here

(V̄ (R)η)m
′
n
′ = −1

2
Vm

′
n
′ (R)ηm

′
n
′ + δm

′
n
′

K̃∑
l=1

Vm
′
l
′ (R)ηl

′
l
′ , (23)

where η = ρ̄, ξ̂ν , ξ̂†µ. The derivatives in Eq. (22) were obtained numerically as finite
differences. The dimensionality of the resulting S matrix is K̃2/2× K̃2/2× (3K−6),
where K̃2/2 and 3K − 6 are the numbers of electronic and vibronic normal modes.
The diagonal elements Sµµ,β describe linear absorption spectrum with vibronic band
positions Ωµ + nωβ. Off-diagonal elements Sµν,β determine the strength of the
vibrationally-induced transition Ων + nωβ in the case when the transition Ων is for-
bidden (e.g. for the states ν = Ag in polyenes).

Tables I and II list our numerical results for the coupling constants associated
with the lowest allowed (Bu) and the lowest dark (Ag) optical transitions. Only modes
that have non-zero couplings are shown. The diagonal coupling constants S1Bu1Bu,β

are displayed in Fig. 2 for hexatriene (upper panels) and octatetraene (lower panels).
Fig. 3 shows off-diagonal couplings S1Bu2Ag,β . Table III gives comparison of our
numerical results with experimental data on linear absorption obtained for jet-cooled
hexatriene and octatetraene [16] respectively.

When the electronic and nuclear modes are well separated (i.e., ωβ � Ωα), we
can set Sµν,β = 0 for µ 6= ν, and Eq. (19) describes a model of displaced oscillators
which can be solved exactly [6,17]. To calculate the linear absorption lineshape we
take into account only the first Bu mode and accept two-level model in the Condon
approximation. Using the values of S1B1B from Tables I and II and Eqs. (8.42a) and
(8.42b) of [17] we have calculated vibronic structure for the 1Bu transition, shown
in Fig. 4 (T=300K) and and Fid. 5 (T=3000K). The unrealistic temperature in
Fig. 5 is chosen to clarify the Stoke’s shift between the maxima of the absorption and
fluorescence envelopes (solid and dashed lines). Upper and lower panels correspond
to hexatriene and octatetraene respectively. A homogeneous broadening of 26 meV
was used in calculations.

A more rigorous study of the excited-state surfaces of short polyenes that uses
ab-initio ground-state surface calculations and INDO Hamiltonian for the excitation
spectrum is reported in [18]. The theory can further be generalized to construct
excited-state adiabatic surfaces of molecules using the ground-state surfaces as an
input [18]. The generalization of the theory to nonlinear optical response is given in
[15].
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FIG. 1.

TABLE I. K=6, Hexatriene

cm�1 S1B1B SHR S1B2A SHR

158 0.215 0.000 -461.496 0.332

376 -31.231 0.002 -0.258 0.000

468 323.934 0.164 0.033 0.000

578 0.159 0.000 14.336 0.000

1009 197.514 0.061 0.003 0.000

1035 -0.007 0.000 162.183 0.041

1216 0.036 0.000 218.161 0.074

1298 394.855 0.243 0.041 0.000

1381 -0.027 0.000 -77.926 0.009

1416 122.672 0.023 -0.031 0.000

1427 -0.020 0.000 147.231 0.034

1438 51.420 0.004 0.003 0.000

1545 95.153 0.014 0.008 0.000

1578 -0.002 0.000 143.307 0.032

1769 -28.808 0.001 0.000 0.000

1829 -0.012 0.000 398.913 0.248

1870 627.494 0.614 -0.003 0.000

3281 0.002 0.000 20.810 0.001

3282 16.163 0.000 0.951 0.000

3292 -17.362 0.000 -0.947 0.000

3292 0.004 0.000 -14.666 0.000

3300 -6.809 0.000 0.004 0.000

3303 -0.003 0.000 17.605 0.000

3371 2.450 0.000 3.874 0.000

3371 -2.546 0.000 3.837 0.000

TABLE II. K = 8, Octatetraene

cm�1 S1B1B/cm
�1

SHR S1B2A/cm
�1

SHR

93 0.806 0.000 200.858 0.063

239 61.966 0.006 0.632 0.000

357 440.007 0.302 -0.253 0.000

418 -0.240 0.000 -52.317 0.004

577 -89.793 0.013 -0.422 0.000

605 -0.379 0.000 100.622 0.016

1008 0.079 0.000 168.747 0.044

1034 145.979 0.033 0.002 0.000

1204 156.834 0.038 -0.026 0.000

1231 0.140 0.000 189.527 0.056

1292 -421.076 0.277 -0.147 0.000

1351 -0.094 0.000 -149.681 0.035

1411 38.374 0.002 -0.111 0.000

1419 0.089 0.000 -118.546 0.022

1426 90.698 0.013 -0.065 0.000

1442 -5.135 0.000 -27.060 0.001

1442 -5.612 0.000 30.391 0.001

1554 0.003 0.000 80.849 0.010

1574 49.461 0.004 0.004 0.000

1760 0.004 0.000 38.509 0.002

1809 -12.127 0.000 -0.016 0.000

1854 0.031 0.000 -392.973 0.241

1864 -579.732 0.524 0.017 0.000

3281 7.558 0.000 -1.244 0.000

3281 -2.109 0.000 14.409 0.000

3288 0.545 0.000 0.002 0.000

3290 0.011 0.000 -11.584 0.000

3294 -14.026 0.000 0.011 0.000

3296 0.010 0.000 2.599 0.000

3301 2.185 0.000 0.011 0.000

3304 -0.004 0.000 6.713 0.000

3371 -2.598 0.000 -1.499 0.000

3371 0.968 0.000 -3.843 0.000

TABLE III. Comparison with experiment

Exp Theor

height cm�1 Description cm�1 S1Bu;1Bu SHR

Hexatriene:

18 313 Skeletal bend 464 323.9 0.164

10 718 CH2 rock 1002 197.5 0.061

41 1224 C-C stretch 1289 394.9 0.243

81 1631 C=C stretch 1856 627.5 0.614

Octatriene:

11 197 Skeletal bend 237 62.0 0.006

5 348 Skeletal bend 355 440.0 0.302

2 547 Skeletal bend 573 -89.8 0.013

3 1006 CH2 rock 1026 146.0 0.033

7 1201 C-C stretch 1195 156.8 0.038

23 1235 C-C stretch 1283 -421.1 0.277

60 1645 C=C stretch 1850 -579.9 0.524



0 1000 2000 3000 4000
0

400

800

1200 K=8

ωβ (cm-1)

0

500

1000

1500 K=6

FIG. 2.

0 1000 2000 3000 4000
0

300

600

900 K=8

ωβ (cm-1)

0

300

600

900 K=6

FIG. 3.

0

5

10

15 K=6

ab
so

rp
tio

n 
 f

lu
or

es
ce

nc
e

-1.0 -0.5 0.0 0.5 1.0
0

5

10

15 K=8

ab
so

rp
tio

n 
 f

lu
or

es
ce

nc
e 

Ω - Ω0
eg (eV)

FIG. 4.

-1.0 -0.5 0.0 0.5 1.0
0

1

2

3

K=8

ab
so

rp
tio

n 
 f

lu
or

es
ce

nc
e 

Ω - Ω0
eg (eV)

0

1

2

3

4 K=6

ab
so

rp
tio

n 
 f

lu
or

es
ce

nc
e 

 

FIG. 5.


